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Abstract— Lithium-ion batteries are currently used in nu-
merous applications, for example in electric vehicles and energy
storage systems. Accurately estimating the dynamic behavior is
crucial to safely and efficiently charge and discharge the battery
cells. This can be done with the help of stochastic or interval
based identification routines which require an accurate state
estimation. In previous works, we used an interval observer
based on a Luenberger observer structure to estimate the
lower and upper bounds of the state variables. However, with
this approach it was necessary to use specified input current
profiles to charge or discharge the battery cells, otherwise, the
estimation uncertainty increased over time. In this paper, we
aim to estimate the state variables during system operation
without using specified input current profiles. A promising ap-
proach is a TNL observer, which was introduced for uncertain
time-invariant systems in the literature, that provides multiple
design degrees of freedom. The TNL observer is extended to
an uncertain time-varying system model of lithium-ion batteries
in this work. The time-varying part is herein considered with
two different approaches. At first, a nominal system model
is considered where the time-varying part is treated as a
measurement uncertainty and secondly it is considered using
a polytopic representation of the system matrix. The TNL
observer was successfully extended to the time-varying system
model of a lithium-ion battery. The polytopic representation of
the system matrix leads to more accurate estimation results in
comparison to the nominal approach.

I. INTRODUCTION

Nowadays, lithium-ion batteries are used in a wide range
of applications. They are commonly used in consumer elec-
tronics but their usage is getting popular in recent years in
mobility applications for energy storage systems in electric or
hybrid vehicles. Moreover, they are employed in renewable
energy systems as large-scale energy storage solutions in
electric power grids. For a safe and efficient operation
of these battery systems, it is necessary to consider the
dynamic behavior of the individual battery cells to avoid
overcharging and low discharging, which can lead to ir-
reversible degradation. The information about the dynamic
behavior can also be used to detect reversible and irreversible
aging effects. In the worst case, those aging and degradation
effects can result in a failure of the battery cell and in
a thermal runaway. In control oriented applications, like
battery management systems, equivalent circuit models are
typically used to model and predict the dynamic behavior of
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lithium-ion batteries. However, measuring the state variables
is often not possible or economically feasible, because they
are either not directly measurable or the costs would be too
high. Furthermore, the estimation of the dynamic behavior
is subject to process and measurement noise and parametric
uncertainty. Therefore, we make use of interval observers to
estimate lower and upper bounds of the state variables with
respect to the uncertainties mentioned above, so that these
bounds always enclose the true value. Those observers are
widely used for the state estimation of uncertain dynamic
systems [1]. In previous work, we used an interval observer
design based on a Luenberger observer structure [2]. The
drawback of this approach is, that the estimation uncertainty
may increase over time which makes it necessary to use
specified input current profiles to charge or discharge the
battery cell during the estimation process. We aim to estimate
the state variables during system operation without using
specified input current profiles. Investigating other design
approaches is therefore necessary. A promising approach is
an interval observer design that we will call TNL observer
throughout this paper, which was introduced by Z. Wang
et al. for uncertain time-invariant discrete-time linear systems
[3]. This interval observer design provides two additional
design parameters T and N besides the observer gain matrix
L. It also allows including an H∞ technique to reduce
the influence of uncertainties on the estimation result. In
this paper, the parameterization of the TNL observer is
obtained by solving a set of LMIs. The TNL design approach
has already been used for continuous-time and discrete-
time linear parameter-varying systems [4]–[7], linear time-
varying systems [8], [9] and switched systems [10]. This type
of observer structure is typically combined with zonotope
and ellipsoid techniques to enclose uncertainties. Instead
of using zonotope or ellipsoid enclosing techniques, we
focus on uncertainty models that require low computational
effort, because this state estimation will be the basis for
a computational procedure that identifies the open-circuit
voltage characteristic of a lithium-ion battery during system
operation. We therefore analyze two approaches to design
a TNL observer for an uncertain time-varying quasi-linear
system model of a lithium-ion battery. At first, a nominal
system model is considered, where the system is divided into
a time-invariant and a time-varying part. The time-varying
part is herein assumed to be mapped onto the process and
measurement uncertainty. This simplifies solving the LMIs.
Secondly, a system model with a polytopic representation of
the system matrix is investigated to consider the time-varying
part. Within the nominal system approach, a cascaded ob-
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server structure is used to enhance the estimation accuracy.
In the literature, a cascaded observer structure is typically
implemented by dividing a particular part of a dynamical
system model into corresponding subsystems to either reduce
the complexity of the considered dynamical system model,
to reduce the influence of noise on the estimation result,
or to estimate the state vector of a dynamical system with
time-delays in the output [11]–[14]. In [15] and [16], a
cascaded observer design is used to enhance the estimation
result. In the former case, the authors at first designed a
least squares filter to roughly estimate an auxiliary state
vector of a linear time-varying system and afterwards used
a high-order sliding-mode observer in combination with an
error compensation equation to accurately reconstruct the
state vector of the system. In the latter case, the authors
designed two observers in order to estimate the position of a
sensorless permanent magnet synchronous motor. Here, the
first observer provides an estimate for the back-EMF which
is used in the second observer to accurately estimate the
position of the motor. In this paper, we will design two cas-
caded observers in combination with a contractor approach
to accurately estimate the state vector of a dynamical system.
In contrast to the literature mentioned above, we exploit an
accurate estimation result of a specific state variable of the
first observer to enhance the estimation accuracy of all state
variables with the second observer.

This paper is structured as follows. Sec. II summarizes the
modeling of lithium-ion batteries and shows how observabil-
ity is guaranteed for the corresponding state-space system by
augmenting the measurement vector. The general structure of
a TNL observer and parameterization details are presented in
Sec. III-A. Subsequently, TNL observers are designed for a
nominal system model and a system model with a polytopic
representation of the system matrix in Secs. III-B and III-
C. Simulation results are further presented in this section.
Implementation details are given in Sec. IV. The paper is
concluded with a brief summary and an outlook on future
work in Sec. V.

Notation. Matrices and vectors are denoted by capitalized
bold letters and lowercase bold letters, respectively. A vector
m is meant to be a column vector. Row vectors are denoted
by the transposed form mT. The operators ≥, >, ≤, < as
well as the lower and upper bounds of a matrix M, denoted
by M and M, are employed in an elementwise form. M+

and M− for a matrix M are defined by M+ = max{0,M}
and M− = M+ −M. The n× n identity matrix is denoted
by In. The L2-norm is represented by ∥ ∥2. M ≻ 0 (≺ 0)
denotes a positive (negative) definite matrix. An asterisk * is
used to indicate terms that are induced by symmetry.

II. MODELING OF LITHIUM-ION BATTERIES

Equivalent circuit models are often used in control oriented
applications to model the dynamic behavior of lithium-
ion batteries. In this paper, an equivalent circuit model
consisting of a series resistance, two RC sub-networks, a
state dependent voltage source representing the open-circuit
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Fig. 1. Equivalent circuit model of a lithium-ion battery including a
disturbance voltage z(t).

voltage and a voltage source denoting the disturbance volt-
age, which represents a systematic model mismatch as shown
in Fig. 1, is used to represent the dynamic behavior. The
disturbance voltage represents deviations between the model
and the system and therefore comprises all effects that are
not directly modelled with this equivalent circuit model. The
terminal current iT is used as an input to charge or discharge
the battery cell and the terminal voltage vT is measured.
The measurement is subject to measurement uncertainty,
which is assumed to be unknown but bounded. In Fig. 1,
the two RC sub-networks represent dynamic processes with
short (τTS) and large (τTL) time constants, resulting from,
for example, polarization effects and diffusion processes.
The series resistance RS causes an instantaneous voltage
drop of the terminal voltage, after a load is connected to
the battery. The open-circuit voltage vOC depends on the
state of charge (SOC) σ(t). The system parameters vary
due to numerous influence factors such as aging effects and
temperature dependencies.

With the state vector

x(t) =
[
σ(t) vTS(t) vTL(t) z(t)

]T
, (1)

a quasi-linear system model corresponding to

ẋ(t) = A (σ(t)) · x(t) + b (σ(t)) · iT(t) ,

y∗(t) = y(t)− d (σ(t)) · iT(t) ,

= cT (σ(t)) · x(t) + v(t) ,

(2)

can be obtained with the state vector x ∈ Rn, the measure-
ment y ∈ Rm, the input current iT ∈ Rp, the measurement
uncertainty v ∈ Rm and the SOC σ(t) ∈ [0 ; 1]. The
matrices and vectors A, b, cT , and d are of appropriate
dimensions. The output equation is based on Kirchhoff’s
voltage law, so that the equation

y(t) = vT(t) + v(t)

= vOC(σ(t))− vTS(t)− vTL(t) + z(t)

− iT(t) ·RS (σ(t)) + v(t)

(3)

holds. The state dependent system parameters Rι(σ(t)) with
ι ∈ {S,TS,TL} and Cι(σ(t)) with ι ∈ {TS,TL} as well as
the open-circuit voltage vOC(σ(t)) are nonlinear functions
of the SOC. The disturbance voltage z(t) is assumed to be
represented by an integrator disturbance model

ż(t) = 0 . (4)
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With (1) and (3), the matrices and vectors A, b, cT , and
d for the equivalent circuit model of a lithium-ion battery
shown in Fig. 1 are defined as

A (σ(t)) =


0 0 0 0

0 −1
τTS(σ(t))

0 0

0 0 −1
τTL(σ(t))

0

0 0 0 0

 , (5)

b (σ(t)) =
[

−1
CBat

1
CTS(σ(t))

1
CTL(σ(t))

0
]T

, (6)

cT (σ(t)) =
[
ηOC (σ(t)) −1 −1 1

]
, (7)

d (σ(t)) = −RS(σ(t)) (8)

with τι(σ(t)) = Cι(σ(t)) · Rι(σ(t)), ι ∈ {TS,TL}. Here,
ηOC (σ(t)) can be a linear or nonlinear function of σ(t)
with ηOC (σ(t)) · σ(t) = vOC(σ(t)). The first row in the
state equation describes the integrating behavior between the
terminal current iT and the SOC with respect to the nominal
capacitance CBat of the battery cell. The open-circuit voltage
characteristic is chosen to be approximated with

vOC(σ(t)) = v0 · ev1·σ(t) +
3∑

i=0

vi+2 · σi(t) , (9)

which can be rewritten in the quasi-linear form [2]

ṽOC(σ(t)) = vOC(σ(t))− v0 − v2

= ηOC (σ(t)) · σ(t)
(10)

with

ηOC (σ(t)) =

(
v0

ev1σ(t) − 1

σ(t)
+ v3 + v4σ(t) + v5σ

2(t)

)
.

(11)
This quasi-linear representation of the open-circuit voltage is
used in the system model (2) with the output vector defined
in (7).

To implement the TNL observer, the system is temporally
discretized with a constant step size Td and with the help
of the explicit Euler method. This is sufficiently accurate,
because the sampling time is much smaller than the time
constants of the observer dynamics and the discretization
errors are therefore assumed to be included in the process
and measurement uncertainty. The exact values x(tk) are
approximated by xk, so that the discretized system can be
written as

xk+1 = Ad(σk) · xk + bd(σk) · iT,k ,

y∗k = cT (σk) · xk ,

Ad(σk) = In + Td ·A(σk) ,

bd(σk) · iT,k = Td · b(σk) · iT,k .

(12)

With the system matrix A (σ(t)) and the output matrix
cT (σ(t)) alone, given in (5) and (7), the continuous-
time system (2) is not observable, when treated as linear
parameter-varying. Thus, the output matrix is augmented by

a second measurement. We choose the first derivative of the
terminal voltage

y(t) =

[
vT(t)
v̇T(t)

]
∈ Rm , m = 2 (13)

as a second measurement. The first derivative of the terminal
voltage v̇T(t) can not be measured directly, so that it has to
be approximated. With the help of the Taylor expansion, the
terminal voltage vT(t) can be approximated by

vT,k+1 = h(xk+1) (14)

= h(xk) +
∂h

∂x

∣∣∣∣
x=xk

(xk+1 − xk) + rl,k+1

= vT,k + c̃T · (Ad,k · xk + bd,k · iT,k − xk) + rl,k+1

with c̃T ∈
[
c̃T

]
([σk]) and rl,k+1 ∈ [rl,k+1] denoting the

linearization error. Based on (14), the first derivative of the
terminal voltage can be approximated as

∆T · v̇T,k = ∆T ·
(vT,k+1−vT,k

∆T + rd,k
)

= c̃T · (Ad,k · xk + bd,k · iT,k − xk) + rk
(15)

with the discretization error rd,k and the approximation error

rk ∈ [rk] = [rl,k+1] + ∆T · [rd,k] . (16)

The time-increment ∆T is defined as the time difference
between the discretization steps k and k+1 and is therefore
equal to the discretization step size Td. Taking into account
(1), (2), (5)-(8), and (15), the output equation of the aug-
mented discretized system can be written as

y∗
k =: h1(vT,k, vT,k+1, iT,k, xk)

=

[
vT,k + iT,k ·RS(σk) + vk

vT,k+1−vT,k

∆T + rd,k − 1
∆T

(
c̃T (bd,kiT,k − xk) + rk

)]

=

[
cT (σk) · xk + vk
1

∆T

(
c̃T ·Ad,k · xk

)]
.

(17)

Considering (10) and (17), we define the augmented output
matrix of the discretized system as

C (σk)=

[
ηOC (σk) −1 −1 1

1
∆T

∂ṽOC

∂σ

∣∣
σ=σk

−Ad,22(σk)
∆T −Ad,33(σk)

∆T
1

∆T

]
.

(18)

Remark. Note that the nonlinear system model is observable,
cf. [17]. This also applies to a simplified model, which does
not include the disturbance voltage z(t). Hence, augmenting
the measurement vector is only necessary for the quasi-linear
system model, that includes the disturbance voltage.

III. INTERVAL OBSERVER DESIGN
In this section, the general structure of the TNL observer is

introduced for a general state-space model subject to process
and measurement noise. Afterwards, the TNL observer is
extended to an uncertain time-varying system. At first, a TNL
observer is designed for a nominal system model, where the
time-varying part is treated as a process and measurement
uncertainty and, secondly, the time-varying part is considered
using a polytopic representation of the system matrix.
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A. General Structure of the TNL Observer

The TNL observer proposed by Z. Wang et al. in [3] was
originally introduced for an uncertain time-invariant system
corresponding to

xk+1 = Ad · xk +Bd · uk +Ed ·wk

yk = C · xk + vk

(19)

with the state vector xk ∈ Rn, the measurement yk ∈ Rm,
the input uk ∈ Rp, the process uncertainty wk ∈ Rq and
the measurement uncertainty vk ∈ Rm. Ad, Bd, C, and Ed

are constant matrices of appropriate dimensions. The process
and measurement uncertainties are assumed to be bounded
and symmetric, so that wk ≤ wk ≤ wk and vk ≤ vk ≤ vk.
The TNL observer for system (19) is defined as

ζk+1 = TAdx̂k +TBduk + L(yk −Cx̂k) +∆k ,

x̂k = ζk +Nyk ,

ζ
k+1

= TAdx̂k +TBduk + L(yk −Cx̂k) +∆k ,

x̂k = ζ
k
+Nyk ,

(20)

with ζk ∈ Rn and ζ
k
∈ Rn as intermediate variables and

∆k and ∆k given as

∆k =(TEd)
+ wk − (TEd)

− wk + L+ vk − L− vk

+N+ vk+1 −N− vk+1 ,

∆k =(TEd)
+ wk − (TEd)

− wk + L+ vk − L− vk

+N+ vk+1 −N− vk+1 .

(21)

The structure of this interval observer is shown in Fig. 2. If
T = In and N = 0, the TNL observer has a Luenberger
observer structure.

yk L z−1 x̂k/x̂k

TBduk ∆k/∆k TAd − LC

N

+ + + +
+ + +

+

Fig. 2. General structure of the TNL observer (cf. [3]).

To guarantee stable error dynamics and to reliably bound
the true value with lower and upper bounds, so that x̂k ≤
xk ≤ x̂k, the matrix (TAd−LC) has to be Schur stable and
elementwise non-negative. Furthermore, the initial estimated
state vector has to be chosen, so that x̂0 ≤ x0 ≤ x̂0. In
summary, the following conditions have to be fulfilled

x̂0 ≤ x0 ≤ x̂0

T+NC = In

(TAd − LC) ≥ 0

|λι(TAd − LC)| < 1 , ι = 1, ... , n .

(22)

The conditions (22) are formulated as a set of matrix
inequalities, to be able to compute the design parameters

T, N, and L of the TNL observer. We obtain

T = In −NC

(TAd − LC) ≥ 0

(TAd − LC)TP(TAd − LC)−P ≺ 0

P ≻ 0 ,

(23)

with an arbitrary diagonal matrix P ∈ Rn, given that x̂0 ≤
x0 ≤ x̂0. To ensure, that the lower and upper bounds are as
close to the true value as possible, an H∞ technique can be
included in the design process, so that ∥ e ∥2 < γ ∥ dk ∥2,
with e = x̂k−xk, dk =

[
∆k −TEdwk vk vk+1

]T
and

a given scalar γ (analogously for the lower bound). Then,
the following conditions have to be fulfilled [3]

−P+ In ∗ ∗ ∗ ∗
0 −γ2In ∗ ∗ ∗
0 0 −γ2Im ∗ ∗
0 0 0 −γ2Im ∗

PM P PL PN −P

 ≺ 0 ,

M = (TAd − LC) ,

P = diag(p11, . . . , pnn) ,

P ≻ 0 , (24)
PM ≥ 0 ,

γ > 0 .

Note that the inequalities (24) are nonlinear due to the
multiplicative couplings PM, PL, and PN. As shown in
[3], (24) can be written as a set of LMIs by applying a
linearizing variable substitution.

B. Nominal System Model

To design a TNL observer for a time-varying system,
the system (2) is at first split into a time-invariant and a
time-varying part. We therefore obtain a state-space model
corresponding to

xk+1 = Ad(σf) · xk + bd(σf) · iT,k +Ed ·wk ,

y∗
k = C(σf) · xk + vk .

(25)

The time-varying part is herein assumed to be part of the
process and measurement noise. The matrices and vectors
Ad,bd, and C are evaluated for a chosen constant value σf

for the SOC. The estimated state variables obtained with this
approach are shown in Fig. 3. The system is simulated for an
input current corresponding to Fig. 4. For details about the
implementation, the reader is referred to Sec. IV. In Fig. 3,
it is obvious that the state of charge is closely bounded, but
the lower and upper bounds for the other state variables are
very conservative and are not applicable for the identification
of the dynamic behavior. We introduce a cascaded observer
structure shown in Fig. 5, that makes use of the accurate
estimation of the state of charge to also closely bound the
other state variables. Therefore, the second interval observer
is provided with a virtual measurement

y∗
2,k+1 =: h2(vT,k+1, iT,k+1, xk+1)

=

[
vT,k+1 + iT,k+1 ·RS(σk+1)

1
2

(
σ̂k+1 + σ̂k+1

) ]
+ v2,k+1 ,

(26)
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Fig. 3. Estimation results obtained with the nominal system model.

Fig. 4. Input current iT(t).

consisting of the true measurement of the terminal voltage
and the estimated state of charge from the first interval
observer. The measurement uncertainty v2,k+1 is computed
as

v2,k+1 =

[
vk+1

σ̂k+1 − 1
2

(
σ̂k+1 + σ̂k+1

)] (27)

for the estimation of the upper bound and

v2,k+1 =

[
vk+1

σ̂k+1 − 1
2

(
σ̂k+1 + σ̂k+1

)] (28)

for the estimation of the lower bound, where vk+1 is the first
row of the measurement uncertainty vk+1 and corresponds to
the measurement uncertainty v(t) in (3). According to (26),
the output matrix of the second observer can be written as

C2 (σf) =

[
ηOC (σf) −1 −1 1

1 0 0 0

]
. (29)

Both TNL observers of the cascaded structure estimate the
state vector with lower and upper bounds at the same time
step, so that the true value is always enclosed. Therefore,
the true value is included in the estimation results of both
observers and the intersection of those estimation results can
be used to obtain the smallest intervals for the estimated state
variables. The estimation result obtained with the cascaded
interval observer structure and the nominal system model are
shown in Fig. 6. The estimation accuracy could be improved
significantly with the cascaded interval observer structure.
However, the estimation of vTS and vTL is still conservative.
We therefore investigate a second approach in the following
subsection.

C. Polytopic System Model

In this approach, the time-varying part is considered using
a polytopic representation of the system matrix. The matrices
A and b are now time-varying, where A can be represented
in the polytopic form

A([σ(t)]) ∈
{
A(ξ)

∣∣∣A(ξ) =
3∑

ι=1
ξιAι;

3∑
ι=1

ξι = 1; ξι ≥ 0

}
.

(30)

The output matrix C is still a constant matrix evaluated for
a chosen constant value σf , to be able to find a solution for
the LMIs. Accordingly, the following system is obtained

xk+1 = Ad(σk) · xk + bd(σk) · iT,k ,

y∗
k = C(σf) · xk + vk .

(31)

Fig. 7 shows the three vertices used to bound the dynamics
matrix of system (31). Due to bd being a time-varying vector,
we have to consider the supremum (infimum) of Tbd in
(20) for the estimation of the upper (lower) bound. Here,
it is important to note that the observer design is more
challenging for the polytopic system approach compared to
the nominal system approach, because the observer matrices
have to fulfill the design conditions for every vertex of the
polytope.

Remark. In this paper, the vertices for the polytopic repre-
sentation were manually chosen. For more complex systems,
we propose to compute the vertices using an optimization
routine, for example [18]. Figs. 8 and 9 show the estimation
results and the estimation errors obtained with the polytopic
system approach in comparison with the estimation results
and the estimation errors obtained with the nominal system
approach. The polytopic representation of the system matrix
leads to more accurate estimation results.

IV. IMPLEMENTATION ASPECTS

The state estimation routine is implemented in MATLAB.
The system parameters of the equivalent circuit model are
based on a parameter identification of an NCR 18650A
battery cell in [19]. There, the parameters of the battery
cell have been identified with the help of a least squares
optimization which minimizes the difference between a sim-
ulated terminal voltage and a measured terminal voltage over
a specific charging/discharging cycle. This parameter identi-
fication method can also be used to identify the parameters of
other battery cells based on different geometries or materials.
If not mentioned separately, the following simulation settings
apply for all simulations presented in this paper. A sinusoidal
input current as shown in Fig. 4 is used to charge and
discharge the battery. The initial state and the discretization
step size are chosen as x0 =

[
0.9 0 0 0

]T
and Td =

10ms. The magnitude of the bounded measurement noise
is set to |v| = 2.5mV. The measurements are generated
in the simulation using uniformly distributed random num-
bers in the interval of [− |v| ; |v| ]. The magnitude of the
process noise for the nominal discrete-time system is set to[
0 2.6 · 10−7 V 1.3 · 10−6 V 0

]T
. This is based on an
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Interval State
Observer 1

[∆k]

Unit
Delay

⋂

[
y∗

k+1
]

[
y∗

k

]

iT,k

[
x̂k+1 ; x̂k+1

]

[
y∗

2,k+1

]

Interval State
Observer 2

[∆2,k]

Unit
Delay

[
y∗

2,k

]

iT,k

[
x̂2,k+1 ; x̂2,k+1

]

[
x̂u,k+1 ; x̂u,k+1

]

Update[
x̂u,k+1 ; x̂u,k+1

]
→

[
x̂2,k+1 ; x̂2,k+1

]
[
x̂u,k+1 ; x̂u,k+1

]
→

[
x̂k+1 ; x̂k+1

]

Fig. 5. Structure of the cascaded observer.

Fig. 6. Estimation result obtained with the cascaded interval observer
structure.

analysis of the difference between the nominal system model
and the nonlinear system model for maximal and minimal
input values and state variables. The fixed value σf for the
SOC is set to 0.6 throughout this paper. To parameterize the
observers, the LMIs are solved offline using SeDuMi and
YALMIP. It is of course possible to use other LMI solvers.
The scalar γ is not given beforehand, instead it is optimized
within the solution of the LMIs. The cost function is set to
J =

√
γ2. In cases in which a numerical solver does not

find a feasible solution for the LMIs associated with (24),
iteration procedures as shown in [20] are possible.

The computational effort for evaluating the cascaded in-
terval observer structure is approximately four times higher
compared to an implementation of a Luenberger like observer
for quasi-linear models with a constant gain. This is because
the system model has to be evaluated for the lower and upper
bounds separately and additionally it has to be evaluated for
each of the two observers.

V. CONCLUSIONS
In this paper, a TNL interval observer structure has been

applied for the state estimation of an uncertain time-varying

Fig. 7. Polytopic representation of the system matrix A(σ(t)).

quasi-linear system model of a lithium-ion battery. Two
design approaches have been analyzed, which enclose the
time-varying part differently. At first, a nominal system
model has been considered, where the system has been
divided into a time-invariant and a time-varying part. The
time-varying part has been assumed to be mapped onto the
process and measurement noise. This approach has lead
to accurate estimation results for the first state variable,
the SOC. However, the state estimation of the other state
variables has been too conservative and is therefore not
applicable for the identification of the dynamic behavior.
To solve this issue, we have proposed a cascaded interval
observer structure consisting of two TNL interval observers.
The estimation results have been improved significantly with
this interval observer structure. The second approach, that
has been analyzed, has been based on a system model with
a polytopic representation of the system matrix to consider
the time-varying part. This design approach has lead to more
accurate estimation results compared to the nominal design
approach. The objective of this paper has been to investigate
other observer designs for the state estimation of lithium-ion
batteries, because in prior work an interval based Luenberger
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Fig. 8. Estimation result obtained with the polytopic system model.

Fig. 9. Estimation errors obtained with the nominal and the polytopic
system model.

like observer structure lead to an increasing estimation un-
certainty over time. With both design approaches, namely
the nominal system model and the polytopic system model,
the estimation uncertainty does not increase over time.

For the two approaches analyzed in this paper, solving the
LMIs associated with (24) with fixed output matrices C has
been considered to include an H∞ technique in the design
process. Future work will deal with the investigation of fur-
ther strategies for individually weighting the output variables
to enhance the estimation accuracy of selected state variables.
In cases in which the LMIs are not directly solvable, it is
possible to iteratively solve the design inequalities, similar to
[20]. Additionally, we will investigate, if the fixed value σf

can be chosen in an optimized manner. Finally, the design of
an optimal polytopic representation of the uncertain system
matrix will be included in future work.
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