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Abstract— This paper presents the implementation of a
Moving Horizon Estimation (MHE) approach for the simulta-
neous estimation of state and parameters within Pressurized
Water Reactors (PWR) used in Nuclear Power Plants (NPPs).
Addressing the inherent model stiffness, we leverage collocation
as the integration method, making direct collocation a natural
choice for transcription of the optimization problem into a
nonlinear programming problem (NLP). The implementation
benefits from state-of-the-art tools for modeling, expressing, and
solving optimization problems, specifically CasADI and IPOPT.
In a comparative analysis with a standard Extended Kalman
Filter (EKF), our proposed MHE method exhibits superior
performance and accuracy, even with rather classical tuning
parameters.

I. Introduction

A. Context

The need for cleaner energy drives the demand of renewable
and nuclear alternatives in order to replace carbon-based
energy. Gas and coal power plants are dispatchable sources
of energy: they can quickly balance energy demand and
offer on an electrical grid. Renewable sources of energy are
intermittent as their output vary with the wheather. Hence, the
burden of flexibility falls on nuclear power plants (NPP). This
work focuses on pressurized water reactors (PWR), which
make up the majority of nuclear reactors in the world.

Aging facilities across the globe, whose lifespan is poised
to get extended, were not always designed with flexibility
in mind. At the same time, numerous new NPP projects
and designs such as EPR2 are in the works. Compliance
with increasingly tighter safety demands and flexibility
requirements of older and newer plants calls for accurate,
reliable and possibly new monitoring and control solutions.
These new approaches must be very carefully assessed, should
they replace the existing, tried and studied methods already
in use.

B. Problem statement

Authors in [1], [2] explore control of the core using Model
Predictive Control (MPC) which was shown to outperform
some of the most recent control strategies for core control,
such as T mode. In MPC, a model of the controlled process is
used to simulate the behaviour of the system over a window
of time, over which optimal control actions are determined
by repeatedly solving an optimal control problem (OCP).
Requirements on performance, actuator constraints, system
operating range and even economic operation of the plant

can be met through the formulation of a constrained OCP.
Despite its computational heaviness, capable hardware and
software for MPC have contributed to the growing popularity
of the methodology. However, control performance is heavily
dependant on the accuracy of the model and knowledge of
the system’s state. In many practical applications, the state of
the system is not readily available and model-plant mismatch
must be adressed.

We consider the case where model-plant mismatch orig-
inates from parameter uncertainty in the model : modeling
hypotheses and simplification can lead to model parameters
that do not always match reality. A model can be calibrated
for a specific operating point, though time-varying parameters
still induce growing model-plant mismatch. Examples include:
wear and tear or failure of moving parts, depletion and aging
of consumable resources such as fuel, lubricant or catalizer.

For our use case, nuclear fuel is depleted and fission
products accumulate throughout the fuel cycles. The cycles
last about 18 months during which the dynamics involved
in the core changes slowly. Such changes should be taken
into account in the model in order to produce accurate state
estimates and ensure the accuracy of the prediction model.

In this work, we present an extension to the work presented
in [3], in which a moving horizon state estimator was
proposed for a PWR. While its sensitivity to parameter
uncertainty was assessed, we shall extend the algorithm to
estimate parameters of interest of the model in order to
improve the accuracy of both the state estimates and internal
model used by the predictive controller [4]. The challenge lies
in that the resulting optimization problem becomes harder to
solve due to additional nonlinearities and decision variables.

C. Related works and contribution

The problem of estimating state and/or model parameters
for NPP has been studied at length by the nuclear physics
community. Even though plant designs and technologies
differ across manufacturers, they are all governed by similar
underlying principles. EKF [5] or neural networks [6] have
been utilized for state estimation of a point model, a very
simplified representation of the reactor’s overall behavior
without considering spatial details. This renders them less
suitable for control dealing with axial phenomena. On the
other side, in [7], [8], data assimilation (DA) techniques
(a term coined by the meteorology community) may be
employed to estimate xenon/iodine dynamics on an axial
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model consisting of 30 nodes. Although the link is not made
in the litterature, certain DA techniques applied to nuclear
cores (such as 3D-var and 4D-var) are closely related to MHE
and EKF methods. However, the complexity of this model
results in a computational burden that is too significant for
online use. In this study, we adopt a parsimonious model that
is well-suited for control purposes, while still ensuring the
desired online performance for an MPC or MHE scheme.

II. Modeling of a pressurized water reactor

Nuclear disintegration of a fissile nucleus can be achieved
by collision with a neutron[9]. Its fission produces neutrons
that can in turn induce the fission of other neighboring
nuclei[10]. An NPP is a heat machine, whose heat source
is as sustained chain reaction heating up the fuel and water
in a pressurized tank. At the interface between the primary
(core) and secondary circuits, steam generators produce steam
driving the shaft of a power generator.

Cross-section of an isotope relates the kinetic energy of an
incoming neutron with its probability of being involved in
a nuclear reaction with the isotope. There is a cross-section
for each type of nuclear reaction. The most common isotope
in nuclear fuel is 235U which is fissile under collision with
a thermal neutron. Neutrons produced in fission of 235U are
in general too fast to cause the fission of other 235U nuclei
and need to be slowed down. The moderator slows neutrons
when they bounce off of it, down to speeds more likely to
cause fission. In PWR water is both the heat-transfer fluid
and moderator. Moderation decreases as temperature of the
water increases -due to a decreased density- which is called
the moderator effect. The doppler effect describes the impact
of the kinetic energy of the fuel on the probability of fission.
135Xe is a crucial fission product to monitor; it is the main
neutron poison in a nuclear core due to its very large cross-
section in the thermal range.

Control of a nuclear core is achieved through the position
of neutron-absorbant rods and the concentration of boron in
the primary circuit’s water. The controlled variable include
temperature of the water, power distribution through the axial
offset (AO). If we denote Ptop and Pbottom the nuclear power
produced in the top and bottom halves of the core, then we
write: AO =

Ptop − Pbottom

Ptop + Pbottom

Modeling the behaviour of a core involves the coupling of
the following physics phenomena:
• diffusion of the neutrons in the core.
• production of delayed neutrons.
• heating up of the fuel due to the nuclear reactions.
• heat exchange between the fuel and water.
• xenon poisoning.
• control actions: rods position, turbine power, boron

concentration.
• moderator effect.
• doppler effect.
State of the art simulation codes use various methods to

model these phenomena in each point of the system, such

as Monte Carlo[11] and deterministic methods. Such models
are not suitable for predictive control and monitoring due
to their complexity. Instead of a 3D modelization of the
core, we only consider a 1D axial representation which is
essential to reconstruct the axial offset. The resulting model
is described by a set of ordinary and partial differential
equations. The system (see figure 1) is then discretized into 6
meshes comprising each a xenon concentration Xi, an iodine
concentration Ii, a neutron density ni and a delayed neutron
density ci, i = 1..6. Ti is the temperature at the interface
between meshes i and i + 1, i = 2..6 with T1 being the
temperature of water when entering the core, T7 on exit. The
boron concentration in the primary circuit Cb is introduced.
The resulting model admits a state-space representation of
the form:
∀t ∈ R, ẋ(t) = f (t,u(t), x(t),p), x(t) ∈ R35, u(t) ∈ R3

y(t) = h(t,u(t), x(t),p), y(t) ∈ R8, p ∈ Rmp

x is the state of the system outlined above; u is the input
to the system or signals that we take as input information
which comprises the position of the control rods hrods, boron
concentration Cb and power of the turbine Pturb; y contains the
available measurements from the system, i.e. neutron densities
ni and cold and hot leg temperatures TCL and THL; p contains
modelization parameters that influence the behaviour of the
model and for which the estimation is of a particular interest.
mp is the number of estimated parameters.

Fig. 1: Simplified view of a nuclear core.

The spatial discretization of the neutron diffusion equation
leads to the introduction of an important parameter: the
neutron exchange rate between node D. Instead of solving
the transport equation, we consider that a constant share
of the neutrons produced in each mesh makes its way to
the neighboring meshes. This parameter summarizes more
complex interactions in the fuel. The dynamics of the ni can
be summarized as:

ṅ1 = f1(n1, n2, c1, ρ1,D)
ṅi = fi(ni−1, ni, ni+i, ci, ρi,D)
ṅ6 = f6(n5, n6, c6, ρ6,D)

where denotes ρi the localized anti-reactivity and depends
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on the isotopic distribution and population, which evolve
during normal operation and over the course of the fuel cycle.
It is currently identified on state of the art neutronics codes
at specific moments of the fuel cycle.

In addition, the xenon/iodine dynamics of the model writes
∀i = 1, .., 6:

Ẋi = λI Ii − λXXi + ΓXni − ΣXniXi

İi = ΓIni − λI Ii

Where λI and λX are the disintegration constants of 135I
and 135Xe, ΣX approximates the absorption cross-section of
135Xe, ΓX is the yield of the direct production of 135Xe from
the decay of the fuel and ΓI is the yielf of production of
iodine.

We assume a one group hypothesis, which considers
all neutrons to have the same kinetic energy. As fission
products accumulate, the kinetic energy spectrum of neutrons
is changed and ΣX should reflect this phenomenon.

The physics phenomena that need to be modeled in order
to predict the behavior of a nuclear core have different time-
scales. The main neutron poison 135Xe has a half-life of
9.2 hours while the time-scales associated with fuel fission
are of order of magnitude 10-5s. As a result, the model is a
stiff system of ordinary differential equations and appropriate
techniques should be used in order to solve it numerically.
Moreover, some of the dynamics of the model rely on
interpolation tables obtained from highly precise neutronics
codes. As a result the model performs better on operating
ranges that are close to the setpoints at which the model was
calibrated.

III. Moving horizon estimation

MHE is the dual estimation technique to MPC[12]. In
MHE, granted detectability of the model, an optimization
problem is solved repeatedly in order to estimate both states
and model parameters. The algorithm uses past measurements
y[t−H,t] and past inputs u[t−H,t] on the system over the finite-
sized window [t − H, t] of duration H. At each time instant t,
state estimates over the window x̂[t−H,t] and parameters p̂ are
solution of the following optimization problem:

min
x̂,p̂

∥∥∥∥∥∥
[
x̂(t − H)

p̂

]
−

[
x(t − H)

p

]∥∥∥∥∥∥
S

+

∫ t

t−H

(
‖v(τ)‖2R + ‖w(τ)‖2Q

)
dτ

s.t. ∀τ ∈ [t − H, t],
v(τ) = y(τ) − h(τ, x̂(τ),u(τ), p̂)

w(τ) = ˙̂x(τ) − f (τ, x̂(τ),u(τ), p̂)
x̂(τ) ∈ X
p̂ ∈ P
where x(t − H) is a prior on the state estimation, p is a prior
on the estimated parameter. X is a set of acceptable values
for the system’s state and P is a set of acceptable values for
the parameters. The notation ||.||M denotes, for compatible
sized vector a and matrix M, ||a||M =

√
aT Ma.

MHE can be interpreted as a way to find the best state
and parameter estimates given knowledge on the dynamics
of the system, available measurements and prior knowledge.
Common interpretation of the weighting matrices S , R and

Q relate to covariances of gaussian signals. If measurement
noise has covariance ν, state disturbance/model mismatch
covariance η and estimation error has covariance π, we define:

R = ν−1, Q = η−1, S = π−1

[13], [14] provide a comprehensive overview of the
methods to solve such problems, either through indirect
(solve, then discretize) or direct methods (discretize, then
solve). Most practical implementations rely on the direct
method, as a plethora of tools is available thanks to the
development of nonlinear programming (NLP) and since
indirect methods often become intractable when the size of
the problem increases.

A. Transcription of the problem into a non-linear program

The optimization problem of MHE is solved numerically
with a time period Ts, using the data that is available on
the interval [t − H, t], where H = NTs with N ∈ N. It is
necessary to transcribe the infinite-sized optimization problem
as a finite-sized NLP problem to be solved numerically. We
discuss here some common methods of transcription for
optimal control problems: single-shooting, multiple-shooting
and direct-collocation.

1) Single and multiple-shooting: Single-shooting corre-
sponds to a sequential transcription of the problem. The
decision variables of the problem are discretized and the
whole trajectory of the system is constructed in the “simula-
tion step”. This strategy can suffer from numerical instability
and numerical integration of the system dynamics can be
slow, which is why simultaneous transcription methods are
preferred for optimal control problems.

One such simultaneous method is multiple-shooting, which
introduces intermediate states on the trajectory as decision
variables. For each interval [tk, tk+1], a start node xstart[tk]
and end node xend[tk+1] are defined. Integration is defined on
each subinterval with continuity constraints. The optimization
problem then includes the following continuity constraints
on the states:

xend[tk+1] = Φ(xstart[tk], uk)
xend[tk+1] = xstart[tk+1]

Where Φ is a discrete-time model of the system. The
additionnal decision variables and constraints complexify the
optimization problem but the resulting problem is sparser
than single-shooting transcription. Exploiting the sparsity
of a problem can help significantly speedup the resolution,
which is achieved by solvers such as IPOPT [15]. Another
advantage to multiple-shooting is numeric stability due to the
enforcement of continuity constraints.

2) Direct collocation: Collocation methods in numerical
integration refer to a class of implicit Runge-Kutta methods,
which means that they are high-order one-step integration
methods. Implicit methods are more stable than explicit
methods and are thus suitable for the integration of stiff
models. Choosing the Radau basis [13] with n points leads
to an L-stable integration method of order 2n − 1, which is
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desirable when dealing with stiff systems. A more compre-
hensive outlook on the theory, analysis and implementation
of collocation methods in the context of optimal control can
be found in [12]. The MHE implementation that we present
is based on direct-collocation as it it suitable to deal with the
stiff reactor core model and can deliver fast solutions of the
optimization problem.

Direct-collocation transcription introduces the collocated
states of the Runge-Kutta method in each integration interval
[ti, ti+1] as decision variables of the optimization problem. In
the context of numerical integration, the intermediate points
are discarded: the value of the solution at the end of the
previous integration interval is the only quantity required for
the current integration interval. In direct-collocation, since
the collocated state are retained in the decision variables, they
can also be used as the nodes of a gaussian quadrature in the
evaluation of the cost function. For a s-order collocation
method, the solution of the differential equation ẋ(t) =

f (t,u(t), x(t),p) and the integrand of the cost function F(x)
are approximated on [ti, ti+1] by the s-order polynomials P(t)
and T (t). On each interval [ti, ti+1] define s collocation nodes
ti,k = ti + hτk, 0 ≤ τk ≤ 1∀k = 1..s and corresponding decision
variables xc

i,k. Define the Lagrange polynomials:

∀t ∈ [ti, ti+1], Lk(t) =

s∏
l=1
l,k

t − ti,l
ti,k − ti,l

such that Lk(ti,l) = δk,l

We construct the approximation polynomials of the solution
and integrand of the cost function:

∀t ∈ [ti, ti+1], P(t) =

s∑
k=1

Lk(t)xc
i,k, T (t) =

s∑
k=1

Lk(t)F
(
xc

i,k

)
∀k = 1..s, P(ti,k) = x(ti,k) = xc

i,k, T (ti,k) = F(x(ti,k)) = F(xc
i,k)

The approximated solution P corresponds with the exact
solution of the differential equation at the collocation points,
so ∀k = 1..s we have the following constraints:

P′(ti,k) = f (ti,k,u(ti,k), xc
i,k,p) =

s∑
l=1

L′l (ti,k)︸ ︷︷ ︸
al,k

xc
i,l

At the end of the integration interval, we have:

xi+1 = P(ti+1) =

s∑
k=1

Lk(ti+1)︸  ︷︷  ︸
bk

xc
i,k

The approximate integrand T corresponds with F at the
collocation points, and we write:∫ ti+1

ti
F(x(τ))dτ ≈

∫ ti+1

ti
T (τ)dτ =

∫ ti+1

ti

s∑
k=1

Lk(τ)F
(
xc

i,k

)
dτ

=

s∑
k=1

(∫ ti+1

ti
Lk(τ)dτ

)
︸             ︷︷             ︸

qk

F
(
xc

i,k

)

Using the same choice of collocation nodes τk on all
intervals and keeping all intervals of constant length ∆t we
apply the change of variable τ = t−ti

∆t and rewrite ∀l ∈ [[1 . . . s]]:

∀τ ∈ [0, 1], L̃k(τ) = L(ti + ∆tτ) =

s∏
l=1
l,k

τ − τk

τk − τl

∀l ∈ [[1 . . . s]], al,k =
1
∆t

L̃′l (τk), bl = L̃l(1), ql = ∆t
∫ 1

0
L̃l(τ)dτ

Note that a collocation method is totally defined by the
choice of collocation nodes (τk)k∈[[1...s]] and order s as they
define the Lagrange polynomials. The presented collocation
scheme is called integral form since the interpolation polyno-
mial P interpolates the states of the solution. Another common
derivation uses the differential form when P interpolates the
time derivative of the states of the solution.

Finally, the non-linear program associated with the opti-
mization problem is rewritten as:

min
x̂,p̂

J =

∥∥∥∥∥∥
[
x̂k−N+1

p̂

]
−

[
x
p

]∥∥∥∥∥∥
S

+

k−1∑
i=k−N+1

‖wi‖Q+

k∑
i=k−N+1

s∑
l=1

ql

∥∥∥vi,l

∥∥∥
R

s.t. ∀i ∈ [[k − N + 1, . . . , k]],

wi = x̂i+1 −

s∑
l=1

blx̂c
i,l

∀l ∈ [[1 . . . s]],
vi,l = y(ti,l) − h(ti,l,u(ti,l), x̂c

i,l, p̂)
s∑

m=1

al,mx̂c
i,m = f (ti,l,u(ti,l), x̂c

i,l, p̂)

x̂c
i,k ∈ X

p̂ ∈ P
An advantage of this approach over single and multiple-

shooting is that it’s a single-phase optimization problem.
Due to the collocation constraints, no dedicated numerical
integration phase is necessary: a feasible solution of the
optimization problem is always a trajectory of the system. If
we consider the highly sparse structure of the NLP problem
and suitable solvers, the potential speedups offered by the
technique make up for the overhead of introducing additional
decision variables.

Lastly, there remains a caveat to this approach, which we
discuss now. For a given choice of collocation nodes, it is
unlikely that the sampling rate of the outputs and inputs match
with the collocation nodes. Collocation nodes in the Radau
and Legendre collocation scheme are not evenly distributed.
A result of this formulation it is necessary to use interpolation
to retrieve the value of the inputs and outputs of the system
at the collocation nodes. It is compatible with complex plants
in industrial settings: signals have to be read from a data
bus shared across different systems and could be delayed,
infrequent or dropped when managing bandwidth or due to
prioritization of signals.

B. Extension of MHE to parameter estimation

Online estimation of parameters in the case of MHE can
be implemented in different manners. The first option is
to consider a single decision variable which is used in the
relevant constraints of the optimization problem. The other
option is to consider an augmented state of the system, which
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contains the original state and the parameters to be estimated.
In general, parameters are assumed to have a constant value
over a given time period such as the estimation window, so
we write ṗi = 0, i = 1..mp . However, if some model of
the evolution of the parameters over time is available it can
be used instead. We will suppose in the rest of the paper
that estimated parameters have a constant value over the
estimation window of MHE. In this context, the augmented
model becomes:

˙(
x(t)
p(t)

)
=

(
f (t,u(t), x(t),p(t))

0mp

)
y(t) = h(t,u(t), x(t),p(t))

where 0mp is a zero vector of size mp.
This formulation allows us to use any state estimation

technique for parameter estmation without requiring to alter
the implementation, as well as to model the evolution of
parameters. On the other hand, we add many intermediate
decision variables to the NLP, since all the values of p(t) at
the collocation nodes have to be considered.

IV. Implementation and results

In previous work[3], we presented an implementation of
a state estimator using generic tools available in the Matlab
[16] programming environment, fmincon and ode15s. The
resulting MHE scheme was straightforward to implement
with minimal changes required on existing source code and
presented satisfying performance for onsite use. Maintaining
the same approach for simultaneous estimation of states and
parameters was unsuccessful due to the increased problem
complexity once adding parameters to be estimated. The pre-
sented implementation relies, for its part, on the CasADi[17]
toolbox with the Matlab[16] interface. The optimization solver
is IPOPT[15], which implements a state of the art primal-dual
interior point method. It can be warmstarted to speed the
solution of optimization problems up. The estimation horizon
is H = 1h and the model is discretized using collocation
of order 3 and a time-discretization Ts = 1min. Longer
estimation window are necessary to increase sensitivity of
the cost function to the parameters of xenon dynamics, as it
has a long characteristic time.

Validation and analysis of the obtained performances is
proposed through a comparison with an extended Kalman
Filter under common tuning parameters. The EKF was also
implemented using CasADi and its convenient differentiation
interface. The model in the EKF is a discretization of
the continuous dynamics using collocation of order 3 and
sampling period of 1min. CasADi implements interpolation
tables that can be differentiated and used with symbolic
variables, which is an important element for the model which
uses tabulated anti-reactivity values. System’s inputs and
measurements have to be interpolated at the collocation nodes.
For both estimation algorithms, we implement parameter
estimation through an augmented model, as outlined in section
III-B. Additionally, we highlight the advantage of using
MHE over EKF when dealing simultaneously with state
and parameter estimation. This is achieved by increasing

the state of the system as described in section III.B. The
EKF is indeed able to reconstruct the state of the system
alone, albeit with slower convergence than MHE, but fails to
estimate the extended state. On the other hand, MHE handles
parameter estimation with more success and without requiring
a complete redesign or retuning of the estimator.

The validation of the implementation is carried by adding
an error term to the true initial state of the system, sampled
from a gaussian distribution corresponding to 20% relative
error. Only approximated values of the parameters to be
estimated are assumed to be available: they are initialized
to the order of magnitude of their true value. The validation
data was produced using ΣX = 5.5 × 10−7s−1%PN−1 and
D = 860pcm. Therefore, the parameters are initialized to
ΣX = 10−5s−1%PN−1 and D = 1000pcm, such that initial
errors are of 81% and 16% respectively. Finally, the code
was run on a consumer grade laptop of with an Intel® Core™

i5-8365U CPU clocked at 1.6GHz and 16Gb of DDR4 RAM,
running Microsoft Windows 10.

Both the EKF and MHE share common tuning parameters
as outlined in section III. The initial covariance estimate of
EKF is such that P0 = S −1/2, where S is the weighting matrix
in the arrival cost term of MHE.

The implemented algorithm makes simplifying assump-
tions: the arrival cost is computed using a constant weighting
matrix S and a perfect model is assumed (which is to say
that the slack variables (wk) are set to 0). Matrix R is
chosen according to noise consideration on the measurements.
Denoting In the unit matrix of dimension n and 0n,m the zero
matrix of size n×m, the EKF covariance of the measurement
noise and the process noise are given by R−1/2 and Q−1/2:

R−1/2 =

[
0.5I2 02,6
06,2 0.2I6

]
Q−1/2 =

[
0.1I21 021,12
012,21 I12

]
S −1/2 = I33

Fig. 2 shows the relative estimation error for both parame-
ters ΣX and D using MHE and EKF. Since MHE estimates
the entire estimation window each time the optimization
problem is solved, we choose to represent the estimation
at the beginning of the window. MHE proves to be well-
suited for this task, as the final estimation error for the
parameters is below 0.5% relative error, whereas the Kalman
Filter converges to an erroneous estimation.

We interpret the discrepancy between estimators as a result
of the stiffness of the model. Stiffness impacts the sensitivity
of each estimator with respect to the estimated parameters.
We can think of EKF as having an horizon of dt while MHE
uses a sixty times longer horizon. Xenon has a slow dynamics
when compared to the faster dynamics of the model. In this
context, an error in ΣX will have less impact on xenon over
a shorter horizon.

As a result of the erronated parameter estimates, the state
estimates produced by the Kalman filter are erroneous as
well, especially for the case of xenon. Since neutron fluxes
are measured, a wrong value for D has a lower impact on
them. On the other hand, xenon is not directly measured and
its production is a result of the decay of iodine, which is the
result of the decay of the fuel. The estimation of xenon relies
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on an accurate value for ΣX .
On the other hand, Fig. 3 illustrates that state estimates

produced by MHE are more accurate, with normalized relative
errors of less than 1% thanks to the superior parameter
estimation when compared to those obtained from the EKF.
The introduction of constraints on state and parameter
estimation does not affect the accuracy of the estimates, as
the inequality constraints remain inactive. Including these
conditions adds no overhead to the algorithm’s execution
time.
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Fig. 2: Relative parameter estimation error for EKF and MHE
(simultaneous estimation)
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Fig. 3: Relative state estimation error for EKF and MHE
(simultaneous estimation)

The improved accuracy of MHE for both state and
parameter estimation does come at the price of an increased
computational effort. Solving each MHE problem (therefore
estimating a whole hour) took an average of 1.35s against
102ms for the EKF.

V. Conclusion and outlook

We have presented an implementation of Moving Horizon
Estimation for the simultaneous estimation of state variables
and selected parameters within a nuclear core model. This
model, characterized by stiffness and strong nonlinearities in
certain dynamics, posed significant challenges. We discussed
the choice of direct collocation as a suitable method for
transcribing the MHE optimization problem, emphasizing
its advantages compared to other commonly employed

techniques. By tailoring the nonlinear programming problem
to the MHE requirements and solving it within a dynamic
load-follow scenario, we demonstrated the efficacy of the
solution proposed, intrinsically and by comparison. Indeed,
Extended-Kalman Filter estimations were shown to fail to
converge to the true states and parameters of the model. This
research highlights the efficacy of MHE in enhancing state
and parameter estimation within complex systems like PWRs,
offering potential advancements in control and safety for
nuclear power plants. Our forthcoming research will focus on
implementing output Model Predictive Control, capitalizing
on the presented estimation scheme.
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