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Abstract— This paper is concerned with the feasibility of the
power flow in DC power grids with constant power loads. We
introduce the notion of distance to infeasibility as a voltage
stability index and robustness measure for power flow feasibil-
ity. In particular, we study the p-norm distance to infeasibility
in the domain of the constant power loads, and show how
this distance may be expressed as a mathematical program.
Necessary and sufficient matrix inequalities are presented that
guarantee a minimal p-norm distance between a given vector of
power demands and the boundary of infeasibility. For the cases
1-norm and ∞-norm distance we show that the condition can
be formulated as (multiple) linear matrix inequalities, whereas
in all other cases the matrix inequalities are strictly concave
and thus non-convex. For the 2-norm distance we show that the
distance to infeasibility may be computed via bilinear matrix
inequalities. A numerical example for the ∞-norm distance to
infeasibility for the 39 bus New England power grid is provided.

I. INTRODUCTION

Over the last decade, DC power grids have found an
increasing interest among applications such as smart grids
and high-voltage DC (HVDC) transmission. A major concern
in DC power grids is the presence of constant-power loads,
which demand a constant amount of power from the grid.
Such loads are known to destabilize the grid by selfishly
extracting more power from the grid, which can lead to a
rapid decrease of nodal voltages, which is known as voltage
collapse. In particular, voltage collapse occurs if constant
power demands cannot be met at steady state [1].

The DC power flow feasibility problem studies under
which conditions the constant-power demands in a DC power
grid can be satisfied at steady state. Sufficient conditions for
this problem have been presented in [2], [3], [4], [5]. The
problem has been fully characterized in [6], [7], resulting in
necessary and sufficient conditions for power flow feasibility.
Although these results are able to determine the power
flow feasibility when all system parameters are known, one
shortcoming is that the robustness to parametric uncertainties
of power flow feasibility cannot be guaranteed. Such a
guarantee is often required since power grids should not be
operated close to the feasibility boundary, especially since
system parameters are often uncertain.

The term voltage stability index [8] commonly refers to a
measure for how close a power grid is to voltage collapse.
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Such indices provide a measure for the robustness of the
power flow. More practically, they function as a warning
signal for when the power flow in the system is close to
infeasibility and an intervention is needed. Classically, such
indices are phrased for AC power grids, and rely on either the
power flow Jacobian, or on local branch or nodal variables.
We refer to [8] for an overview of such indices.

The focus of this work is to formalize a voltage stability
index that measures how close the power flow in a DC power
grid is to being infeasible. For this purpose, we propose to
study the p-norm distance in the power domain of the vector
of power demands to boundary of power flow infeasibility.
We show that this distance can be formulated a mathematical
program. A converse to this problem is to demonstrate the
robustness of power flow feasibility. To this end we want
to find conditions such that all power demands within a
p-norm ball of a given radius, centered around a given
vector of power demands, give rise to a feasible power flow.
We present necessary and sufficient matrix inequalities that
guarantee this robust property.

The presented distance-to-infeasibility metric of constant
power loads is convenient when only bounds on the constant
power loads are available. A similar problem that considers
bounded uncertainty in line conductances of DC power grids
was studied in [9], where it was shown that power flow
feasibility is subject to the so-called Braess paradox, meaning
that adding lines or increasing their conductances may cease
the power flow feasibility in a DC power grid. There, a
sufficient condition for the feasibility of all systems within
the uncertainty bounds was proposed. We note that the results
presented in this paper can be used in tandem with the
sufficient condition in [9] to deal with bounded uncertainties
in both line conductances and constant power loads.

We also remark the analogy between the reactive power
flow in lossless decoupled AC grids and the power flow
in DC power grids, c.f. [2]. In this analogy, the proposed
distance-to-infeasibility measure corresponds to the distance
to infeasibility of the reactive power flow of the lossless
AC power grid. It therefore a measure of the reactive power
reserve [10, Ch. 4]. The study and comparison of these
systems and the reactive power reserve lies outside the scope
of this paper.

The remainder of this paper is structured as follows. In
Section II we introduce the power grid model and discuss
power flow feasibility. Section III introduces the distance-
to-feasibility measure, presents the problem of computing
this measure, and presents the problem of guaranteeing
robustness of the power flow. In Section IV we present
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matrix inequalities that guarantee power flow robustness, and
present a mathematical program to compute the distance-to-
infeasibility measure. In Section V we address the computa-
tional aspects of the presented methods for inf-norm, 1-norm
and 2-norm distance to infeasibility. Section VI presents a
numerical simulation for the computation of the ∞-norm
distance to infeasibility in a benchmark power grid. The
paper is concluded in Section VII.

Notation and matrix definitions

For a vector x =
(
x1 · · · xk

)⊤
we denote

[x] := diag(x1, . . . , xk).

We let 1 and 0 denote the all-ones and all-zeros vector, re-
spectively. We let their dimensions follow from their context.
All vector and matrix inequalities are taken to be element-
wise. We let ei denote the i-th column of the identity matrix.
We write A ⪰ B when A−B is a symmetric positive semi-
definite matrix, and A ⪶ B when in addition A ̸= B. We
let ∥x∥p denote the p-norm of x ∈ Rk.

II. THE DC POWER GRID MODEL

This paper considers DC power grids with constant-power
loads at steady state, which are modeled as a resistive circuit.
Nodes (buses) in the grid are either sources (S) or loads (L).
A source is a node at which the nodal voltage potentials of
the network are fixed, such as a slack bus. A load is a node
that demands a given quantity of power from the grid, often
known as a P-load. The power flow feasibility problem asks
if the nodal voltage potentials at the loads can be chosen
such that all the power demands are satisfied.

To give a mathematical formulation of this problem we
define the following quantities. We let V =

(
V ⊤
L V ⊤

S

)⊤ ∈
Rn+m be the voltage potentials at the nodes, which we
assume to be positive. The vectors VL and VS correspond to
the voltage potentials of the loads and source, respectively.
We let Y ∈ R(n+m)×(n+m) denote the Kirchhoff matrix
of the power grid (e.g., see [6]), which relates the voltage
potentials in the grid to the nodal current I ∈ Rn+m injected
into the network by I = Y V . The power that is injected into
the network at the loads is therefore given by

PL = [VL](YLLVL + YLSVS). (1)

Let Pc ∈ Rn denote the power demands of the load nodes.
The power flow feasibility problem asks if the demands Pc

can be satisfied for some VL > 0, in which case PL+Pc = 0.
We formalize this as follows.

Definition 2.1: Given Y and VS , we say that Pc is feasible
if there exists VL > 0 such that

[VL](YLLVL + YLSVS) + Pc = 0. (2)

The set of all feasible Pc is denoted by F . In addition, we
say that Pc is feasible under small perturbation if Pc does
not lie on ∂F , the boundary of F .

Note that lines between sources do not contribute to the
power flow problem, as the submatrix YSS does not appear
in the equation (2).

A. Power flow feasibility as an LMI feasibility problem

It has been shown in [7, Thm. 5.1] that the set F is closed
and convex, and that feasibility of Pc is equivalent to the
infeasibility of a linear matrix inequality (LMI) concerning
the matrix

QPc
(λ) :=

(
1
2 ([λ]YLL + YLL[λ])

1
2 [λ]YLSVS

1
2 ([λ]YLSVS)

⊤ λ⊤Pc

)
.

We repeat the result for the sake of completeness.
Theorem 2.2 (LMI for power flow infeasibility): Given

Y and VS , the vector Pc is not feasible (under small
perturbation) if and only if there exists a nonzero vector λ
such that QPc

(λ) is positive definite (positive semi-definite).
If λ exists, it satisfies λ > 0.

Theorem 2.2 tells us that power flow infeasibility is
equivalent to the feasibility of an LMI. It was also shown
in [7, Thm. 5.2] that this equivalence may be rephrased in
terms of the alternative of the LMI, e.g., see [11]. It is worth
noting that [7, Thm. 5.2] can be slightly relaxed by taking
into account that the vector λ in Theorem 2.2 is positive.

Theorem 2.3 (Alternative LMI for power flow feasibility):
Given Y and VS , the vector Pc is feasible if and only
if there exists a nonzero positive semi-definite matrix
Z = Z⊤ ∈ R(n+1)×(n+1) such that for all i = 1, . . . , n,

trace (ZQPc
(ei)) ≤ 0.

Proof: Define the matrices A0 = 0 and Ai = QPc
(ei)

for i = 1, . . . , n and apply Lemma A.1 to [7, Thm. 5.2].

III. PROBLEM FORMULATION

In this paper we are interested in obtaining a metric for
how close the power flow in a DC power grid is to being
infeasible. Since voltage collapse occurs when the power
flow is close to being infeasible, this metric functions as
a voltage stability index. For our metric we focus on the
constant-power demands, and ask what is the distance of
a feasible vector of power demands to the boundary of
feasibility in the power domain. In this paper we will restrict
ourselves to the p-norm distances given by

dSp (x, y) := ∥S⊤(x− y)∥p.

where p ∈ [1,∞] and S is a square nonsingular shearing
matrix. We assume that inverse of S is a nonnegative matrix,
as is the case for nonsingular M-matrices [12].

Assumption 3.1: The inverse of S satisfies S−1 ≥ 0.
The associated distance of a vector of power demands Pc to
the infeasibility set Fc := Rn \ F is given by

dSp (Pc,Fc) := infy∈Fc dSp (Pc, y).

It should be noted that, if Pc lies on the boundary of feasibil-
ity, or is infeasible, then we naturally have dSp (Pc,Fc) = 0.
This paper is concerned with the computational feasibility of
the distances dSp (Pc,Fc).

Problem 1 (Distance problem): Find a computationally
feasible method to compute dSp (Pc,Fc).

We are also interested in formulating a condition that
guarantees a degree of robustness of power flow, and if it is
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computational feasible. By this notion of robustness we mean
that all power demands in a sufficiently large neighbourhood
of Pc lead to a feasible power flow, and small fluctuation and
inaccuracies in Pc do not affect the power flow feasibility.
More specifically, we ask under which conditions a ball
around a given Pc is fully contained in the feasibility set
F . To this end, we let the p-norm ball with radius γ, with
shearing matrix S and centered at y be defined by

BS
p,γ(y) :=

{
z
∣∣ ∥S⊤(y − z)∥p ≤ γ

}
.

Problem 2 (Robustness problem): Find a computationally
feasible method to verify that BS

p,γ(Pc) ⊆ F .
Naturally, these two problems are related in the sense that

the distance dSp (Pc,Fc) is the largest radius γ such that the
ball BS

p,γ(Pc) is contained in F , provided that Pc is feasible.
To the best of the authors knowledge, Problem 1 and Prob-

lem 2 have not been considered before in the literature, and
are a novel perspective to measure the degree of feasibility
of the power flow equations.

In the remainder of the paper we show that Problem 1
and Problem 2 can be formulated as a mathematical program
in terms of matrix inequalities. The presented mathematical
programs may be considered in control applications to guar-
antee the robust feasibility of the power flow, or to decide to
intervene if the power flow is to close to infeasibility, similar
to any other voltage stability index.

IV. REFORMULATION OF THE DISTANCE AND
ROBUSTNESS PROBLEM

A. Robust power flow feasibility guarantee as a matrix
inequality

In this section we address Problem 2. Theorem 2.2 states
how power flow feasibility is equivalent to the infeasibility
of an LMI. Similarly, we show that the robust feasibility is
equivalent to a matrix inequality involving the matrix map

QS
Pc,q,γ

(λ) :=

(
1
2 ([λ]YLL + YLL[λ])

1
2 [λ]YLSVS

1
2 ([λ]YLSVS)

⊤ λ⊤Pc + γ∥S−1λ∥q

)
which not linear in λ due to the presence of ∥S−1λ∥q .

Theorem 4.1: Let p, q ∈ [1,∞] such that 1
p + 1

q = 1. All
power demands in the ball BS

p,γ(Pc) are feasible if and only if
there does not exist λ such that QS

Pc,q,γ
(λ) ≻ 0. Similarly, all

power demands in the ball BS
p,γ(Pc) are feasible under small

perturbation if and only if there does not exist a nonzero λ
such that QS

Pc,q,γ
(λ) ⪰ 0.

Proof: We will prove the latter equivalence. The proof
of former equivalence is analogous.

We note from Theorem 2.2 that all power demands in
BS
p,γ(Pc) are feasible under small perturbation if and only

if for each δ such that ∥S⊤δ∥p ≤ γ there does not exist a
nonzero λ such that QPc+δ(λ) ⪰ 0.

Let λ be any nonzero vector. Suppose that ∥S⊤δ∥p ≤ γ.
By Hölder’s inequality [13] we have that

λ⊤δ = (S−1λ)⊤(S⊤δ) ≤ ∥S⊤δ∥p∥S−1λ∥q ≤ γ∥S−1λ∥q,

which implies that QS
Pc,q,γ

(λ) ⪰ QPc+δ(λ). Suppose there
does not exist a nonzero λ̂ such that QS

Pc,q,γ
(λ̂) is positive

semi-definite. Then QPc+δ(λ) is not positive semi-definite.
Conversely, let λ be any nonzero vector. By the tightness

of Hölder’s inequality [13] there exists a nonzero vector δ
such that

λ⊤δ = (S−1λ)⊤(S⊤δ) = ∥S⊤δ∥p∥S−1λ∥q.

We scale δ such that ∥S⊤δ∥p = γ, implying that

λ⊤δ = γ∥S−1λ∥q. (3)

Suppose that for each δ̂ such that ∥S⊤δ̂∥p ≤ γ there does
not exist a nonzero λ̂ such that QPc+δ̂(λ̂) ⪰ 0. Then
QPc+δ(λ) = QS

Pc,q,γ
(λ) is not positive semi-definite, where

we substituted (3).
The computational tractability of the matrix inequalities

QS
Pc,q,γ

(λ) ≻ 0 and QS
Pc,q,γ

(λ) ⪰ 0 in Theorem 4.1 for
different values of q is treated in Sections V-A, V-B and
V-C.

B. The distance to infeasibility as a mathematical program

In this section we address Problem 1. Based on Theo-
rem 4.1 we show that the distance to infeasibility may be
expressed as mathematical program, and, more specifically,
as a semi-definite program with a (generally) non-convex
cost function. To this end, we define

APc(λ) :=

(
1
2 ([λ]YLL + YLL[λ])

1
2 [λ]YLSVS

1
2 ([λ]YLSVS)

⊤ λ⊤Pc + 1

)
.

Note that APc
(λ) ⪶ QPc

(λ).
Theorem 4.2: Let p, q ∈ [1,∞] such that 1

p + 1
q = 1. Let

r ∈ (0,∞] be the optimal value of the maximization problem

max
λ∈Rn

∥S−1λ∥q

subject to APc(λ) ⪰ 0
(4)

then dSp (Pc,Fc) = 1
r .

Proof: The distance dSp (Pc,Fc) equals the supremum of
all γ such that BS

p,γ(Pc) ⊆ int(F). Conversely, dSp (Pc,Fc)
equals the smallest γ such that BS

p,γ(Pc) ̸⊆ int(F). By
Theorem 4.1 this means that

dSp (Pc,Fc) = min
λ ̸=0

γ

subject to QS
Pc,q,γ(λ) ⪰ 0

Since QS
Pc,q,γ

(αλ) = αQS
Pc,q,γ

(λ), we are free to scale
λ in the minimization problem. We scale λ such that
γ∥S−1λ∥q = 1, leading to the minimization problem

dSp (Pc,Fc) = min
λ̸=0

γ

subject to QS
Pc,q,γ(λ) ⪰ 0, γ∥S−1λ∥q = 1.

By virtue of γ∥S−1λ∥q = 1, we have QS
Pc,q,γ

(λ) = APc(λ)
and γ = ∥S−1λ∥−1

q , which therefore gives us

dSp (Pc,Fc) = min
λ̸=0

∥S−1λ∥−1
q

subject to APc
(λ) ⪰ 0.

(5)
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By inverting the optimization function in (5) we obtain the
maximization problem (4), but where λ ̸= 0. Lemma B.1
in the Appendix implies that there always exists a nonzero
λ̂ such that APc(λ̂) ⪰ 0. Hence, maximizing ∥S−1λ∥q over
APc

(λ) ⪰ 0 always gives a nonzero value, meaning that
λ = 0 is never a maximizer of the problem. We therefore
may include λ = 0 in the maximization problem without
altering its optimal value. Thus, the optimal value of (4),
which we called r in the statement of the Theorem, coincides
with the inverse of the optimal value of the minimization
problem in (5), implying that dSp (Pc,Fc) = 1

r .
The computational tractability of the mathematical pro-

gram in Theorem 4.2 for different choices of p is treated in
Sections V-A, V-B and V-C.

V. SPECIFIC p-NORM DISTANCES TO INFEASIBILITY

A. The ∞-norm distance to infeasibility

In this section we show that the ∞-norm distance to
infeasibility leads to a convex semi-definite optimization
problem. The ∞-norm distance is useful when there is
uncertainty in the power demands and only bounds for each
individual power demand is available. Let Pc, Pc be vectors
that represent a bounded uncertainty in the power demands
Pc, described by

Pc,i ≤ Pc,i ≤ Pc,i for all i.

Assuming that Pc < Pc, we then have that such Pc are
described by the ∞-norm ball

B
diag(

1
2 (Pc−Pc))

−1

∞,1 ( 12 (Pc + Pc)).

In general, the feasibility of all power demands in the ∞-
norm ball BS

∞,γ(Pc) can be evaluated through an LMI.
Theorem 5.1: All power demands in the ∞-norm ball

BS
∞,γ(Pc) are feasible (under small perturbation) if and

only if there does not exist a nonzero λ such that
QPc+γS−⊤1(λ) ≻ 0 (⪰ 0).

Proof: We consider Theorem 4.1 with p = ∞, q = 1.
It suffices to show that

λ⊤Pc + γ∥S−1λ∥1 = λ⊤(Pc + γS−⊤1). (6)

If QS
Pc,1,γ

(λ) ⪰ 0 then also [λ]YLL + YLL[λ] ⪰ 0. By [6,
Lemma B.9] this means that λ ≥ 0. Since S−1 ≥ 0 by
Assumption 3.1, we have that S−1λ ≥ 0 and ∥S−1λ∥1 =
1⊤S−1λ which proves that (6) holds.

Comparing the statement of Theorem 5.1 with Theo-
rem 2.2, it is clear that the feasibility of the ball BS

∞,γ(Pc)
is equivalent to the feasibility of the vector Pc + γS−⊤1.
This is no surprise, as the vector Pc + γS−⊤1 is a tight
elementwise upper bound for the ball BS

∞,γ(Pc), and [7,
Lemma 7.1] states that any vector Pc that is bounded by
a feasible vector P̂c is also feasible.

The alternative LMI to Theorem 5.1 is stated as follows.
Corollary 5.2: All power demands in the ∞-norm ball

BS
∞,γ(Pc) are feasible if and only if there exists a nonzero

positive semi-definite matrix Z such that

trace(ZQPc+γS−⊤1(ei)) ≤ 0 for i = 1, . . . , n.

Proof: The inclusion BS
∞,γ(Pc) ⊆ F is equivalent to

the feasibility of Pc + γS−⊤1. We apply Theorem 2.3.
In the case of the ∞-norm distance to infeasibility, we

may compute the distance by a semi-definite program with
a linear cost function. Hence, in this case we obtain a
computationally tractable method to compute this distance.

Theorem 5.3: The ∞-norm distance to infeasbility
dS∞(Pc,Fc) may be computed via the optimization problem

dS∞(Pc,Fc)−1 = max
λ∈Rn

1⊤S−1λ

subject to APc(λ) ⪰ 0

which is a convex problem, since its cost function is linear
and the constraints are a semi-definite program.

Proof: From the proof of Theorem 4.2 we know that the
optimal λ is nonzero. Any λ ̸= 0 which satisfies APc

(λ) ⪰ 0
also satisfies [λ]YLL + YLL[λ] ⪰ 0. By [6, Lemma B.9] this
means that λ > 0. Since also S−1 ≥ 0 by Assumption 3.1,
we have that ∥S−1λ∥1 = 1⊤S−1λ.

Since the optimization problem Theorem 5.3 is a convex
semi-definite problem, we may also consider its dual to
express the ∞-norm distance to infeasibility.

Corollary 5.4: The ∞-norm distance to infeasbility
dS∞(Pc,Fc) may be computed via a convex semi-definite
program by

dS∞(Pc,Fc)−1 = min
Z∈Sn+1

⪰0

Zn+1,n+1

subject to trace(ZQPc(ei)) = −(S−⊤1)i
for i = 1, . . . , n

Proof: Following Section 2.2 of [11], the problems
in Theorem 5.3 and Corollary 5.4 are each other’s convex
dual. By Lemma B.1 we have that the (primal) problem in
Theorem 5.3 is strictly feasible. Hence, by [11, Thm. 8], the
optimal values of both problems coincide.

B. The 1-norm distance to infeasibility

We continue by showing that the 1-norm distance to
infeasibility may be computed by evaluating n semi-definite
programs. In particular, the robust feasibility of a 1-norm
ball corresponds to the infeasibility of n LMIs.

Theorem 5.5: All power demands in the 1-norm ball
BS
1,γ(Pc) are feasible (under small perturbation) if and only

if for all i = 1, . . . , n there does not exist a nonzero λ such
that QPc+γS−⊤ei(λ) ≻ 0 (⪰ 0).

Proof: If QS
Pc,1,γ

(λ) ⪰ 0 then also [λ]YLL+YLL[λ] ⪰ 0.
By [6, Lemma B.9] this implies that λ ≥ 0. We consider
Theorem 4.1 with p = ∞, q = 1. Since S−1 ≥ 0
by Assumption 3.1, we have S−1λ ≥ 0 and therefore
∥S−1λ∥∞ = (S−1λ)iei for some i. Hence

λ⊤Pc + γ∥S−1λ∥1 = λ⊤(Pc + γS−⊤ei). (7)

Therefore, QS
Pc,∞,γ(λ) ≻ 0 (⪰ 0) if and only if there exists

an i so that QPc+γS−⊤ei(λ) ≻ 0 (⪰ 0).
Comparing the statement of Theorem 5.5 with Theo-

rem 2.2, it is clear that the feasibility of the ball BS
1,γ(Pc)

coincides with the feasibility of n vectors Pc + γS−⊤ei.
This can be explained by the observation that the vectors
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Pc + γS−⊤ei form the corners of the ball BS
1,γ(Pc), and by

convexity of F and the domination property of [6, Lemma
7.1], it is necessary and sufficient that these corner points
are feasible.

Similar to the ∞-norm case, we may rephrase the n LMI
conditions in Theorem 5.5 in terms of their alternatives.

Corollary 5.6: All power demands in the 1-norm ball
BS
1,γ(Pc) are feasible if and only if for all i = 1, . . . , n there

exist a nonzero positive semi-definite matrix Z such that

trace(ZQPc+γS−⊤ei(ej)) ≤ 0 for j = 1, . . . , n.

Proof: The inclusion BS
1,γ(Pc) ⊆ F is equivalent to

the feasibility of Pc + γS−⊤ei for i = 1, . . . , n. Apply
Theorem 2.3.

In the case of the 1-norm distance to infeasibility, we may
compute the distance by computing n semi-definite programs
with a linear cost function. Hence, in this case we obtain a
computationally tractable method to compute this distance.
However, computing the 1-norm distance to infeasibility for
large n is significantly more costly compared to the ∞-norm.

Theorem 5.7: The 1-norm distance to infeasbility
dS1 (Pc,Fc) may be computed via the mathematical program

dS1 (Pc,Fc)−1 = max
i

max
λ∈Rn

(S−1λ)i

subject to APc(λ) ⪰ 0

which is comprised of n convex semi-definite programs.
Proof: From the proof of Theorem 4.2 we know that the

optimal λ is nonzero. Any λ ̸= 0 which satisfies APc
(λ) ⪰ 0

also satisfies [λ]YLL + YLL[λ] ⪰ 0. By [6, Lemma B.9] this
means that λ > 0. Since also S−1 ≥ 0 by Assumption 3.1,
we have that S−1λ ≥ 0 and ∥S−1λ∥∞ = maxi(S

−1λ)i.
Interchanging the maximization over i with the maximization
over λ leads to the presented semi-definite program.

The 1-norm distance may also be computed by taking the
convex dual of each semi-definite problem in Theorem 5.7.

Corollary 5.8: The 1-norm distance to infeasbility
dS1 (Pc,Fc) may be computed through the convex semi-
definite program

dS1 (Pc,Fc)−1 = max
i

min
Z∈Sn+1

⪰0

Zn+1,n+1

subject to trace(ZQPc
(ej)) = −(S−1)ij

for j = 1, . . . , n
Proof: Following Section 2.2 of [11], the problems

in Theorem 5.7 and Corollary 5.8 are each other’s convex
dual. By Lemma B.1 we have that the (primal) problem in
Theorem 5.3 is strictly feasible. Hence, by [11, Thm. 8], the
optimal values of both problems coincide.

C. The p-norm distance to infeasibility for p ̸= 1,∞
We will now show that the p-norm distance to infeasibility

with p ̸= 1,∞ gives rise to a non-convex optimization
problem. For vectors x, y ∈ Rn which are not each other’s
scalar multiple, we have for p ∈ (1,∞) and α ∈ (0, 1) that
[14, Ch. 11]

∥αx+ (1− α)y∥p < α∥x∥p + (1− α)∥y∥p.

Hence, a minimization over a p-norm with p ̸= 1,∞ leads
to a strictly convex problem. However, for a maximization
problem, as in the case of Theorem 4.2, the same inequality
means that the problem is strictly concave, and therefore
non-convex. This means that the maximization problem in
Theorem 4.2 with p ̸= 1,∞ can have multiple optimizers,
and that a naive solver for such a problem can converge to
a local optimum that is not globally optimal.

The above means that for p ∈ (1,∞), computing
the p-norm distance to infeasibility is less computation-
ally tractable compared to the ∞-norm and 1-norm case.
However, in mathematical programming for control, many
problems can be phrased using bilinear matrix inequalities
(BMIs), and computational packages for solving these math-
ematical programs are available [15]. We show that the 2-
norm distance to infeasibility can be phrased using BMIs.

Theorem 5.9: The 2-norm distance to infeasbility
dS2 (Pc,Fc) may be computed via the semi-definite program

dS2 (Pc,Fc)−2 = max
λ,ω,µ∈Rn

∑
i

µi

subject to APc(λ) ⪰ 0

λi −
∑
j

(SS⊤)ijωj ≥ 0,∑
j

(SS⊤)ijωj − λi ≥ 0

µi − λiωi ≥ 0, λiωi − µi ≥ 0.
Proof: The final line of the semi-definite program are

bilinear (matrix) inequalities. The inequalities imply that
µi = (S−1λ)2i , and hence the cost function equals ∥S−1λ∥22.
The claim follows from Theorem 4.2.

VI. NUMERICAL EXAMPLE

We consider the 39 bus New England system distributed
with MATPOWER 7.0 [16] and consider the decoupled
reactive power flow in that system [2]. That is, we assume
that this AC power grid is lossless by disregarding the line
resistances, and we assume that the phase angles between
neighbouring buses is zero. We only consider the reactive
power flow, which is independent from the active power
demands in the system. The reactive power flow in the
network corresponds to the power flow in a DC network,
where line impedances, reactive power demands and source
voltage magnitudes of the 39 bus system correspond to the
line conductances in the Kirchhoff matrix Y , the power
demands Pc and source voltages VS of the DC power grid,
respectively. We use MOSEK and the Julia programming
language to implement the convex semi-definite program of
Theorem 5.3 and compute the ∞-norm distance to infea-
sibility, taking S = In×n. After 1.5 seconds, the program
returns that the ∞-norm distance to infeasibility of Pc is
d
In×n
∞ (Pc,Fc) = 2.1838930 p.u.. This implies that we may

increase the power demand at each bus by 2.0 p.u. and
still have a feasible power flow. By doing so we compute
d
In×n
∞ (Pc + 2.01,Fc) = 0.1838941 p.u., which is 2.0

p.u. less than the original distance to infeasibility, as we
anticipated. When we increase all power demands by 2.3
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p.u., the solver tells us that the problem is not feasible,
meaning that the power flow is not feasible.

VII. CONCLUSION

This paper introduced a distance-to-infeasibility metric
that functions as a voltage stability index for how close a
system is to voltage collapse. We showed that the p-norm
distance to infeasibility can be formulated as a mathematical
program, which for p = ∞ and p = 1 is equivalent to
(a/multiple) optimization problem(s) with linear cost and
LMI constraints, and therefore computationally tractable. For
p ∈ (1,∞) the mathematical program is non-convex, but
for p = 2 is equivalent to an optimization problem(s) with
linear cost and BMI constraints. This paper also introduced a
guarantee for the robustness of power flow feasibility, which
is shown to be equivalent to the infeasibility of a matrix
inequality. For p = ∞ and p = 1 we showed that this
guarantee can be phrased as (multiple) linear matrix inequal-
ity(s). Alternatives and dual problems for the aforementioned
convex semi-definite problems were also given. Finally we
gave a numerical example of the computation of the ∞-norm
distance to infeasibility for a benchmark power grid.

APPENDIX I

Throughout this section we let A0, . . . , Ak ∈ RN×N be
symmetric matrices. For x ∈ RK we define

A(x) := A0 +
∑K

i=1 Aixi

Lemma A.1: One and only one of the following holds:
i) There exists a vector x > 0 such that A(x) ≻ 0;

ii) There exists a positive semi-definite symmetric matrix
Z satisfying trace(ZAi) ≤ 0 for i = 0, . . . , k.

Proof: Let Â0, . . . , Âk ∈ R(N+K)×(N+K) and Â(x) by

Â0 :=

(
A0 0
0 0

)
; Âi :=

(
Ai 0
0 [ei]

)
; Â(x) := Â0 +

K∑
i=1

Âixi.

By [11, Thm. 1], one and only one of the following holds:
iii) There exists a vector x ∈ Rk such that Â(x) ≻ 0;
iv) There exists a positive semi-definite symmetric matrix

Ẑ satisfying trace(ẐÂ0) ≤ 0 and trace(ẐÂi) = 0 for
i = 1, . . . , k.

Clearly i) and iii) are equivalent. Consider the partition

Ẑ =

(
Ẑ11 Ẑ12

Ẑ21 Ẑ22

)

with Ẑ11 ∈ RN×N , and note that

trace(ẐÂ0) = trace(Ẑ11A0);

trace(ẐÂi) = trace(Ẑ11Ai) + Z22,ii.

If iv) holds then Z22,ii ≥ 0 and it follows that iv) implies ii)
by taking Z = Z11. Conversely, if ii) holds then by taking
Ẑ such that Ẑ11 = Z, Ẑ12 = Ẑ⊤

21 = 0 and

Ẑ22 = −diag(trace(ZA1), . . . , trace(ZAk)),

we have that Z is positive semi-definite and that iv) holds.
Hence ii) and iv) are equivalent, which proves the claim.

APPENDIX II

Lemma B.1: For all Pc ∈ Rn there exists a λ such that

APc(λ) ≻ 0.

Proof: If Pc is not feasible, then by Theorem 2.2 there
exists a λ such that QPc

(λ) ≻ 0. Since APc
(λ) ⪰ QPc

(λ),
we have that also APc

(λ) ≻ 0.
Suppose Pc is feasible. We define

Pc,max := 1
4 [YLSVS ]Y

−1
LL YLSVS . (8)

By [6, Lemma 2.18] we have 1⊤(Pc,max − Pc) ≥ 0. Let
α := 1⊤(Pc,max − Pc) + ε for some ε > 0 and λ = α−11,
then

αAPc
(λ) =

(
YLL

1
2YLSVS

1
2 (YLSVS)

⊤ 1⊤Pc,max + ε

)
.

Note that α > 0. The Schur complement of αAPc
(λ) with

respect to the positive definite submatrix YLL is positive
definite since

1⊤Pc,max − 1
4 (YLSVS)

⊤Y −1
LL YLSVS + ε = ε > 0,

where we substituted (8). Thus APc
(λ) ≻ 0 holds.
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