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Abstract— Automatic control of greenhouse crop production
is of great interest owing to the increasing energy and labor
costs. In this work, we use two-level control, where the upper
level generates suitable reference trajectories for states and
control inputs based on day-ahead predictions. These references
are tracked in the lower level using Nonlinear Model Predictive
Control (NMPC). In order to apply NMPC, a model of
the greenhouse dynamics is essential. However, the complex
nature of the underlying model including discontinuities and
nonlinearities results in intractable computational complexity
and long sampling times. As a remedy, we employ NMPC as a
data generator to learn the tracking control policy using deep
neural networks. Then, the references are tracked using the
trained Deep Neural Network (DNN) to reduce the computa-
tional burden. The efficiency of our approach under real-time
disturbances is demonstrated by means of a simulation study.

I. INTRODUCTION

The world population is projected to increase from 7
billion in 2010 to 9.8 billion in 2050, resulting in a 50% in-
crease in food demand [1]. Despite the need to increase food
production, it cannot be achieved by expanding agricultural
land due to the challenge of ever-growing urban space and
climate change. Controlled Environment Agriculture (CEA)
like greenhouse farms and indoor vertical farms have gained
attention due to their capability to produce high yield in
limited space. However, high energy spikes and the need
for energy-efficient operations have posed a question on the
environmental impact and sustainable operation of CEA [2].

The usage of renewable energy and the development of
solar greenhouses is a viable option to achieve green and
sustainable food production [3]. With frequently shifting
rules and unpredictable energy prices, automatic control sys-
tems are the most efficient alternative for greenhouse climate
control and crop growth. Several approaches to improve
energy efficiency in greenhouses, reduce CO2 emissions,
and enhance water use efficiency have been proposed [4],
[5]. Classical control approaches to maintain the pre-defined
greenhouse climate are discussed in [6], [7].

Optimal control approaches using mathematical models to
maintain greenhouse climate (temperature and humidity) for
plant production demonstrating their economical benefits are
shown in [8]. Here, Hierarchical Model Predictive Control
(HMPC) is employed where the states are divided into
different timescales, and the control system is designed
for each levels to maintain the greenhouse climate. The
upper-level control system generates the optimal climate
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reference trajectories using the greenhouse model and the
weather forecast data, whereas the lower-level control system
controls the fast-changing climate by tracking the reference.
In [9], multiobjective optimization is proposed to achieve
profitable crop growth along with maintaining crop quality
and irrigation efficiency using the model of greenhouse and
crop growth. Optimal control of a solar greenhouse with
an economic objective to increase the yield and decrease
the gas usage is discussed in [10]. In general, a longer
prediction horizon is considered to generate an optimal
control input in NMPC. Assuming a larger sampling time
reduces computational demand for longer predictions.

The system equations governed by NMPC are continuous
over time and need to be discretized for implementation
on embedded or similar devices. The choice of sampling
time significantly influences accuracy, making shorter sam-
pling times preferable. However, the discretization method
employed to implement optimal control using greenhouse
climate and crop models, as well as the impact of sampling
time on integration accuracy are not commonly discussed.
The effect of small sampling time to be chosen to adequately
approximate the system behavior on a given prediction hori-
zon is dealt with in [11]. However, the smaller sampling time
demands a shorter horizon for sufficiently fast computation
of nonlinear optimization problems. In [12], [13], [14], the
problem of higher computation demand of NMPC due to
longer prediction horizons has been overcome by the use
of DNNs to generate an approximate solution to the NMPC
problem. The universal approximation property of the DNNs
has motivated the usage of machine learning for optimal
control [13], [15].

In this paper, we propose to design a two-level hierarchical
control for a semi-closed solar collector greenhouse. The
upper-level optimization layer generates the economically
optimal input and state reference trajectory for a single day
using the weather forecast data, while the lower-level NMPC
tracks the above reference trajectory on satisfying the desired
bounds with a short-term disturbance forecast. The main
advantage is that the approximated NMPC can be deployed
in low-cost embedded hardware, which is more desirable in
remote locations like refugee camps. Indeed, the approximate
DNN based controller can be applied to any CEA system,
where fast computation is desirable.

First, a mathematical model describing the greenhouse
climate dynamics and crop growth is presented in Section II.
To describe the plant growth, we use the tomato model
presented in [10]. Following that, Section III introduces
the two-level hierarchical control of the greenhouse. Then,
Section IV discusses the training of DNN to approximate
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the optimal control inputs given the current state, reference
and disturbances. Finally, a two-level control of a greenhouse
with a lower level of control using trained DNN is imple-
mented and its performance is reviewed in Section V, with
the conclusion in Section VI.

II. GREENHOUSE AND CROP MODEL

This section summarizes the mathematical model of the
greenhouse climate along with the crop. For our study,
a Venlo-type greenhouse growing tomato crop fitted with
a blackout screen, vent opening through the roof, CO2
injection, heating, and cooling source is considered. In this
approach, the greenhouse climate incorporates temperature
(T ), carbon dioxide concentration (C), and absolute humidity
(Ha) of the air inside the greenhouse. A mathematical model
of the greenhouse climate is derived via the mass and energy
balance equations, see also [8], [16], [17].

A. Dynamic Model of the Greenhouse Climate

1) Temperature: The temperature T of greenhouse air is
influenced by various heat fluxes and the energy balance
equation describing the same is given by

Ṫ = (Qsun +Qvent +Qcov +Qtrans +Qheat −Qcool)/kC,gh,
(1)

where kC,gh is the total heat capacity of the greenhouse per
unit area (Jm−2 K−1). Moreover, Qsun = ktot ·Qrad denotes
the heat flux term contributed by the incoming radiation in
Wm−2, where ktot is the total transmittance of the cover. The
heat flux component due to vent opening is given by

Qvent = kc,air · kρ,air · ku,vent ·uV(Tout −T ) [Wm−2],

where kc,air and kρ,air denoting the specific heat capacity and
density of the air, respectively, and ku,vent is the maximum
ventilation of the greenhouse. Leakage through the cover is
assumed to be negligible. The convective heat loss through
the cover of the greenhouse is given by

Qcov = kA · kU · (Tout −T ) [Wm−2],

where kU is the coefficient of heat transfer through the cover,
kA is the ratio of the surface area of the cover and the
greenhouse floor.

We consider the transpiration of tomato crops in a green-
house given by [17]. Here, Qtrans is the heat energy absorbed
due to crop evapotranspiration,and can be obtained by

Qtrans = gekL(Hv − xP,H) [Wm−2],

where ge is the transpiration conductance, kL is the amount of
energy needed to evaporate water from a leaf, and Hv is the
absolute water vapor concentration at crop/vegetation level.
The quantities are computed as follows. The transpiration
conductance is ge = 2kLAI/((1+ ε)rb + rs) [ms−1], where
kLAI is the leaf area index, ε is the ratio of latent to sensible
heat content of saturated air for a change of 1◦C in T , rb is
the resistance to heat transfer of the leaf boundary layer, and
rs is the stomatal resistance. Moreover, Hv is calculated as

Hv = Hsat + εrb/(2kLAI) ·Rn/kL [gm−3],

where Hsat is the saturated vapor concentration of the green-
house air that can be approximated by, Hsat = 5.5638e0.0572T

for T ∈ [10,40]. The net radiation Rn at crop level, and its
relation with the global radiation Qrad is given by

Rn = 0.86(1− e−0.7kLAI)Qrad [Wm−2].

The heating and cooling power Qheat and Qcool, respectively,
in Wm−2 are given by Qheat = uQh ·Ph,max and Qcool =
uQc ·Pc,max, where Ph,max and Pc,max are the maximum
heating and cooling power per unit greenhouse floor area,
respectively.

2) Carbon-dioxide concentration: The mass balance
equation of the CO2 concentration is described as

Ċ = kA,gh/kV,gh ·
(
Cinj +Cvent −Cphot

)
, (2)

where kV,gh is the volume of the greenhouse. The pure in-
dustrial CO2 injection rate Cinj = uC ·Cmax/kA,gh [gm−2s−1].
The CO2 exchange due to ventilation Cvent is described as

Cvent = ku,vent ·uV(Cout −C) [gm−2s−1].

Finally, the net CO2 consumption due to photosynthesis and
transpiration by the crop is given by

Cphot = φCO2 ·10−3/kA,gh [gm−2s−1],

where φCO2 is defined in Section II-B.
3) Absolute humidity: The absolute humidity of the green-

house air is influenced by various vapor fluxes and the mass
balance equation reads as

Ḣa = kA,gh(Htrans −Hvent −Hcov +Hheat −Hcool)/kV,gh. (3)

The amount of water vapor produced due to plant transpira-
tion Htrans = ge(Hv −Ha) [gm−2s−1]. Condensation of vapor
to the cover Hcov occurs when the temperature of the cover
Tcvr is below the dew point temperature of the air, and it is
calculated as

Hcov = gC

(
0.2522e0.0485T (T−Tout)−(Hsat−Ha)

)
[gm−2s−1].

Here, condensation conductance gC is described in [18] as,

gC = max(0,kA 1.64×10−3(T −Tcvr)
1
3 ) [ms−1].

The vapor flux due to ventilation Hvent and direct air heater
Hheat are described as

Hvent = ku,vent ·uV(Ha−Hout), Hheat = kη Qheat [gm−2s−1],

where kη [gJ−1] is the amount of vapor released when
1 J of sensible energy is produced by the heater [19]. The
cooling of air happens through the heat exchanger, where
the pipe inlet is maintained at a constant temperature. The
condensation of vapor on the pipes Hcool is given by

Hcool = max(0,uQhkA,pipe · kcool(Ha −Hsat,cool)),

as described in [10]. Here, kA,pipe is the surface area of the
cooling pipe, kcool is the mass transfer coefficient of water
vapor from indoor air to the cooling tube, and Hsat,cool is the
saturation concentration of water vapor at the temperature of
the cooling pipe.
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B. Crop Model

Photosynthesis is the process through which crops assim-
ilate carbon dioxide and water to support their maintenance,
growth, and development. This process is affected by higher
radiation intensity and elevated CO2 concentration [20].
Here, the CG4 photosynthesis model presented in [10] is
used. Furthermore, it is assumed that required water and
nutrients for crop growth are available at all times. This
model describes the net CO2 consumption rate of the crop as
a function of outdoor radiation Qrad, CO2 concentration C,
temperature of the crop, and humidity Ha. As the temperature
of the crop is not measured, temperature T of the greenhouse
air is used. The consumed CO2 are converted into carbohy-
drate assimilate, resulting in the biomass production

Ḃ = (kB,CO2φCO2)/kA,s [kgm−2s−1]. (4)

Here, B is the fresh biomass weight, φCO2 is the net photosyn-
thesis rate of the canopy, and kB,CO2 is the conversion factor
to convert the consumed CO2 to the fresh weight biomass.
For further description of the net photosynthesis, see [10].

III. OPTIMAL GREENHOUSE CONTROL

The dynamics of the greenhouse climate and the crop
growth were summarized in (1), (2), (3), and (4). Four
control inputs are defined to maintain the states - temperature
T , CO2 concentration C, and relative humidity H of the
greenhouse air within the desired bounds while minimizing
the production costs for high yields using a cost function.

The system behavior is of the form

ẋ(t) = f (x(t),u(t),d(t)) (5)

with state vector x =
[
T C RH B

]⊤, input vector
u =

[
uV uC uQh uQc

]⊤
, and disturbance vector d =[

Tout Cout Hout Qrad
]⊤

.
The model represented by (5) exhibits discontinuities in

the form of maximum operators. To enable various op-
tions for optimization algorithms, the maximum operators
are approximated as described in [21], and is given as
max(a,b)≈

(
a+b+

√
(a−b)2 + γ

)
/2, where γ = 10−4 is

a tuning parameter.
In the following, a framework for the optimal control

of the greenhouse is implemented. As the task of observer
design to get the biomass from other measurements in
outlook is omitted due to page brevity, full state availability
at every time instance is assumed. The framework includes
two levels of control: an open-loop optimization layer and
a closed-loop reference tracking Nonlinear Model Predictive
Control (NMPC) layer. The upper level solves an economic
objective function with the forecast weather data to generate
a reference trajectory for the NMPC. Subsequently, the
NMPC tracks the obtained reference trajectory in real time.

Optimization problem and predictive control is performed
at discrete time step, for which the dynamics

x(tk+1) = x(tk)+∆t · f (x(tk),u(tk),d(tk)) (6)

are utilized, where tk = no∆to, no ∈ N0, and ∆to > 0 is the
sample time for the open loop with T being the total simu-
lation time. Similarly, the closed-loop system is discretized,
where tk = n∆tc, n ∈N0, and ∆tc > 0 is the sample time, with
∆to > ∆tc. The discretization is performed using orthogonal
collocation of degree 4.

A. Open-loop control

The objective is to maximize crop production while min-
imizing the total operating costs which include costs for
heating/cooling, ventilation, and CO2 injection. To this end,
we define the day-ahead cost function

Jo(u) =
No−1

∑
k=0

L(x(tk),u(tk))−V (x(tNo)) (7)

with No = T
∆to

∈ N+. The stage costs L(x(tk),u(tk)) and
terminal costs V (x(tNo)) and are given by

L(x(tk),u(tk)) = pE ·Pmax
v ·uV(tk)+ pC ·Cmax

inj ·uC(tk)

+pE ·Pmax
Qh

·uQh(tk)+ pE ·Pmax
Qc

·uQc(tk)

+PT (x)+PC(x)+PRH(x)
V (x(tNo)) = py · kBfruit · kA,s ·B(tk). (8)

Here, penalties for temperature PT (x), relative humidity
PRH(x) and CO2 concentration PC(x) are defined as

Px(x) =


cx · |xmin −x|, if x < xmin

0, if xmin ≤ x ≤ xmax

cx · |xmax −x|, if x > xmax,

(9)

where cx is the weight factor associated with the state
x exceeding the bounds xmin and xmax. With the penalty
function increasing linearly in value with respect to the
deviation, the discontinuities in (9) are smoothed via

Px(x)≈
cx

2
·
(√

(xmin −x)2 + γ +
√
(xmax −x)2 + γ

−(xmax −xmin)
)
.

(10)

These penalty functions are used as soft constraints. Eco-
nomic profit is represented by a negative cost term, which is
calculated from the difference between running and terminal
cost. In (8), pE is the price of electricity, pC is the price of
industrial CO2, py is the selling price of yield, and kBfruit
is the percentage of biomass corresponding to fruit. The
operating cost of the vent is obtained by multiplying the
maximum power rating of the ventilation motor Pmax

v , pE
and the input uV. Likewise, the cost of CO2 injection and
the operating cost of heating and cooling are obtained. We
restrict inputs u(t)∈U and states x(t)∈X in order to main-
tain temperature, CO2 concentration, and humidity within the
safe limit, despite being penalized as soft constraints. These
considerations motivate the Optimal Control Problem (OCP)
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u∗
o = argmin

u
Jo(u) (11)

s.t. xtk+1) = x(tk)+∆to · f(x(tk),u(tk),d(tk)),
x(t0) = x0,

u(tk) ∈ U ∀k ∈ {0, .....,No −1},
x(tk) ∈ X ∀k ∈ {0, .....,No −1},

where x0 is the initial state and u∗
o is the optimal reference

input for the lower-level NMPC.

B. Closed-loop NMPC

The lower level NMPC is formulated to track the reference
trajectories obtained from upper level. Nonlinear MPC is
employed here to handle the sudden large deviations from
reference, due to the disturbance and high nonlinearity. Here,
the optimal input variables u∗

o obtained from (11) are taken as
input reference trajectories uref. Similarly, the corresponding
state variables is taken as the reference state trajectories xref

to the closed loop controller. The NMPC problem with a
prediction horizon N ∈ N+ is defined by

minu Jc(u) =
i+N−1

∑
j=i

(∥x(t j)−xref
k ∥2

Q +∥u(t j)−uref
k ∥2

R)

+∥x(tN)−xref
k ∥2

P (12a)
s.t. x(t j+1) = x(t j)+∆tc · f(x(t j),u(t j),d(t j)), (12b)

x0(t j) = x0, (12c)
u(t j) ∈ U ∀ j ∈ {0, .....,Ns −1}, (12d)
x(t j) ∈ X ∀ j ∈ {0, .....,Ns −1}, (12e)

where Q ⪰ 0, R ≻ 0 and P ⪰ 0 are the weighting matrices
and Ns =

T
∆tc

∈ N+. The NMPC problem is solved with
a short-term disturbance forecast of horizon N. We solve
OCP (12) for the optimal input trajectories u⋆

j and apply u⋆
0

to system (12b). The closed-loop NMPC feedback controller
based on (12) can be expressed as the function

u = πMPC(w), (13)

where w =
[
x xref uref d

]⊤ ∈ R16.

IV. DEEP NEURAL NETWORK CONTROLLER

The main idea of this paper is to approximate the reference
tracking closed-loop NMPC discussed in the previous section
using a DNN. Now, let us recall the structure of feed-
forward neural networks, network training, and finally the
implementation of closed-loop control using DNNs.

A. Deep Neural Networks

We aim to approximate the function (13) using a feed-
forward Neural Network (NN) by defining the mapping u=
πNN(w;Θ), where Θ represents the unknown NN parameters.
In general, a neural network consists of one input layer, one
output layer, and Nh hidden layers, where an NN is called
DNN for Nh ≥ 2 [22]. Moreover, it was shown in [12] that
the performance of DNN compared to a shallow network

(Nh = 1) results in better performance for less number of
parameters Θ.

Each layer l contains nl neurons, and the hidden layers
are structured as

hl = β (bl +W lhl−1), (14)

where hl−1 ∈ Rnl−1 is the output of the previous layer with
h0 =w. Here bl ∈Rnl is called the bias vector, W l ∈Rnl×nl−1

is called the weight matrix, and β is a nonlinear activation
function. Typical activation functions are Rectifying Linear
Unit (ReLU), tangent hyperbolic, and the sigmoid function.
The most commonly used activation function ReLU is de-
fined as β (h) = max(0,h), which can enhance the training
of DNN by avoiding vanishing gradients.

The parameter Θ = {Θ1, . . . ,ΘNh+1} contains all the
weights and biases that define the operation (14) of each
layer. The number of parameters to be stored defines the
memory footprint of the proposed controller and is given by
NΘ = ∑

Nh+1
l=1 nl(nl−1 +1).

With the architecture being defined, training of the neural
networks involves finding the optimal weights W l and bi-
ases bl by minimizing the defined loss function. We consider
Mean Squared Error (MSE) between the optimal input (u)
and the approximate control input (u) as the loss function.

The optimization problem solved at training is given by

min
W l ,bl

1
ND

ND

∑
m=1

(u(wm)−u(wm))2,

where ND is the number of training data pairs in the training
data matrix D = [w1,w2, . . . ,wND ] ∈ R16×ND , and D should
be sufficiently large enough. After the network training, we
use πNN(w;Θ) to infer the control input u≈ πMPC(w).

Normalizing the training data helps to improve the nu-
merical properties of the network when inputs to NN are
in different ranges. The normalization operation results in a
normalized data matrix DN . Similarly, inverse transformation
is applied during the NN inference to recover the output in
the range of training data.

In addition, the hyperparameters like the number Nh of
hidden layers, the number nl of neurons within a layer, the
activation function β , and the gradient-based optimization
algorithm along with its parameters like learning rate affect
the performance of the network. Typically, experimentation
is necessary to determine an optimal combination of these
hyper-parameters [23].

V. SIMULATION AND RESULTS

As discussed in the previous sections, we use two-level
hierarchical control to first generate economic reference
trajectories for the inputs and states and, then track them
using a DNN. The OCP (11) is solved subject to input
constraints 0 ≤ u ≤ 1 and soft constraints on states with
xmin = [18,500,60] and xmax = [26,900,90]. The constraint
on the state C is generally mentioned in ppm. Additionally,

X = [14,30]× [300,1000]× [10,100]× [0,100]
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defines a hard box constraint set. Now, the upper-level OCP
is solved with sampling time ∆to = 300s for a single day
T = 86400s, resulting in No = 288. On the other hand,
the NMPC is solved for every 300s with ∆tc = 60s and
prediction horizon N = 5. The weighing matrices for the
closed loop are chosen as Q = 100 · I4, R = I4, and P = Q.

A. Training of the reference tracking DNN controller

For achieving a sufficiently large data matrix D , 8 months
of disturbance data during which the greenhouse opera-
tion was active is considered. This results in 285,000 data
pairs with 80% used for training and the remainder for
testing network accuracy. Adam [24], a stochastic gradient
descent optimization method is used to perform training
via Tensorflow [25]. The last timestamp values of the
previous day are taken as the initial condition for the next-
day optimization and reference tracking problem.

To solve the optimization problems (11) and (12), we use
CasADi [26] with IPOPT [27]. Moreover, the nonlinear
dynamics are discretized using orthogonal collocation for
predictive control implementation and the integration opera-
tions are performed using the SUNDIALS toolbox. In order
to provide a good approximation of πMPC while keeping the
number of parameters NΘ small [23] a random search using
KerasTuner is employed to determine suitable hyperpa-
rameters like Nh, nl and β . The resulting DNN includes 5
hidden layers with almost 4,000 parameters, is trained with
a batch size of 512 data pairs, a learning rate of 0.001, and
occupies less than 14 kB of memory.

B. Performance of the DNN controller

The results of the simulation comparing the tracking per-
formance of NMPC and DNN with respect to the reference
trajectory generated by the upper-level OCP for one day are
shown in Figure 1. The initial state vector considered consist
of the last real-time state values of the previous day. The
NMPC optimization as well as DNN inference are performed
on a Personal Computer (PC).

First, notice that in both scenarios, the states cross the
soft constraints but obey the hard constraints defined by the
set X . The CO2 concentration is increased during the onset
of solar radiation and maintained at this level. The biomass
production starts once the temperature reaches around 19◦C.
It can be observed that both the NMPC and DNN are
able to track the reference trajectories. Figure 2 shows a
comparison of the NMPC and DNN controllers under 10%
uncertainty of d with respect to the forecast data. It can be
seen that the performance of the DNN is almost identical to
the NMPC controller. However, the biomass production by
the approximate DNN controller - 1.2497kgm−2 is slightly
higher than the NMPC - 1.2512kgm−2.

The performance of the controllers are examined using
the closed-loop net cost S = V (x(Ns))−∑i L(x(i),u(i)) of
the greenhouse operation on a day for varying uncertainty
in d. Table I comprises the total costs, operating costs L,
and terminal cost/income from the crop yield V , of the
greenhouse operation on a day. With perfect knowledge of

Fig. 1: Tracking performance of NMPC vs. DNN. The red
and green dashed lines indicate the soft and hard constraints,
respectively. The hard constraint lower bound of H = 10%
is not shown here.

Fig. 2: Comparison of the convergence of states in NMPC
vs. DNN under 10% uncertainty of d with respect to forecast
data. The red and green dashed lines indicate the soft and
hard constraints of the states respectively. The hard constraint
lower bound of RH - 10% is not shown here.

the disturbance d, total net costs using NMPC are less than
the ones with DNN. Alternatively, in the case of uncertainty
in d, the DNN outperforms the NMPC. The higher operation
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TABLE I: Comparison of net cost of greenhouse operation
using NMPC vs. DNN under uncertain disturbance

Uncertainty NMPC DNN

[%] S[C] L[C] V[C] S[C] L[C] V[C]

1% 113.33 12.85 126.18 100.24 12.78 113.02
10% 68.76 30.36 99.13 103.08 13.91 117.01
20% 76.44 32.65 109.09 101.63 16.44 118.08
30% 70.25 38.52 108.77 99.21 19.04 118.25

TABLE II: Comparison of computation time on a PC

Uncertainty[%]
NMPC DNN

Mean [ms] SD [ms] Mean [ms] SD [ms]

1% 155.7561 74.9314 0.0208 0.0048
10% 162.4664 87.5212 0.0203 0.0035
20% 159.4011 85.8751 0.0204 0.0028
30% 158.1797 81.8533 0.0227 0.0082

costs of NMPC indicates the increased control effort to
handle d in the pursuit of reference tracking. Note that the
approximate nature of DNN controller and its training with
varied disturbance over 8-month training data results in a
better performance compared to NMPC.

The computation effort of both controllers under different
uncertainty levels of d is shown in Table II. Compared to
NMPC, the average execution time of a DNN controller is
faster by four orders of magnitude for a PC execution.

VI. CONCLUSION

This paper presents the implementation of a hierarchical
model predictive control of a greenhouse with a lower level
of fast control using deep neural networks. Our simulations
show a faster computation time and better performance
in the presence of uncertain forecast data using a DNN
controller compared to NMPC. The low memory requirement
of an approximate DNN controller makes it more desirable
for constrained embedded hardware implementation, which
results in less power consumption. Future work will consider
the implementation of the controller using low-cost embed-
ded devices on an experimental setup.

REFERENCES

[1] T. Searchinger, R. Waite, C. Hanson, J. Ranganathan, P. Dumas,
E. Matthews, and C. Klirs, “Creating a sustainable food future: A
menu of solutions to feed nearly 10 billion people by 2050. final
report,” 2019.

[2] D. Liu, X. Liu, K. Guo, Q. Ji, and Y. Chang, “Spillover effects among
electricity prices, traditional energy prices and carbon market under
climate risk,” Int. J. Environ. Res. Public Health, vol. 20, no. 2, 2023.

[3] R. Hassanien, M. Li, and W. Dong Lin, “Advanced applications
of solar energy in agricultural greenhouses,” Renewable Sustainable
Energy Rev., vol. 54, pp. 989–1001, 2016.

[4] E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, “Energy
efficient operation and modeling for greenhouses: A literature review,”
Renewable and Sustainable Energy Rev., vol. 117, p. 109480, 2020.

[5] Z. Ren, Y. Dong, D. Lin, L. Zhang, Y. Fan, and X. Xia, “Managing
energy-water-carbon-food nexus for cleaner agricultural greenhouse
production: A control system approach,” Sci. Total Environ., vol. 848,
p. 157756, 2022.

[6] H. Hu, L. Xu, R. Wei, and B. Zhu, “Multi-objective control opti-
mization for greenhouse environment using evolutionary algorithms,”
Sensors, vol. 11, no. 6, pp. 5792–5807, 2011.

[7] Y. Su, L. Xu, and D. Li, “Adaptive fuzzy control of a class of
mimo nonlinear system with actuator saturation for greenhouse climate
control problem,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, p. 772
– 788, 2016.

[8] P. Van Beveren, J. Bontsema, G. Van Straten, and E. Van Henten,
“Minimal heating and cooling in a modern rose greenhouse,” Appl.
Energy, vol. 137, pp. 97–109, 2015.

[9] A. Ramı́rez-Arias, F. Rodrı́guez, J. Guzmán, and M. Berenguel,
“Multiobjective hierarchical control architecture for greenhouse crop
growth,” Automatica, vol. 48, no. 3, pp. 490–498, 2012.

[10] R. van Ooteghem, “Optimal control design for a solar greenhouse,”
Ph.D. dissertation, 2007, wageningen University, Wageningen, The
Netherlands. 304 p.

[11] M. Padmanabha, L. Beckenbach, and S. Streif, “Model predictive
control of a food production unit: A case study for lettuce production,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 771–15 776, 2020, 21st
IFAC World Congress.

[12] S. Lucia and B. Karg, “A deep learning-based approach to robust
nonlinear model predictive control,” IFAC-PapersOnLine, vol. 51,
no. 20, pp. 511–516, 2018, 6th IFAC Conference on Nonlinear Model
Predictive Control, 2018.

[13] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10, pp.
1443–1451, 1995.

[14] S. Pon Kumar, A. Tulsyan, B. Gopaluni, and P. Loewen, “A deep learn-
ing architecture for predictive control,” IFAC-PapersOnLine, vol. 51,
no. 18, pp. 512–517, 2018, 10th IFAC Symposium on Advanced
Control of Chemical Processes ADCHEM 2018.
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