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Abstract— This paper presents an efficient approximation for
the second-order extended Kalman filter (SEKF) for nonlinear
systems possessing a dominant direction of nonlinearity, which
we call the directional second-order extended Kalman filter
(DSEKF). Under certain assumptions, it is shown that the
second-order terms in the standard SEKF can be accurately
approximated with a single function evaluation (nx terms). The
DSEKF approximation addresses some of the drawbacks of the
standard SEKF - namely, that the SEKF requires deriving the
second-order state rates for the system, and requires integrating
an additional n3

x terms on top of the first-order extended
Kalman filter (EKF). The resulting algorithm is an efficient
alternative to sampling-based nonlinear filtering methods. The
DSEKF can also be easily added onto existing operational
systems that already use the EKF.

I. INTRODUCTION

Nonlinear filtering methods are required to estimate states
for vehicles operating in nonlinear systems where lin-
earized filtering methods such as the extended Kalman filter
(EKF) are insufficiently accurate. Such methods include
sampling-based methods, such as the unscented Kalman filter
(UKF) [1] or the particle filter [2], or methods based on sec-
ond or higher-order Taylor series expansions of the dynamics
around a reference [3], such as the second-order extended
Kalman filter (SEKF) [4]. The SEKF suffers from several
drawbacks that have limited its use in operational applica-
tions. Namely, the SEKF requires integrating an additional
n3x terms to perform the filter time update (where nx is the
state vector size) in addition to the integration requirements
of the first-order EKF (which will generally be n2x + nx).
For real-life dynamic systems, analytic formulations for the
second-order derivatives of the dynamics are not always
available, in which case the SEKF also requires deriving
the second-order state rates in order to numerically compute
these derivatives. This can be a costly or infeasible process.

As a result of these drawbacks, the unscented Kalman filter
has emerged as a more popular form of nonlinear filter. The
UKF time update relies on integrating a number of sigma
points through the nonlinear dynamics, and approximating
the resulting state statistics using the distribution of these
points. The UKF does not require deriving the state rates of
the dynamics. However, the UKF does require tuning several
parameters to control the spread of the sigma point samples,
which in practice can be a cumbersome process. Several
numerical approximations for the SEKF have been developed
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using either sigma points [5] or central differencing [6] to
approximate the higher-order derivatives or moments of the
dynamics. Inspired by these methods, we propose a further
approximation strategy suitable for nonlinear systems that
possess a dominant direction of nonlinearity.

For a number of applications, in particular in the field of
spacecraft navigation, the current operational algorithms use
the first-order extended Kalman filter [7]. These algorithms
may be implemented in complex software systems with
legacy components that are difficult to modify. Applying
these tools to more complex and nonlinear dynamic systems
will require nonlinear filtering methods; however, imple-
menting an entirely new type of filter such as the sampling-
based UKF is not always desirable. This provides the catalyst
for this work, which is to derive an efficient approximation
of the SEKF that has minimal tuning parameters, and can
be easily added onto an existing implementation of the first-
order EKF. This work is motivated by deep-space spacecraft
navigation applications, where the dynamics are highly non-
linear, and significant measurement gaps are frequently en-
countered, which allow nonlinear effects to become relatively
important in the propagation of state uncertainties [8].

For many nonlinear systems, there will be a dominant
direction along which the second-order terms will be signifi-
cantly larger than all other second-order terms. For this class
of systems, the second-order effects can be approximated
using only these most important second-order terms, and
ignoring all other terms. This property has been numeri-
cally demonstrated by the authors of this work for efficient
nonlinear spacecraft uncertainty propagation and navigation
applications [9], [10].

In this work we formally derive the approximate SEKF
using this property, yielding what we call the directional
second-order extended Kalman filter (DSEKF). We then
introduce an approximation for the second-order directional
derivative of the dynamics which only requires a single
function evalution (i.e., state integration) in addition to the
standard EKF requirements. The resulting algorithm can ac-
curately approximate the full SEKF for the class of nonlinear
systems with a single dominant direction of nonlinearity.
Since it requires only integrating nx terms in addition to
the first-order EKF, the scaling of the resulting algorithm as
nx increases is comparable to that of the first-order EKF. It
is also a straightforward extension to include in any existing
operational implementation of the EKF.

This paper is organized as follows. First, we introduce the
dynamics model, second-order expansion of the dynamics,
and the second-order state mean and covariance propagation
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equations. Next, we derive the approximation for the second-
order dynamics expansion, provide the resulting simplified
uncertainty propagation equations, and propose a further
numerical approximation strategy. Using these equations, we
then derive the directional second-order extended Kalman
filter. We apply the DSEKF to an example of a spacecraft
operating in cislunar space, a nonlinear dynamic system
subject to significant gaps between measurement passes.

II. PRELIMINARY

A. Notation

In this work, vectors are shown in boldface. Index notation
is used to represent multi-dimensional tensors. Superscripts
indicate components of a vector, matrix, or tensor. The order
of a tensor is determined by the number of superscript
indices. Subscripts indicate the time of a vector, or for a
matrix or tensor, (tk+1, tk) indicates a mapping from tk to
tk+1.

B. Model

Consider a time-varying nonlinear dynamic system. Let
xk ∈ Rnx be the state vector at time tk, k = 0, 1, ..., N − 1.
The system can be expressed as:

xk+1 = f(xk, tk+1) (1)

where f represents the nonlinear solution flow of the system,
i.e. the nonlinear mapping of the state from time tk to tk+1.

C. Taylor Series Expansion

The deviation of the current state xk+1 from a reference
trajectory x̂k+1 can be represented using the solution flow
notation:

δxk+1 = f(x̂k + δxk, tk+1)− f(x̂k, tk+1) (2)

For a standard or extended Kalman filter formulation, this
deviation is approximated by performing a Taylor series
expansion around the reference trajectory x̂k and truncating
to first order (i.e., linearizing around x̂k), giving

δxik+1 ≃ ϕi,κ1

(tk+1,tk)
δxκ1

k +H.O.T. (3)

where the first-order coefficient ϕi,κ1

(tk+1,tk)
∈ Rnx×nx in

this expansion is the well-known state transition matrix
(STM). It is possible to include higher-order terms in this
expansion, yielding what are known as the state transition
tensors (STTs).

Definition 1 (State transition tensor): The second-
order state transition tensor (STT) ϕi,κ1κ2

(tk+1,tk)
∈ Rnx×nx×nx

is the second-order term in the Taylor series expansion of a
dynamic system around a reference x̂k. It is defined as

ϕi,κ1κ2

(tk+1,tk)
=
∂2(xik+1)

∂xκ1

k ∂xκ2

k

∣∣∣∣
xk=x̂k

(4)

Including the second-order STT in the Taylor series ex-
pansion in Eq. 3 second-order terms yields

δxik+1 ≃ ϕi,κ1

(tk+1,tk)
δxκ1

k +
1

2
ϕi,κ1κ2

(tk+1,tk)
δxκ1

k δxκ2

k (5)

For most applications, this STT must be numerically inte-
grated along with the state vector, which can constitute a
significant computational burden. The differential equations
to integrate the STM and second-order STT are:

ϕ̇i,a = Ai,αϕα,a (6)

ϕ̇i,ab = Ai,αϕα,ab +Ai,αβϕα,aϕβ,b (7)

where the A matrix and tensor represent the first and second-
order partial derivatives of the state rates with respect to the
state, and the timespans are omitted for conciseness.

D. Nonlinear uncertainty propagation

Next, consider the state vector to be a Gaussian random
vector xk ∼ N (mk, Pk), where mk is the mean state vector
and Pk is the covariance matrix at time tk. The STM can be
used to perform a linear propagation of a vehicle’s mean state
and covariance through the linearized dynamics (omitting the
timespan for conciseness):

δmi
k+1 = ϕi,κ1δmκ1

k (8)

P ij
k+1 = ϕi,κ1ϕj,η1P i,κ1η1

k − δmi
k+1δm

j
k+1 (9)

In the EKF formulation, the Taylor series expansion is
performed around the current best estimate of the mean state,
giving δmk = 0, which reduces Eqs. 8 and 9 to:

δmi
k+1 = 0 (10)

P ij
k+1 = ϕi,κ1ϕj,η1P i,κ1η1

k (11)

The second-order STT can be used to analytically propa-
gate a vehicle state’s mean and covariance through nonlinear
dynamics, following Ref. [11]. For the case where δmk = 0,
these equations are

δmi
k+1 =

1

2
ϕi,κ1κ2Pκ1κ2

k (12)

P ij
k+1 = ϕi,κ1ϕj,η1P i,κ1η1

k +
1

4
ϕi,κ1κ2ϕj,η1η2

×
[
Pκ1η1

k Pκ2η2

k + Pκ1η2

k Pκ2η1

k

]
(13)

One can recognize that setting all the second-order STT
terms (ϕi,κ1κ2 ) to zero returns the linear covariance propa-
gation equations.

III. APPROXIMATING SECOND-ORDER DYNAMICS

A. Motivation

For a nx-dimensional state vector, the second-order STT
is a tensor of dimension nx × nx × nx, and thus has
n3x elements. Numerically integrating this STT represents
a significant computational burden on top of the first-order
STM integration, which has n2x elements. For example, for
nx = 6, the STM will have 36 elements, while the second-
order STT will have 216. It is therefore beneficial to derive
an approximation for this STT that includes only the most
important elements.
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B. Directional state transition tensor

The second-order term in Eq. 5 can also be thought of as
a summation of n2x vector terms:

δxk+1,κ1κ2
=

nx∑
i=1

1

2
ϕi,κ1κ2δxκ1

k δxκ2

k (14)

for fixed κ1 ∈ [1, nx] and κ2 ∈ [1, nx]. In Ref. [9], the
authors of this work showed that if one of these terms is
significantly larger than all other terms, for example,

O (∥δxk+1,11∥) ≫ O (∥δxk+1,1...nx,2...nx∥) (15)

then the full second-order effects from Eq. 5 can be approx-
imated as

1

2
ϕi,κ1κ2δxκ1

k δxκ2

k ≃ 1

2
ϕi,11δx1kδx

1
k (16)

where ϕi,11 is a vector of size nx containing the STT
derivatives only with respect to the first state component. By
using this approximation, the number of elements required
to model the second-order effects is reduced from n3x to
nx, which represents a significant reduction in storage and
computational requirements.

It is unlikely that using a standard Cartesian state represen-
tation will result in the STT term along a particular direction
dominating over other terms, as required in Eq. 15. We can,
however, take the derivatives of the STT with respect to a
rotated orthogonal basis y ∈ Rny that is formed through a
linear combination of the state coordinates. For ny = nx,
the rotated STT will exactly match the standard second-
order STT. For ny < nx, the rotated STT becomes an
approximation of the full STT, with ϕi,γ1γ2 ∈ Rnx×ny×ny .

For many applications, in particular in the field of space-
craft dynamics, the nonlinear dynamics possess a single
direction along which the nonlinear terms dominate over all
other directions. For these applications, we can reduce the
rotated STT basis size to ny = 1, giving what we call the
directional state transition tensor (DSTT).

Definition 2 (Directional state transition tensor): The
second-order directional state transition tensor (DSTT)
ψ[2] ∈ Rnx is defined as

ψi
[2] =

∂2(xik+1)

∂yk∂yk

∣∣∣∣
yk=Rx̂k

(17)

where R ∈ Rnx is the transformation vector mapping the
standard Cartesian basis to the DSTT direction.

The DSTT represents a significant reduction in the number
of elements when compared to the full STT. For example,
for nx = 6, the number of second-order elements is reduced
from 216 down to just 6. In this work we consider the case
where the full first-order STM is computed with respect to
the standard Cartesian basis x ∈ Rnx , and the second-order
DSTT is computed with respect to the single direction y ∈
R1. Letting δyk = Rδxk, then Eq. 5 can be approximated
with the second-order DSTT as (recognizing that δyk is a
scalar):

δxik+1 ≃ ϕi,κ1δxκ1

k + ψi
[2]δykδyk (18)

ψ[2] can be numerically integrated along with the STM using
the following equations:

ϕ̇i,a = Ai,αϕα,a (19)

ψ̇i
[2] = Ai,αψα

[2] +Ai,αβϕα,aϕβ,bRaRb (20)

Note the presence of the second-order state rate tensor Ai,αβ

in Eq. 20. While existing systems will likely have already
implemented analytic or numerical methods to compute the
first-order state rate matrix Ai,α in order to obtain the STM,
it is not always simple or desired to extend these methods
to compute Ai,αβ . In Section III-E, we propose a simple
numerical approximation strategy to avoid computing this
term using a single function evaluation.

C. Approximate nonlinear uncertainty propagation

If we are using Eq. 18 to approximate the second-order
effects, then we can greatly simplify the nonlinear mean
and covariance propagation equations from Eqs. 12 and 13.
First, we can simplify higher-order calculations involving the
covariance matrix through the following transformation

σk,R =

√
RiP ij

k R
j (21)

σk,R is a scalar that refers to the 1-σ uncertainty along the
DSTT direction. Eqs. 12 and 13 thus reduce to

δmi
k+1 =

1

2
ψi
[2]σ

2
k,R (22)

P ij
k+1 = ϕi,κ1ϕj,η1Pκ1η1

k +
1

2
σ2
k,Rψ

i
[2]ψ

j
[2] (23)

Besides the computational savings in obtaining or integrating
ψ[2] instead of ϕi,κ1κ2 , the computations involving these
terms are far simpler in Eqs. 22 and 23 than in Eqs. 12
and 13.

D. Direction selection

There is not always an intuitive direction along which to
compute the DSTT derivatives. Recall that the objective is to
find a direction along which Eq. 15 holds. For some systems,
physical intuition into the dynamics may be sufficient to
determine the best direction. For example, for a spacecraft
operating in two-body dynamics, it is a well-known property
that for long integration times, any deviation in the in-track
velocity direction will result in the largest deviations.

For most systems, there is no such obvious direction. It
is therefore beneficial to use insights provided by the STM
and/or STT to identify the dominant direction of nonlinearity.
Since the objective is this work is to avoid computing the
full STT, we will rely on the STM to compute this direction,
using the Cauchy-Green Tensor (CGT) [12], [9]

Definition 3 (Cauchy-Green tensor): The CGT is de-
fined as

C = ϕT(tk+1,tk)
ϕ(tk+1,tk) (24)

The eigenvalues λξγ and eigenvectors ξγ of the CGT have
the relation ∥ϕ(tk+1,tk)ξγ∥ =

√
λξγ∥ξγ∥. Thus, if λmax ≫

λother, then

∥δx[1]
k+1,max∥ ≫ ∥δx[1]

k+1,other∥ (25)
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where δx[1]
k+1,max refers to the first-order term in the Taylor

series expansion along the direction corresponding to the
maximum eigenvalue, and δx

[1]
k+1,other refers to the first-

order terms along all other directions.
The CGT only provides exact information about the max-

imum linear stretching direction. However, for the class
of nonlinear systems with a dominant stretching direction,
we assume that the maximum linear stretching direction
obtained from an eigendecomposition of the Cauchy-Green
Tensor generally aligns with the maximum second-order
stretching direction if λmax ≫ λother. This property has
been numerically validated by the authors of this work in
Refs. [9] and [10].

In order to demonstrate why this assumption holds for
this class of nonlinear system, consider that the multivariate
Taylor series expansion in Eq. 5 can be thought of as a
summation of multiple convergent series along each state
component or direction. From Eq. 25:

λmax ≫ λother =⇒ ∥δx[1]
k+1,max∥ ≫ ∥δx[1]

k+1,other∥
(26)

If we assume the Taylor series expansion is convergent within
its region of validity, this implies that

∥δx[2]
k+1,max∥ < ∥δx[1]

k+1,max∥ (27)

∥δx[2]
k+1,other∥ < ∥δx[1]

k+1,other∥ (28)

Combining Eqs. 26-28, the bound on the second-order
term along the maximum linear stretching direction will
be significantly larger than the bound on all other second-
order terms. This implies that the maximum second-order
stretching direction will generally align with this direction.
As λmax becomes more dominant over λother, these bounds
become more disparate.

For the remainder of this work, we will assume that the
DSTT directionR is the linear maximum stretching direction
obtained from the CGT eigendecomposition.

E. Efficient Numerical Approximation

Integrating the second-order DSTT in Eq. 20 can represent
a significant burden on top of integrating the first-order STM
(Eq. 19), since the second-order state rate tensor Ai,αβ must
be computed at each integration step. We therefore propose
the following approximation for the second-order DSTT.

Proposition 1: Assuming the STM has been obtained
(analytically or numerically), the second-order DSTT ψ[2]

can be approximated with a single state integration perturbed
from the reference state along the DSTT direction R.

Proof: Inserting Eq.18 into Eq. 2 and letting δxk = εR,
where ε≪ 1, we obtain

ϕi,κ1εRκ1 +
1

2
ψi
[2]ε

2 ≈ f(x̂k+1 + εR, tk+1)− f(x̂k, tk+1)

(29)
Isolating for ψ[2] gives:

ψi
[2] ≈

2
[
f(x̂k + εR, tk+1)− f(x̂k, tk+1)− ϕi,κ1εRκ1

]
ε2

(30)

Since the other terms are required for the first-order EKF,
only the additional single function evaluation f(x̂k+εR, tk)
is required to approximate the full second-order effects.

By using this approximation, we obviate the need to
computing the second-order state rate tensor Ai,αβ . The size
of the parameter ε can be viewed as a tuning parameter that
has now been introduced into the algorithm.

IV. SECOND-ORDER EXTENDED KALMAN FILTER

We will now develop the directional second-order ex-
tended Kalman filter (DSEKF) using the approximations
derived in Section III. A Kalman filter consists of two steps:
a time update and a measurement update. We use m−

k+1 and
P−
k+1 to refer to the state estimate and associated covariance

matrix prior to the measurement update, andm+
k+1 and P+

k+1

to refer to the state estimate and covariance matrix after the
measurement update.

In this work, we only consider the second-order terms
in the time update. The measurement update can similarly
be expanded to include second or higher-order terms (e.g.,
see Ref. [3]); this will be the focus of future work. For
conciseness, we also do not include the effects of process
noise in the dynamics model, though this is a straightforward
addition.

A. Time Update

The time update for a Kalman filter propagates a mean
state mk with covariance Pk from time tk to time tk+1.
Under the extended Kalman filter formulation, the reference
trajectory is reinitialized at the state estimate after each
update (giving E[δx+

k ] = δm+
k = 0).

1) EKF: The first-order time update is

(m−
k+1)

i = f i(m+
k , tk+1) (31)

(P−
k+1)

ij = ϕi,κ1ϕj,κ2(P+
k )κ1κ2 +Qk (32)

where Qk is the process noise covariance matrix.
2) SEKF: Eqs. 12 and 13 can be used to formulate the

second-order Kalman filter time update, which can better
capture nonlinear dynamics.

(m−
k+1)

i = f i(m+
k , tk+1) +

1

2
ϕi,κ1κ2(P+

k )κ1κ2 (33)

(P−
k+1)

ij = ϕi,κ1ϕj,κ2(P+
k )κ1κ2 +

1

4
ϕi,κ1κ2ϕj,κ3κ4×[

(P+
k )κ1κ3(P+

k )κ2κ4 + (P+
k )κ1κ4(P+

k )κ2κ3

]
+Qk

(34)

3) DSEKF: Using the second-order DSTT approximation
along a single direction, and using the notation from Eqs. 17
and 21, the second-order time update equations reduce to

(m−
k+1)

i = f i(m+
k , tk+1) +

1

2
ψi
[2]σ

2
R (35)

(P−
k+1)

ij = ϕi,κ1ϕj,κ2(P+
k )κ1κ2 +

1

2
ψi
[2]ψ

j
[2]σ

2
R +Qk

(36)

Algorithm 1 provides an example of how to efficiently
perform this time update using the numerical approximation
method from Sec. III-E.
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Algorithm 1 DSEKF time update with numerical approxi-
mation

1: Given: Mean state estimate m+
k with associated covari-

ance P+
k

2: Integrate mean state m+
k and STM to time tk+1 to

obtain f(m+
k , tk+1) and ϕi,κ1

(tk+1,tk)
using Eqs. 1 and 7.

3: Compute the CGT C using Eq. 24
4: Set R = ξλmax

, the direction associated with the
maximum eigenvalue of C

5: Evaluate f(m+
k + εR, tk+1)

6: Compute ψ[2] using Eq. 30
7: Compute mk+1 and Pk+1 using Eqs. 35 and 36

We note that this approximation can be considered a
simplification of the second-order central differences Kalman
filter developed in Ref. [6].

B. Measurement update

The linearized measurement update equations are:(
n−k+1

)i
= hi

(
m−

k+1, tk+1

)(
P zz
k+1

)−
=

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)(
P xz
k+1

)−
=

(
P−
k+1H

T
k+1

)
The optimal measurement update is then provided by,

Kk+1 = P xz
k+1

(
P zz
k+1

)−1

m+
k+1 =m−

k+1 +Kk+1

(
zk+1 − n−

k+1

)
P+
k+1 = P−

k+1 −Kk+1P
zz
k+1K

T
k+1

where Kk is the Kalman gain matrix at time tk, P xz
k is the

cross-covariance matrix of the state, P zz
k is the covariance

matrix of the measurement residual, zk is the measurement,
h(m−

k , tk) is the measurement function, Hk is the measure-
ment partial, n−

k (m
−
k , tk) is the prefit expectation of the

measurement, and Rk is the measurement noise covariance
matrix associated with the particular measurement technique.

V. NUMERICAL EXAMPLE

We will demonstrate the usefulness of the DSEKF on a
navigation problem for a spacecraft operating in cislunar
space.

A. Dynamics Model

The dynamics of the Earth-Moon system can be ap-
proximated using the circular restricted three-body problem
(CR3BP). The equations of motion for the CR3BP are

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r31
− µ(−1 + x+ µ)

r32
(37)

ÿ = −2ẋ+ y − y(1− µ)

r31
− µy

r32
(38)

z̈ = −z(1− µ)

r31
− µz

r32
(39)

where the state vector contains three position (x, y, z) and
three velocity (ẋ, ẏ, ż) terms. In the CR3BP, µ is the ratio
of the mass of the secondary body to the total system mass.

The system dynamics are modeled in a rotating frame. The
distances r1 and r2 are defined as the distances from the
spacecraft to the primary and secondary bodies, respectively.

B. Scenario Setup

We consider a spacecraft operating in a near rectilinear
halo orbit (NRHO) in the vicinity of the Moon. NRHOs
are of interest to the wider space community, as they are
the planned location for NASA’s next manned human space
station, the Lunar Gateway [13]. The NRHO is a rela-
tively stable periodic orbit that is characterized by a highly
nonlinear perilune region [8], which has led to challenges
for standard linearized orbit determination algorithms such
as the EKF [14]. These previous studies have found that
tracking cadences with long measurement gaps and including
measurement passes during the sensitive perilune region can
result in filter divergence after several revolutions.

For the measurement model, we approximate realistic
passes of the Deep Space Network. We consider two 8-hour
passes (one at apolune and one at perilune) with range and
range-rate measurements taken every 60 seconds, taken with
respect to the system origin. The NRHO and measurement
cadence are shown in Fig. 1. The initial NRHO state, initial
covariance values, and measurement noise values are given
in Table I. We assume no process noise (Qk = 0) for this
simplified scenario.

C. Results

Four different Kalman filter setups were simulated for
10 periods of the NRHO: the EKF, the SEKF, the UKF,
and the DSEKF (using the numerical approximation, see
Algorithm 1). For the nonlinear filters, the nonlinear time
update is only used between the long measurement gaps;
during the DSN passes, the EKF time update is used due
to the short timespans between measurements. 25 iterations
of the filters were run for each tracking cadence. An initial
estimate error was added to the initial state estimate for each
iteration, sampled from a zero-mean distribution with the 1σ
values from Table I.

RMS error estimate values for the four different filters are
shown in Fig. 2. The EKF does not perform well for this sce-
nario, while the three nonlinear filters perform comparably.
In particular, the DSEKF approaches the performance of the

TABLE I: Earth-Moon NRHO scenario parameters

Parameter Value
µ 0.0121505856
x0 1.013417655693384
y0 0.0
z0 -0.175374764978708
ẋ0 0.0
ẏ0 -0.083721347178432
ż0 0.0

1σ pos. uncert. 10 km
1σ vel. uncert. 10 cm/s

Range meas. noise 1 m
Range rate meas. noise 1 mm/s

ε 1e-5
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Fig. 1: Spacecraft in NRHO with one 8-hour apolune pass
and one 8-hour perilune pass

Fig. 2: RMS errors for NRHO scenario using various filters

full SEKF, while only requiring a single additional function
evaluation. The average total time to compute the nonlinear
time updates for each filter is shown in Table II, along with
the final position and velocity RMS error values. The DSEKF
is the most efficient of the nonlinear filters, requiring only
25% more computation time than the EKF, while the SEKF
and UKF both require over 150% more.

VI. CONCLUSIONS

In this work we present the directional second-order
extended Kalman filter (DSEKF), an efficient approximation
for the second-order extended Kalman filter that is applicable

TABLE II: Filter performance metrics for NRHO scenario

Filter Time Final position RMS Final velocity RMS
[s] error estimate [m] error estimate [mm/s]

EKF 1.73 2.38× 10−1 1.75
SEKF 4.67 3.11× 10−6 3.90× 10−5

UKF 4.68 4.42× 10−6 4.89× 10−5

DSEKF 2.18 3.20× 10−6 3.90× 10−5

to nonlinear systems that possess a dominant direction of
nonlinearity. For this class of systems, the second-order
effects can be accurately approximated using only a single
function evaluation (i.e., integrating a single state), reducing
the number of second-order elements to integrate from n3x
to nx. The advantages of this algorithm over other popular
nonlinear filtering methods such as the unscented Kalman
filter are that it has fewer parameters that require tuning,
and can easily be added onto existing systems that already
use the first-order extended Kalman filter. Future work will
involve deriving a nonlinear directional measurement update,
and evaluating the applicability of the filter to other nonlinear
dynamic systems.
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