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Abstract— In robotics, automating surface following is desir-
able for applications such as spray painting, inspection, and
surface finishing. However, current surface following approaches
focus on in-contact applications, where the robot is restricted to
operate within a slow dynamic range. We introduce an approach
tailored for contactless surface following, which leverages Model
Predictive Control (MPC) to better exploit the full dynamic
range of the robot while taking its acceleration limits into
account. Our formulation introduces a surface model based on
Radial Basis Function Networks (RBFN), and we show that
when it is combined with local sensing and a surface estimator,
it achieves significantly better performance compared to state-of-
the-art approaches which rely on a local quadratic model. The
approach was validated through extensive simulations, and it
was found to reliably compute feasible control inputs within real-
time. Through this research we aim to enable less conservative
surface-following behaviour and bring MPC closer to real-life
industrial applications in robotics.

I. INTRODUCTION

Surface following, as depicted in Fig. 1, involves a robot
manipulator moving a tool over a surface while maintaining
a desired distance and orientation. This task is key in various
industries, ranging from industrial applications like spray
painting [1], inspection [2], and surface finishing [3], to even
medical applications [4, 5].

For low-accuracy applications, a global surface model
obtained from a depth camera or CAD file can be utilised for
open-loop trajectory planning and execution [2]. However,
this is not robust against calibration errors, occlusions, or
disturbances during execution. In contrast, this paper focuses
on high-accuracy applications, where feedback controllers
are combined with local sensing to estimate and correct for
disturbances, ensuring accurate and robust surface following.

These applications can be categorised as either in-contact
or contactless, depending on whether the robot tool makes
physical contact with the surface. While conceptually similar,
in-contact motion is often slower due to noisy force sensors,
friction, and potentially stiff contact between the robot and
the environment which may result in large forces. In contrast,
contactless applications allow for more dynamic motion.

Although in-contact surface following has been extensively
studied [3–9], this paper aims to address the notable gap
in research concerning contactless surface following. While
many of the in-contact control approaches can be applied to
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Fig. 1: Surface following scenario. The robot manipulator
is controlled to maintain a desired distance and orientation
with respect to the surface. For high-accuracy applications, a
local sensor is used to measure and estimate the relative pose
between the tool and the surface, with a feedback controller
correcting any disturbances.

contactless applications with minimal modifications, these
approaches are not tailored to exploit the dynamic motion
possible in contactless scenarios, resulting in unnecessarily
conservative behaviour.

The dynamic motions possible with contactless surface fol-
lowing lead to high accelerations, which can cause the robot’s
internal motion controller to shut down, requiring operation
stoppage and restart, with notable industrial repercussions.
To address this, it is desirable to impose acceleration limits
in the control law.

Research by Decré et al. [10] demonstrated that when con-
trolling a robot subject to input constraints (such as velocity
or acceleration limits), there is an advantage to incorporating
a prediction horizon into the control law. However, the study
assumed full knowledge of the environment; therefore, no
online estimation was required. Moreover, the implementation
was not fast enough for real-time applications.

More recent studies have investigated Model Predictive
Control (MPC) for interacting with an environment [11–
13]. Notably, Gold et al. [13] presented an approach where
MPC is combined with a state estimator for estimating and
controlling the force between the robot end-effector and the
environment. Additionally, they demonstrated the real-time
feasibility of the approach. However, these studies focused
on in-contact applications, where the robot is restricted to
a slower dynamic range, limiting the benefit of MPC. In
fact, Gold et al. [13] recommended future research to explore
more dynamic applications to fully leverage MPC. Hence,
this paper investigates the use of MPC for the more dynamic
application of contactless surface following.
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When using MPC for contactless surface following, the
choice of surface model becomes an important aspect. Due
to the slower nature of in-contact surface following, having a
good local approximation of the surface is typically sufficient.
Therefore, state-of-the-art research [8] has predominantly
relied on quadratic models to locally describe the surface.
However, it is well known that quadratic models (or any
polynomial model) may extrapolate poorly, which can be
problematic for the MPC controller which predicts (and
therefore extrapolates) into the future. Consequently, we
propose a surface model which is better suited for the
contactless surface following task.

Concretely, the main contributions of this paper are:

1) an MPC controller and surface estimator that can
be combined with local sensing to provide good
performance for the contactless surface following task
while ensuring that the acceleration limits of the robot
are not exceeded;

2) a surface model, based on Radial Basis Function
Networks (RBFN) [14], which can be used to locally
approximate the shape of the surface, while still
providing good extrapolation capabilities. We show that
this model achieves significantly better performance
compared to a quadratic model.

The approach is validated through simulations involving
randomly generated surfaces. Notably, the computation time
of both the estimator and the controller are sufficiently fast for
online usage, making it promising for real-world applications.

The remainder of this paper is structured as follows:
Section II presents the surface modelling and estimation
approach, while Section III covers the task specification
and control formulation. Section IV is dedicated to the
experimental validation, and Section V provides a conclusion
and suggestions for future work.

II. SURFACE MODELLING AND ESTIMATION

This section presents the considered surface models and
the approach used to estimate their parameters online from
laser measurements.

A. Surface model

In this paper, we assume the following surface model

sθ(px, py) = pz, (1)

where sθ represents the surface parameterised by θ, and
(px, py, pz) denotes a point on the surface. This point is
defined in the surface frame, which is fixed to the world
frame, as shown in Fig. 2. For the sake of simplicity, we
consider an explicit as opposed to an implicit surface model.
While this limits the type of surfaces that can be modelled
adequately, it remains a valid approach for a wide variety of
practical applications.

Two surface models are compared in the paper, as shown
in Fig. 3. The first model is a quadratic model, selected
because it has shown promising results for in-contact surface

(a) Visualisation of surface following setup.

(b) Definition of reference frames.

Fig. 2: Surface following setup. A visualisation of the surface
following setup (a), with (b) showing the respective reference
frames, defined in Section II-A (world and surface), Section II-
B (ee and laser), and Section III-B (task).

following [8]. Mathematically it can be expressed as

sQ
θ(px, py) =

a1 + a2px + a3py + a4pxpy + a5p
2
x + a6p

2
y. (2)

Here, the surface is parameterised in terms of the surface
weights, i.e. θ = [a1, a2, a3, a4, a5, a6]

T. This surface rep-
resentation has the desirable property that it is linear with
respect to the parameters of the model, simplifying estimation.

As described in Section I, quadratic models may extrapolate
poorly, which can be problematic for the MPC controller
which predicts (and therefore extrapolates) into the future.
For this reason, a second surface model is introduced based
on an RBFN. This surface model is expressed as the weighted
sum of N basis functions

sRBFN
θ (px, py) =

N∑
i=1

ai · ϕi(||(px, py)− ci||), (3)

with ai ∈ R the weight associated with each basis and ci ∈ R2

the centre points. We selected a Gaussian radial basis function
kernel ϕi(r) with r = ||(px, py)− ci|| and shape parameters
ϵi ∈ R, expressed as

ϕi(r) = e−(ϵir)
2

. (4)

In this case, the model is parameterised in terms of the
weights, the shape parameters, and the centre points, i.e.
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Fig. 3: Two different surface models used. The local
approximation given by the surface model is shown (in colour)
superimposed on the real surface (in gray). On the left is the
quadratic model, while on the right the RBFN model. The
RBFN provides a better extrapolation necessary for longer
MPC prediction horizons.

θ = [a1 . . . aN , ϵ1 . . . ϵN , c1 . . . cN ]T. Therefore, this model
is nonlinear with respect to the parameters of the basis
functions, making the estimation more challenging. However,
this surface model has the advantage that the output pz
smoothly tends to zero when evaluated away from the centre
points (as opposed to the quadratic model which could go to
infinity). This provides better extrapolation which is necessary
for longer MPC prediction horizons.

B. Surface estimation

As shown in Fig. 2, the laser sensor is attached to the
end-effector (ee frame) in front of the direction of travel.
This placement aims to enhance the accuracy of surface
measurements beneath the task frame, a frame fixed to the
robot end-effector around which the motion of the robot will
be controlled (to be described in Section III-B).

The laser sensor measures a line of surface points laserp
s

relative to its own laser frame. These points are transformed
to the surface frame

surfacep
s = Tlaser

surface laserp
s, (5)

where Tlaser
surface represents the homogeneous transformation

matrix between the laser frame and the surface frame, obtained
using the robot’s forward kinematics.

These points are kept in a rolling buffer of length L, as
shown in Fig. 2(a). The length of this buffer is selected
such that it roughly covers the area from the laser sensor to
underneath the task frame. At each control interval, a least-
squares optimisation problem yields the best-fit parameters
θ∗ given the buffer of points, defined as

θ∗ = argmin
θ

L∑
i=1

[sθ(px,i, py,i)− pz,i]
2 + µθ⊺ Sθ . (6)

Here, the selection matrix S is used to determine which of the
parameters θ are regularised, while µ adjusts the extent of this
regularisation. For the quadratic model, all the parameters are
regularised, while for the RBFN model, only the weights of
the basis functions are regularised, not the centre points or the

shape parameters. For both surface models, this regularisation
can be interpreted as a prior belief that the surface should be
more or less planar.

For the quadratic model, solving (6) is a linear least-
squares problem. However, for the RBFN model, it becomes
a nonlinear optimisation problem, which is solved iteratively
using PANTR [15], an efficient nonlinear matrix-free solver.
To ensure real-time feasibility, the maximum number of
iterations at every timestep is limited to ten.

III. TASK SPECIFICATION AND CONTROL

The surface-following controller is designed following a
constraint-based approach, where the idea is to specify task
constraints (often referred to as task functions) which describe
the desired behaviour of the task [16]. Then, a feedback
controller (in our case utilising MPC) is implemented to
regulate the task constraints to a desired value. This section
presents the robot model, the task specification, and the MPC
controller.

A. Robot model

As mentioned in Section I, it is desirable to limit the
acceleration of the robot. In reality, the actual limits of the
robot are not acceleration limits but rather torque limits. While
it is theoretically possible to incorporate the complete dy-
namic model, obtaining an accurate dynamic model becomes
challenging, notably in the presence of friction. Moreover,
doing so significantly escalates the computational complexity
of the MPC problem.

Therefore, we choose to focus on accelerations, considering
it a suitable proxy that simplifies the problem by disregarding
the complexities associated with modelling the robot’s torques
and dynamics. This decision is also motivated by the fact that
many robot manipulators are equipped with high-performance
internal motion controllers, which, to a large extent, linearize
and decouple the robot’s dynamics.

Consequently, the system dynamics ẋ = f(x(t),u(t)) are
modelled as

d
dt

[
q
q̇

]
=

[
0 1
0 0

] [
q
q̇

]
+

[
0
1

]
q̈ref, (7)

where the state x consists of the joint positions q and
velocities q̇. The reference acceleration q̈ref serves as the
control input u. Furthermore, the states and control input are
bounded by

q ∈ [q−,q+], q̇ ∈ [q̇−, q̇+], q̈ref ∈ [q̈−, q̈+], (8)

where □− and □+ denote the lower and upper limits.

B. Task specification

As mentioned in Section II-B and depicted in Fig. 2, a
task frame is defined with a fixed pose relative to the robot’s
end-effector (ee) frame. The general idea is that the origin of
this task frame should be constrained to the surface, while
the z-axis of this frame remains perpendicular to the surface.
Furthermore, the aim is to move the task frame along the
surface frame’s y-axis while maintaining a fixed x-position.
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To keep the laser sensor in front of the task frame, the
y-axis of the task frame is further constrained to remain
perpendicular to the x-axis of the surface frame. This is
because the task frame is moving along the y-axis of the
surface, and the laser sensor is installed along the (positive)
y-axis of the task frame.

To aid in expressing the task constraints, the following
shorthand notation is used:

gi(x)
wi−→ gref,i, (9)

where gi is an output function with a corresponding reference
value gref,i. As will be discussed in Section III-C, each
constraint has a corresponding weight wi which describes
the priority for conflicting tasks.

The transformation between the surface frame and the task
frame can be computed using the kinematics of the robot:

Ttask
surface (q) = Tsurface

world
−1 Tee

world (q) Ttask
ee (10)

This transformation consists of an origin surfacep
task(q) and a

rotation Rtask
surface (q), denoted by

surfacep
task(q) =

[
ptask
x ptask

y ptask
z

]T
, (11)

Rtask
surface (q) =

[
rx ry rz

]
. (12)

Here, Rtask
surface (q) is a rotation matrix consisting of three unit

vectors rx, ry , and rz , representing the x, y, and z axes.
The first task constraint ensures that the origin of the task

frame lies on the surface:

sθ(p
task
x , ptask

y )
w1−−→ ptask

z . (13)

A second task constraint keeps the z-component of the
task frame aligned with the surface normal n:

nT

||n ||
rz

w2−−→ 1, (14)

where n is defined as

n =


∂ sθ(px,py)

∂px
∂ sθ(px,py)

∂py

−1

 . (15)

A third task constraint ensures the y-axis of the task frame
remains perpendicular to the x-axis of the surface frame:[

1 0 0
]
ry

w3−−→ 0. (16)

A fourth task constraint keeps the origin of the task frame
at a fixed x-position of the surface frame:

ptask
x

w4−−→ px,ref, (17)

where px,ref is the desired x-position.
Finally, a fifth task constraint guides the task frame along

the y-direction of the surface frame:

taskv
task
y

w5−−→ vy,ref, (18)

where taskv
task
y represents the y-component of the task frame’s

velocity in the task frame itself, and vy,ref is the desired
velocity. This velocity is tangential to the surface.

C. Model Predictive Control

Once the task constraints are specified, a feedback con-
troller is implemented to realise the desired behaviour. To
achieve high performance with acceleration limits, this paper
utilises MPC. With MPC, an Optimal Control Problem (OCP)
is repeatedly solved for a horizon T into the future, with the
following structure

min
u(t)

∫ tk+T

tk

l(x(t),u(t)) dt (19a)

s.t. ẋ(t) = f(x(t),u(t)), (19b)
x(tk) = xk, (19c)
x(t) ∈ X , u(t) ∈ U . (19d)

At every timestep tk, the OCP is solved given the latest state
measurement xk, and the first control input u(tk) is applied.

Equation (19b) constrains the OCP to satisfy the system
dynamics, previously defined in (7), whereas (19c) ensures
that the system’s state starts at the latest measured state xk.
In (19d), the states and inputs are bounded to the sets X and
U , respectively. These sets are used to impose the state and
input constraints expressed in (8).

The objective function (19a) describes the desired be-
haviour of the controller and has the following structure:

l(x(t),u(t)) = e(x(t))⊺ W e(x(t)) + λu(t)⊺ u(t), (20)

where e(x) = g(x)− gref is the task error.
The task errors are weighted in the objective function with

W = diag(w1, w2, . . .), a diagonal matrix containing the
weights associated with each task. Furthermore, the control
inputs are regularised with a weight λ.

D. Implementation

The task constraints are modelled using CasADi [17] and
Pinocchio [18] and the OCP is specified within Rockit [19], a
software framework to quickly prototype OCPs. The OCP is
transcribed to a nonlinear program using a multiple shooting
approach and is solved online using the FAst TRajectory
OPtimizer (FATROP) [20], an efficient OCP solver. Further
details are available in the accompanying git repository1.

IV. VALIDATION

Simulations were performed using ten randomly generated
surfaces, illustrated in Fig. 4. These surfaces were generated
by fitting a 2D B-spline over a grid of randomised points.
The robot was simulated using (7), while the laser sensor
was simulated by projecting laser beams, and computing their
intersection with the B-spline surface.

The controller was tested with three surface models: a
quadratic model, an RBFN with five basis functions, and
the ground truth model (to assess controller performance
without estimation error). The parameters of the first two
surface models were estimated online from simulated laser
measurements, as detailed in Section II.

1https://gitlab.kuleuven.be/rob/projects/etasl_
mpc/surface-following/surface_following_simulation
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Fig. 4: One of the ten ground truth surfaces. Ten distinct
surfaces were randomly generated for simulation. The red
dashed line shows the desired tool path over the surface.

Each surface model was tested for 9 different prediction
horizon lengths. Consequently, we conducted a total of 270
simulations (10 distinct surfaces x 3 surface models x 9
horizon lengths). Notably, during all simulations the MPC
converged to a feasible solution, indicating that all the state
constraints and input constraints (the acceleration limits) were
satisfied for all the experiments.

The parameters used during the simulations are summarised
in Table I. The control and estimation were performed at
100Hz on a laptop PC with an Intel® Core™ i7-10810U
CPU and 32 GB of RAM.

A. Performance analysis

To analyse the approach’s performance, the resulting sur-
face following trajectories were assessed using the objective
function in (20), however with a significant difference: for all
three the surface models, the objective function was measured
against the ground truth surface model and not the estimated
surface model. This method ensures a more direct comparison
with the true objective. Furthermore, the objective function
was integrated over the ten-second duration of each trajectory.

Fig. 5 presents the results for the three surface models
across the nine different horizon lengths. Firstly, using the
RBFN resulted in a significantly lower objective than when
using the quadratic model. Secondly, the objective decreases
as the control horizon increases for all three surface models.
However, the rate of improvement diminishes with increasing
horizon length.

B. Computation time analysis

To maintain practical relevance, we investigate the compu-
tation times and target the same control sample time used by
Gold et al. [13], which was 0.01 seconds. Fig. 6 presents the
computation time of the MPC for the three different surface
models across the nine different horizon lengths. Two key
observations can be made. Firstly, except for a few outliers
with the quadratic model, all the computation times remained
far below the target of 0.01 seconds for all horizon lengths,
confirming the real-time feasibility of the approach. The exact
cause of the outliers with the quadratic model is not entirely
clear, and will be further investigated in the future. The
second key observation from Fig. 6 is that the computation
time increased as the horizon length increased. Therefore, in

TABLE I: Experiment parameters

Parameter Eq. # Value

Controller

[q−,q+] 8 based on UR10 robot
[q̇−, q̇+] 8 [-1,1] rad.s−1

[q̈−, q̈+] 8 [-1,1] rad.s−2

w1 13 25
w2 14 5
w3 16 5
w4 17 25
w5 18 1
λ 20 1× 10−9

px,ref 17 0.7 m
vy,ref 18 0.25 m.s−1

Estimator

N 3 5
L 6 100
µQ 6 1× 10−5

µRBFN 6 1× 10−1

Fig. 5: Performance of controller with different surface
models. The MPC controller’s performance was assessed in
combination with three different surface models, each with
various horizon lengths. Evaluation involved measuring the
objective function against the ground truth surface at each
time step, with results integrated over a ten-second interval.

combination with Fig. 5, it shows that there exists a trade-off
between performance and computational demand.

With regards to the estimator, the computation time during
all the simulations was less than 0.005 seconds, confirming
its real-time feasibility.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced an approach for contactless
surface following with acceleration limits using MPC. Our
method, combined with an RBFN surface model, demon-
strates superior performance compared to other techniques,
particularly outperforming local quadratic models.

However, even though the RBFN outperformed the
quadratic model, the ground truth yielded even better results.
This indicates that combining local sensing with a global
surface model obtained from a depth camera or CAD could
further enhance overall system performance. We consider this
to be an area of future research.

Additionally, we observed that performance increased with
the horizon length, but beyond a certain point, diminishing
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Fig. 6: Computation time. The computation time of the MPC
for different surface models, with different horizon lengths.

returns set in, accompanied by increased computation times.
Therefore, careful selection of the horizon length is imperative.
Further research could explore heuristics for choosing a good
horizon length and surface model for a given application
based on surface characteristics, acceleration limits, and the
desired accuracy.

Our next step involves the practical validation of the
approach using a real-world setup. We are confident in the
feasibility of this transition, as our computation times are
within the sample time of the robot. Even though this research
focused on the application of contactless surface following,
we believe it contributes to the overarching goal of bringing
MPC closer to real-life industrial applications in robotics.
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