
Model Reference Adaptive Control with Proportional Integral Adaptation Law

Christoph Weise, Tom Kaufmann, Johann Reger∗

Abstract— In this contribution we extend the classical update
law of the certainty equivalence based (indirect) model refer-
ence adaptive control (MRAC) with an additional feedthrough
error term. We use a linear state-space representation of the
parameter estimation error in order to construct a Lyapunov
function. Without unstructured uncertainties, we can show
asymptotic stability of the closed loop. Even for relatively high
adaptation gains the algorithm can reduce the oscillations of
the state variables. In case of unstructured input uncertainties,
the additional term reduces the model following error drasti-
cally without increasing the control signal for low frequency
unstructured uncertainties. For the simplified pure linear case
we analyze the effect of the additional proportional error
feedthrough in the adaptation law showing its similarity to a
disturbance observer. As a simulation example the wing-rock
dynamics are reconsidered.

I. INTRODUCTION

The model reference adaptive control (MRAC) scheme
is a well-established and widely used control algorithm to
handle structured uncertainties with unknown parameters that
linearly enter the system [1], [2]. The classical MRAC,
however, shows certain disadvantages. First of all, high adap-
tation rates lead to undesired oscillations. Furthermore the
robustness to unstructured uncertainties is minor since they
lead to drifting of the estimated parameters. To overcome
these drawbacks various extensions of the approach can
be found in the literature, for example the σ-modification
[3], the e-modification [4], the projection operator extension
[5] and the L1-extension [6]. In the context of L1-adaptive
control also proportional update laws can be found [7]. Other
publications consider derivative-free MRAC approaches [8]
or fractional-order update laws [9], [10], [11]. The results
presented in [11] show that the robustness to unstructured
uncertainties can be increased by using a low order of
differentiation, hence, a proportional update law. However,
with a proportional update law the tracking error does not
converge anymore. For these reasons the aim of this work is
to combine the classical MRAC with a proportional part in
the update law, introducing a transfer zero, so to speak.

For incorporating this feedthrough term in the adaptation
law we introduce a linear higher-order state-space repre-
sentation of the assumed (piecewise) constant parameters.
Compared to [12] the order of this representation can be
chosen by the practitioner. This is important since it allows
us to reduce the bounds on the model following error
because additional negative terms in the derivative of the
Lyapunov function can be generated. The main effect of
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the proposed algorithm stems from the feedthrough term
contained in the higher order state-space representation. It al-
lows for increased adaptation rates and improves the transient
performance significantly without additional implementation
requirements.

The paper is structured as follows. After formulating the
problem in Section II we recall the derivation of the classical
indirect MRAC algorithm, as we will follow similar steps to
derive a higher-order adaptive-law subsequently. Applying
the extended representation allows to derive a higher-order
adaptation law including a proportional term in Section III.
These extensions increase the robustness of the control
algorithm with respect to unstructured input uncertainties.
This is made evident by inspecting the derivative of the
Lyapunov function and shall also be explained in the fre-
quency domain for a simplified linear example in Section III-
B. The results are illustrated in Section IV by controlling the
wing-rock dynamics, presented in [13]. Finally, we draw our
conclusions in Section V.

II. PROBLEM FORMULATION

Let us consider the system given by

Σ:

{
ẋ(t) = Ax(t) +B

(
u(t) + Θ⊤β(x) + η(t)

)
y(t) = Cx(t)

(1a)
(1b)

with state x(t) ∈ Rn, scalar input and output u(t) ∈ R and
y(t) ∈ R, respectively, and corresponding known matrices
A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. We suppose the pair
(A,B) is controllable. The matched disturbance is separated
into a structured part with a known regressor β(x) ∈ Rp

and unknown, linearly entering constant parameters Θ ∈ Rp,
and the unstructured but bounded uncertainty η(t) ∈ R with
|η(t)| ≤ η̄ < ∞ for all t ≥ 0. The regressor is bounded if
the state is bounded, i.e.

x(·) ∈ L∞ =⇒ β(x(·)) ∈ L∞. (2)

Remark 1. The assumption that the matrix A is known
can be relaxed if the uncertainty of the matrix ∆A can be
parameterized in terms of the input matrix, i.e.

Areal = A+∆A with ∆A = αB, α ∈ R.

By this parameterization the additional uncertainty can be
included in the regressor β̄(x) =

(
β⊤(x) x⊤)⊤. With a

similar extension as shown in [14] the assumptions on the
input matrix can be relaxed as well, such that only the sign of
the input matrix is required. In addition to that an extension
towards multiple inputs is straightforward.
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The control law contains a nominal and adaptive part, i.e.

u(t) = unom(t) + uad(t)

= Kx(t) + Fr(t)− Θ̂⊤(t)β(x(t)).

(3)

The desired closed-loop dynamics are defined by the refer-
ence model

ẋm(t) = Amxm(t) +Bmr(t)

ym(t) = Cxm(t).

(4a)
(4b)

The dynamics of the error e(t) = x(t)− xm(t) result in

ė(t) = ẋ(t)− ẋm(t)

= Ax(t) +B(Kx(t) + Fr(t) + η(t) + Θ⊤β(x))

−BΘ̂⊤(t)β(x)−Amxm(t)−Bmr(t)

(5)

with Am = A+BK, Bm = BF , Θ̃(t) = Θ̂(t)−Θ s.t.

ė(t) = Ame(t)−BΘ̃⊤(t)β(x) +Bη(t). (6)

A. Classical Indirect MRAC

Up to this point we only show the standard procedure to
derive a certainty equivalence based adaptive controller [13],
[1]. To show the stability of the classical indirect MRAC a
Lyapunov function is applied which depends on the model
following error e(t) and the estimation error Θ̃(t)

VMRAC(e, Θ̃) = e⊤(t)Pe(t) + Θ̃⊤(t) Γ−1Θ̃(t) (7)

with matrix P = P⊤> 0 and learning rate Γ = Γ⊤> 0. Its
time derivative reads

V̇MRAC(e, Θ̃) = e⊤
(
A⊤

mP + PAm

)
e

+ 2e⊤PB
(
− Θ̃⊤β(x) + η

)
+ 2Θ̃⊤Γ−1 ˙̃Θ. (8)

As the unknown parameters Θ are constant, the derivative
of the parameter estimation error is given by the estimation
dynamics, i.e. ˙̃Θ(t) =

˙̂
Θ(t). The nominal part is covered by

the linear Lyapunov equation A⊤
mP + PAm = −Q and as

Am is Hurwitz Q = Q⊤ > 0 is positive definite. Inserting
this in (8) leads to

V̇MRAC(e, Θ̃) = −e⊤Qe+ 2e⊤PBη(t)

+ 2Θ̃⊤
(
−β(x)e⊤PB + Γ−1 ˙̂Θ

)
︸ ︷︷ ︸

=0

. (9)

This results in the parameter update law
˙̂
Θ(t) = ˙̃Θ(t) = Γβ(x)e⊤(t)PB (10)

which renders the derivative of the Lyapunov function neg-
ative semidefinite in the undisturbed case, η ≡ 0, i.e.

V̇MRAC(e, Θ̃) = −e⊤Qe ≤ 0.

As the derivative of this Lyapunov function is only negative
semidefinite, we shall apply Barbălat’s lemma [15] to show
that the error e will converge asymptotically to zero.

In the case of bounded unstructured uncertainties the adap-
tation law has to be extended in order to avoid the drifting of
the estimation parameters and guarantee the uniform ultimate
boundedness of the error. Different approaches are given in

the literature. The σ-modification [3] introduces a damping
to the adaptation law

˙̂
Θ(t) = Γ

(
β(x)e⊤(t)PB − σΘ̂(t)

)
(11)

with σ > 0. This decreases the adaptation rates, however it
stabilizes the parameter estimates. Further approaches extend
this σ-modification with a nonlinear term [4] or rely on the
projection operator to keep the parameter estimates within a
predefined range [5].

III. HIGHER-ORDER INDIRECT MRAC
In comparison to the standard MRAC we now consider an

extended state-space to describe the evolution of the param-
eter estimation error Θ̃(t). Yet we still require (piecewise)
constant parameters Θ(t).

The constant parameters are understood as the output of
an artificial linear system with a separate state zi ∈ Rq for
each unknown parameter Θi (i = 1, . . . , p) such that we have

żi(t) = Azzi(t) +Bzfi(e, x)

Θi(t) = Czzi(t) +Dzfi(e, x),

(12a)
(12b)

with
Az = diag

(
α1, . . . , αq

)
, αi < 0, i = 2, . . . , q

Bz =
(
1, . . . , 1

)⊤
Cz =

(
1, c2 . . . , cq

)
, ci > 0,

Dz ≥ 0.

To generate a constant output we set α1 = 0, fi(e, x) = 0
and the initial state to zi(0) = (Θi, 0, . . . , 0)

⊤. With differ-
ent initial conditions also time varying parameters can be
represented. The dynamics of the estimated parameters are
given by a similar system, that is

˙̂zi(t) = Az ẑi(t) +Bz f̂i(e, x)

Θ̂i(t) = Cz ẑi(t) +Dz f̂i(e, x).

(13a)

(13b)
Hence the estimation error is given by

Θ̃i(t) = Θ̂i(t)−Θi(t)

= Cz(ẑi(t)−zi(t)) +Dz

(̂
fi(e, x)−����:0

fi(e, x)

)
= Cz z̃i(t) +Dz f̂i(e, x)

(14)

with the extended dynamics
˙̃zi(t) = Az z̃i(t) +Bz f̂i(e, x). (15)

Note that higher order adaptation laws can also be applied
in the case of time-varying parameters [12].

In order to derive a stabilizing adaptation law f̂(e, x),
consider the Lyapunov function

VHO(e, z̃) = e⊤Pe+

p∑
i=1

Czγ
−1
i z̃i ⊙ z̃i > 0, (16)

where ⊙ signifies the element-wise Hadamard product. The
first derivative of this Lyapunov function then reads

V̇HO(e, z) = e⊤
(
A⊤

mP + PAm

)
e+ 2e⊤PB

(
η − Θ̃⊤β(x)

)
+ 2

p∑
i=1

Czγ
−1
i z̃i⊙

(
Az z̃i +Bz f̂i(e, x)

)
.
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By design of the nominal control, the matrix P satisfies the
Lyapunov equation A⊤

mP +PAm = −Q with Q = Q⊤ > 0.
With the structure of Az (diagonal) and Bz (only ones) the
Hadamard product may be simplified, yielding

V̇HO(e, z̃) =− e⊤Qe+ 2e⊤PBη

− 2e⊤PBΘ̃⊤β(x) + 2

p∑
i=1

Czγ
−1
i Az z̃i ⊙ z̃i

+ 2

p∑
i=1

γ−1
i Cz z̃if̂i(e, x).

So as to render the derivative independent of the unknown
estimation error Θ̃ we insert (14) and obtain

V̇HO(e, z̃) =− e⊤Qe+ 2e⊤PBη

− 2e⊤PBΘ̃⊤β(x) + 2

p∑
i=1

Czγ
−1
i Az z̃i ⊙ z̃i

+ 2

p∑
i=1

γ−1
i

(
Θ̃i −Dz f̂i(e, x)

)
f̂i(e, x).

In contrast to the classical approach, here we use an inte-
grated version of the estimation error. Therefore it is essential
that the real parameters can be described by the underlying
artificial dynamics leading to an integrator in Az . Using
vector notation f̂(e, x) = (f̂1(e, x) . . . f̂p(e, x))

⊤ and
Γ = diag(γ1, . . . , γp) gives

V̇HO(e, z) =− e⊤Qe+ 2e⊤PBη

− 2Θ̃⊤β(x)e⊤PB + 2

p∑
i=1

Czγ
−1
i Az z̃i ⊙ z̃i

+ 2Θ̃⊤Γ−1f̂(e, x)− 2Dz f̂
⊤(e, x)Γ−1f̂(e, x).

Hence the adaptation function f̂ is similar to the classical
MRAC and renders the derivative independent of the un-
known estimation error Θ̃, i.e.

f̂(e, x) = Γβ(x)e⊤(t)PB (17)

such that the derivative of the Lyapunov function for η = 0
is negative semidefinite, see

V̇HO(e, z) =− e⊤Qe+ 2

p∑
i=1

Czγ
−1
i Az z̃i ⊙ z̃i︸ ︷︷ ︸
≤0

+ 2Θ̃⊤ (−β(x)e⊤PB + Γ−1Γβ(x)e⊤PB
)︸ ︷︷ ︸

=0

−2Dz

(
Γβ(x)e⊤(t)PB

)⊤ (
β(x)e⊤(t)PB

)︸ ︷︷ ︸
<0

.

Note that the semidefiniteness only occurs due to the inte-
grator mode α1 = 0 in matrix Az and the derivative does not
depend on the first states z̃i. Therefore the convergence of
the model following error is again a result of the application
of Barbălat’s lemma. Compared to the classical MRAC this
equation features additional negative terms which can be
used to dominate the unstructured uncertainty and reduce
the ultimate bounds of the model following error.

Remark 2. For Az = 0, Cz = 1 and Dz = 0 the classical
MRAC is recovered. For Az = −σ < 0, Cz = 1 and Dz = 0
the σ-modification [3] is recovered. As the integration mode
(α1 = 0) is missing, the σ-modified MRAC will only lead to
uniform ultimate boundedness of the model following error.
Even in the case without input disturbances, η(t) = 0, the
σ-modification will not lead to asymptotic stability.

Remark 3. Without the feedthrough term in (13) (Dz = 0)
this approach can be interpreted as an approximation of the
fractional-order adaptation law presented in [11]

DαΘ̂(t) = Γβ(x)e⊤(t)PB.

The states zi represent isolated modes of the distributed state
ζi mimicking the infinite memory of the nonlocal fractional-
order operator

ζ̇i(ω, t) = −ωζi(ω, t) + Γβi(x)e
⊤(t)PB, ω ∈ [0,∞).

The fractional-order integral is then given by an integral with
respect to ω

Θ̂i(t) = Iα
(
Γβi(x)e

⊤(t)PB
)
=

∞∫
0

sin(απ)

πωα︸ ︷︷ ︸
µα(ω)

ζ(ω, t)dω.

Again, the multiplication with the output matrix Cz can be
interpreted as discretized version of this integral with the
kernel µα(ω).

Remark 4 (Proportional-Integral MRAC). In order to keep
the computational costs low, we will focus on the simple
choice of parameters Az = 0 and Dz = Kp ≥ 0, combining
an integral and the proportional adaptation law

˙̂
Θ(t) = Γβ(x(t))e⊤(t)PB + ΓKp

d

dt

(
β(x(t))e⊤(t)PB

)
with only two remaining tuning parameters Γ > 0 and Kp.

A. Boundedness

As discussed in [16] additional unstructured uncertainties
η ̸≡ 0 in classical indirect MRAC lead to drifting of the
estimation parameters Θ̂, rendering the model following error
unstable. Regarding the proposed higher order adaptation
law (13) with (17) this effect is only reduced because a
major part of the adaptation is covered by the proportional
part. However, the pure integrator remains unstable. For this
reason we have to change the integrator in the matrix Az to
achieve (uniform) ultimate boundedness (as defined in [15])
of the model following error e and the estimation error ẑi.

In order to stabilize the estimator states ẑ the first entry
of the diagonal matrix Az in (13a) has to be modified. This
leads to

˙̂zi(t) = (Az +Aσ)ẑi +Bz f̂i(e, x) (18)

with σ > 0 and Aσ = diag
(
−σ, 0, . . . , 0

)
∈ Rq×q. This

changes the dynamics of z̃i to

˙̃z(t) = ˙̂z(t)− ż(t)

= (Az +Aσ)ẑi(t) +Bz f̂i(e, x)−Azzi(t)

= Az z̃i(t) +Bz f̂i(e, x) +Aσzi(t).

(19)
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Note that the real parameters are constant leading to Θi =
zi,1 = const. With this modification the derivative of the
Lyapunov function (16) becomes

V̇HO(e, z) = e⊤
(
A⊤

mP + PAm

)
e+ 2e⊤PB

(
η − Θ̃⊤β(x)

)
+ 2

p∑
i=1

Czγ
−1
i z̃i⊙

(
Ãz z̃i +Bz f̂i(e, x) +Aσzi

)
.

With Aσzi =
(
−σzi,1 0 . . . 0

)⊤
it simplifies to

V̇HO(e, z̃) =− e⊤Qe+ 2e⊤PBη

− 2e⊤PBΘ̃⊤β(x) + 2

p∑
i=1

Czγ
−1
i Az z̃i ⊙ z̃i

+ 2

p∑
i=1

γ−1
i Cz z̃if̂i(e, x)− 2

p∑
i=1

γ−1
i z̃i,1σzi,1.

Let the first element of Cz be normalized. Then we have
zi,1 = Θi. As the output equation (13b) remains unchanged,
we use the same steps as previously which leads to

V̇HO(e, z̃) =− e⊤Qe+ 2e⊤PBη − 2

p∑
i=1

γ−1
i z̃i,1σΘi

− 2e⊤PBΘ̃⊤β(x) + 2

p∑
i=1

Czγ
−1
i Az z̃i ⊙ z̃i

+ 2

p∑
i=1

γ−1
i

(
Θ̃i −Dz f̂i(e, x)

)
f̂i(e, x).

We change to vector notation by introducing a diagonal
matrix diag(Cz) ∈ Rq×q the elements of which are made
up by the output row vector Cz . Inserting the adaptation law
(17) gives

V̇HO(e, z̃) =− e⊤Qe+ 2e⊤PBη − 2σ

p∑
i=1

γ−1
i z̃i,1Θi

− 2

p∑
i=1

γ−1
i z̃⊤i diag(Cz)|Az|z̃i

− 2Dz

(
Γβ(x)e⊤PB

)⊤ (
β(x)e⊤PB

)
.

The terms of unknown sign are bounded form above and the
lower bounds are introduced for the negative terms to derive
an upper bound of the derivative

V̇HO(e, z̃) ≤− λmin(Q)∥e∥22 + 2η̄∥PB∥2∥e∥2

+ 2σ

p∑
i=1

γ−1
i |Θi|∥z̃i∥2

− 2

p∑
i=1

γ−1
i λmin (diag(Cz)|Az|)︸ ︷︷ ︸

a1>0

∥z̃i∥22

− 2Dz λmin

(
β⊤(x)Γβ(x)PBB⊤P

)︸ ︷︷ ︸
=0

∥e∥22.

Note that in general (n > 1) for the single input case the
last term has no influence, as the minimal eigenvalue of
β⊤(x)Γβ(x)PBB⊤P is zero. Hence the proportional term

Dz has no influence on these conservative bounds. Finally
we have

V̇HO(e, z̃) ≤−

(√
λmin(Q)∥e∥ − η̄∥PB∥2√

λmin(Q)

)2

+

− 2

p∑
i=1

γ−1
i

(
√
a1 ∥z̃i∥2 −

|σ| |Θ|i
2
√
a1

)2

+

+ 2

p∑
i=1

γ−1
i

σ2 |Θ|2i
4a1

+
η̄2∥PB∥22
λmin(Q)

.

Hence the derivative of the Lyapunov function is negative if

∥e∥2 > re + εe or ∥z̃i∥2 > rz̃,i + εz̃,i, i = 1, . . . , p,

where εe ans εz̃,i are arbitrary small positive constants and
respective bounds are given by

re =

√√√√2

p∑
i=1

γ−1
i

σ2 |Θ|2i
4a1λmin(Q)

+
η̄2∥PB∥22
λ2
min(Q)

+
η̄∥PB∥2
λmin(Q)

,

rz̃,i =

√√√√2

p∑
i=1

γ−1
i

σ2 |Θ|2i
4a21(Q)

+
η̄2∥PB∥22
a1λmin(Q)

+
σ |Θ|i
2a1

.

The ultimate bound on the error is given by

∥e∥22 ≤ 1

λmin(P )

(
λmax(P )

r−2
e

+

p∑
i=1

γ−1
i max(ci)r

2
z̃,i

)
. (20)

Besides the nominal control defining P , the main influence
can be attributed to the learning rates γi. With larger values
of γi the second term in (20) is reduced. In addition, for large
γi the bound re is mostly dominated by the upper bound of
the unstructured uncertainty η̄.

B. Linear Case — Frequency Domain Analysis

Gm(s)

F G(s)

M(s)=Γ

(
1

s+ σ
+Dz

)
B⊤P

R(s) U(s)

Xm(s)

−X(s)

E(s)

η̂(s)

−

η(s)

Fig. 1. Block diagram for the linear MRAC with proportional error
feedback (Dz ̸= 0) and σ-modification (σ ̸= 0).

Following the ideas presented in [17] we analyze the effect
of the additional proportional term of the adaptation law
and the closed-loop dynamics in the frequency domain. This
is only possible when the model parameters A and B are
known and no further nonlinearities are present, such that
the remaining regressor is one, i.e. β(x) = 1. This amounts
to the control loop structure presented in Figure 1 with
Gm(s) = G(s) = (sI − Am)−1B. Although the approach
requires constant parameters, we may interpret this single
unknown parameter as an input disturbance Θ+η(t) = η̄(t).
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Hence we can compute the transfer function relating the input
disturbance η̄(t) with its estimate η̂(t), i.e.

Gη̂η̄(s) =
M(s)G(s)

1 +M(s)G(s)
, M(s) = Γ

(
1

s+ σ
+Dz

)
B⊤P.

(21)

Here we have three tuning parameters: σ determines the pole
location, Dz influences the transfer zero and the learning rate
Γ scales the stationary gain of M(s). Further simplifying the
analysis we consider the first-order process [17]

G(s) = Gm(s) =
b

s+ a
=

[
−a b
1 0

]
(22)

with P = 1 leading to

Gη̂η̄(s) =
Γ(Dzs+Dzσ + 1)b2

s2 + (a+ σ + ΓDzb2)s+ (σa+ Γ(Dzσ + 1)b2)
.

Note that only without the σ-modification the stationary gain
is one, i.e.

Gη̂η̄(0) =
Γb2(Dzσ + 1)

σa+ Γb2(Dzσ + 1)

σ=0
= 1.

The stationary gain gives some guidance towards the tuning
of the parameters. Only with large Γ ≫ 0 or Dz ≫ 0
and small σ → 0+ low frequency disturbances can be
estimated with sufficient accuracy, see Figure 2. For σ > 0
the deviation for low frequencies is clearly visible if not
counteracted by a higher learning rate Γ or feed-through Dz .

For the classical MRAC (Dz = 0 and σ = 0), increasing
Γ leads to two under-damped poles as shown in Figure 2
(upper Bode diagram). The proportional term Dz as well
as the damping term σ are counteracting this effect as both
terms add damping to the poles

sp,1/2 = −a+ σ + b2ΓDz

2

±
√

(a+ σ + b2ΓDz)
2

4
− (σa+ Γ(Dzσ + 1)b2).

This added damping renders better tracking performance
for high adaptation gains, i.e. reducing oscillations and
overshooting. Furthermore as Dz increases the first pole
tends to zero. The transfer zero s0 = −(Dzσ + 1)/Dz

tends towards s0|Dz→∞=−σ. As σ is small, this leads to a
pseudo compensation of the low frequency pole. Hence the
cutoff frequency of this filter quasi shifted to the fast pole
and the new approach is able to compensate disturbances
of higher frequencies. For a = 2 and b = 1 the amplitude
response is shown in Figure 2 for different combinations of
the parameters Γ, σ and Dz .

The pure σ-modification reduces the resonance peak
slightly without increasing the bandwidth. For a large damp-
ing, higher values of σ are required, which decreases the
stationary gain significantly (see Figure 2).
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Fig. 2. Amplitude response of the disturbance observer interpretation of
the extended MRAC algorithm for different values of Dz , Γ and σ.

In addition to that the proportional term Dz increases
the bandwidth of the disturbance observer Ḡη̂η̄(s). As the
estimated disturbance η̂(s) is directly fed back as an input,
the proportional extension leads to an increased control effort
for high frequency disturbances.

IV. EXAMPLE

For illustration we consider the wing rock dynamics, as
investigated in [13], given by

ẋ(t) =

(
0 1
0 0

)
x(t) +

(
0
1

)(
u(t) + Θ⊤β(x)

)
y(t) =

(
0 1

)
x(t)
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Fig. 3. Transients of the first state x1(t) for Γ = 10 and different
combinations of Dz and σ without unstructured uncertainties (η(t) = 0).

with regressor β⊤(x) =
(
1 x1 x2 |x1|x2 |x2|x2 x3

1

)
.

In our simulation we set the real parameter vector Θ to be
piecewise constant

Θ(t) =

{
Θ1, t < 30

Θ2, t ≥ 30.

with Θ⊤
1 =

(
0 −0.018 0.015 −0.062 0.0095 0.021

)
and Θ⊤

2 =
(
1 −0.018 0.015 −0.062 0.0095 0.021

)
.

The desired model dynamics are given by

ẋm(t) =

(
0 1

−ω2
0 −2ζω0

)
xm(t) +

(
0
ω2
0

)
r(t) (23)

with ω0 = 0.5 rad s−1 and ζ = 1√
2

. The adaptation rate is
set to Γ = 10 and the reference model and the process start
with zero initial conditions. We first consider the nominal
case without unstructured uncertainties, that is η(t) = 0.
The results are shown in Figure 3 where the reference r(t)
and the response of the reference model ym(t) are included.
Despite the relatively low adaptation rate of Γ = 10 the
classical MRAC (σ = 0 and Dz = 0, solid blue line) shows
significant oscillations on all signals, including the control
effort depicted in Figure 4 (for better visibility only the cases
σ = 0 and σ = −5 are included). The pure σ-modification
(solid lines) here requires relatively large damping to reduce
these oscillations leading to an undesired stationary offset.
The additional feed-through term Dz ̸= 0 (dashed lines)
lowers the oscillation and counteracts the negative effect
of the added damping. Also it reduces the stationary error
significantly.

Even small values of Dz already decrease the peaks and
oscillations in the control effort significantly. The model
following error is reduced for large Dz without increasing
the control effort drastically, as low frequencies dominate
the applied reference signal. Note that the σ-modification
leads to a stationary deviation, which can be reduced with
the feedthrough term Dz as well.

Next we apply a multi-sine signal as an unstructured input
disturbance η(t) = sin(t)+ 4

5 sin(2t)+
3
5 sin(6t)+

4
5 sin(10t).

25 30 35 40 45 50 55
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-0.5

0

Fig. 4. Control effort for Γ = 10 and different combinations of Dz and
σ without unstructured uncertainties (η(t) = 0).

The frequencies are chosen in the range of 1 rad/s to 10 rad/s.
For the investigated parameters (listed in Table I) the band-
width of the corresponding transfer function Gη̂η̄ (compare
with Equation (21)) lies within this range. As performance
indices we investigate the maximum error, the 2-norm of the
output model following error ey = Ce (representing the root
mean square error - RMSE) and the peak of the control effort.
The results are given in Table I. The lowest performance
indices are highlighted in green for each adaptation rate. The
numbers show that the peak of the control effort is mainly
influenced by the adaptation gain Γ, whereas the effect of σ
and Dz is minor. The error on the other hand is significantly
reduced with higher values of Γ and Dz , whereas σ has only
a minor influence and a clear tendency is not visible.

Figure 5 shows the first component of the model following
error for selected sets of parameters with a nonzero input
disturbance. With an increased Dz the error can be reduced
significantly even for small values of σ. The corresponding
control effort is shown in Figure 6. Overall the feed-through
term does not increase the amplitude or oscillations on the
control signal for the shown disturbance. The feedhrough
term only accelerates the adaptation as the phase lag intro-
duced by the σ-modification (red line) is reduced in such
a way that the adaptation is also faster compared to the
classical MRAC (blue line). Independent of σ the control
signal is faster for larger values of Dz .

V. CONCLUSIONS

Within this work, we have extended the well-established
certainty equivalence based model reference adaptive control
towards higher order adaptation laws including a proportional
term. We describe the estimation error using a linear state-
space representation and use a quadratic Lyapunov function
similar to the classical approach. The derivative shows two
additional negative parts which reduce the ultimate bounds
of the tracking error. For a simple linear example we can
analyze the effects of the proportional term in the frequency
domain. The proportional integral MRAC not only reduces
the oscillations of the control signal as a effect of high
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Fig. 5. Model following error for Γ = 10 different values of σ and Dz

in presence of unstructured uncertainties.

25 26 27 28 29 30

-3

-2

-1

0

1

2

3

Fig. 6. Control effort for Γ = 10 and different values of σ and Dz in
presence of unstructured uncertainties.

TABLE I
PERFORMANCE INDICES FOR DIFFERENT PARAMETERS.

Parameter emax RMSE2 umax

Γ −σ Dz = ∥e∥∞ = ∥ey∥22 = ∥u∥∞

1

0
0 0.9502 51.7261 3.5201
1 0.4640 31.7583 3.5485
10 0.0635 5.6554 3.6077

0.01
0 0.9482 49.7527 3.5080
1 0.4639 31.9856 3.5443
10 0.0640 5.8388 3.6071

0.1
0 0.9299 62.6542 3.5494
1 0.4706 37.4902 3.5196
10 0.0651 7.9108 3.6079

10

0
0 0.5413 8.5287 3.8737
1 0.0692 3.6495 3.6281
10 0.0064 0.7978 3.5975

0.01
0 0.5424 7.7889 3.8728
1 0.0694 5.1693 3.6278
10 0.0064 0.8224 3.5975

0.1
0 0.5505 8.4294 3.8621
1 0.0699 3.7572 3.6271
10 0.0063 1.1214 3.5975

adaptation rates, but also improves the disturbance rejection
as the proportional term increases the cutoff frequency with
the consequence that also high frequency disturbances can
be compensated.

The theoretical results are illustrated controlling the wing-
rock phenomenon. The simulation results show significant
improvements: The oscillations and peaks of the control
signals are reduced, the tracking error is reduced even with
unstructured disturbances, without increasing the control
effort significantly.

A drawback of the presented framework is the required
full state information. Therefore future work will consider
the output feedback case as well as non constant parameters.
In addition, the adaptive control signal might exhibit high
frequencies to compensate the unstructured uncertainties
which may impact the actuators.
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