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Abstract— Online feedback optimization is a controller de-
sign paradigm for optimizing the steady-state behavior of a
dynamical system. It employs an optimization algorithm as a
dynamic feedback controller and utilizes real-time measure-
ments to bypass knowing exact plant dynamics and distur-
bances. Different from existing centralized settings, we present
a fully decentralized feedback optimization controller for net-
worked systems to lift the communication burden and improve
scalability. We approximate the overall input-output sensitivity
matrix through its diagonal elements, which capture local model
information. For the closed-loop behavior, we characterize the
stability and bound the sub-optimality due to decentralization.
We prove that the proposed decentralized controller yields
solutions that correspond to the Nash equilibria of a non-
cooperative game. Simulations for a voltage control problem on
a direct current power grid corroborate the theoretical results.

I. INTRODUCTION

Many engineering automation tasks consist of optimizing
the steady-state operation of dynamical systems. Typical
examples include congestion control in communication net-
works [1], voltage regulation [2], and optimal power flow in
power systems [3]. The key is to select an appropriate control
input to optimize an objective function that reflects the input-
output performance. This pursuit, however, involves some
critical obstacles. Real-world systems are often large-scale,
networked, and complex, making it challenging to precisely
model their behaviors. Furthermore, exogenous disturbances
often appear as parameters in steady-state optimization prob-
lems. Since disturbances are difficult to measure in general,
numerical optimization relying on an exact formulation can
be prohibitive or require conservative approximations.

Emerging feedback optimization controllers [4] exhibit
huge potential in regulating dynamical plants in an efficient
manner. The central idea is to use optimization algorithms as
feedback controllers to drive the plant to an optimal steady-
state operating point. It utilizes real-time measurements to
update control inputs without requiring the exact plant model
and disturbances. This feature endows feedback optimization
with the versatility to handle various scenarios. Examples
include driving the system towards the global minimizer
of convex functions [5], stationary points of non-convex
functions [6], [7], and competitive equilibria (e.g., Nash or
Wardrop) of noncooperative games [8], [9]. Guarantees on
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closed-loop stability, robustness, and constraint satisfaction
are established in continuous-time [6], discrete-time [10], and
sampled-data [8] scenarios.

The closed-loop interconnection between dynamical plants
and feedback optimization controllers brings unique chal-
lenges. When the plants are rapidly pre-stabilized, they can
be abstracted by their steady-state input-output maps [7],
[10]. Such abstractions help to obtain closed-loop guarantees.
However, for general dynamical plants [11], real-time output
measurements may not align with steady-state responses.
This mismatch may cause non-negligible errors in stability
analysis. To address this issue, one can employ singular
perturbation analysis to quantify the required timescale sep-
aration for a satisfactory feedback optimization controller
[6]. The above methods require explicit knowledge of the
steady-state input-output sensitivity matrix. To remove this
restriction, recursive sensitivity learning based on streaming
real-time measurements is proposed [12]. Moreover, zeroth-
order optimization algorithms utilizing gradient estimation
[13] or Gaussian Processes [14] offer an alternative that
circumvents the need for sensitivity information. It has
proven effective in feedback optimization [11] and network
optimization [15], [16].

Centralized approaches may encounter various issues (e.g.,
in scalability and privacy) when deployed in large-scale
networked systems. In this regard, distributed implementa-
tions of feedback optimization have been studied [17]. These
methods require that agents exchange local information with
their neighbors in a network. To regulate the trade-off be-
tween global performance and local coordination, clustering
strategies [18] explore different aspects (e.g., partitioning
[19] and plug-and-play [20]) to efficiently control large-
scale networked systems. However, the establishment of
communication channels may incur significant engineering
effort, restrictions of feasible regions, time-consuming data
transmission, and the need for iterative collaborative updates.

To overcome these limitations, we pursue a fully de-
centralized and communication-free approach. Each agent
uses the local sensitivity information and updates its control
input without any communication. From a network-level
perspective, this corresponds to approximating the sensitivity
matrix by its diagonal elements, thereby leading to fully
decoupled updates. We first show that the stationary point
of this controller coincides with the Nash equilibrium of an
underlying convex game. Then, we conduct a comprehen-
sive analysis of the closed-loop stability and sub-optimality,
namely, the distance between the globally optimal point and
the stationary point to which the proposed controller con-
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Fig. 1. Example of a system with three agents. The black line indicates
the coupling dynamics between agents. The red dashed line represents the
decentralized update using local inputs and outputs.

verges. We characterize the dependence of the sub-optimality
on the dynamic coupling and the properties of the objective.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

Let R be the set of real numbers. We denote the inner
product and the l2-norm by ⟨·, ·⟩ and ∥ · ∥, respectively. For
a differentiable function Φ : Rn × Rn → R, ∇uΦ(u, y) and
∇yΦ(u, y) denote the partial derivatives with respect to u
and y, respectively. For a square matrix H , we use Hdiag to
represent the diagonal matrix with the diagonal elements of
H . The largest singular value of H is σmax(H), and the
smallest one is σmin(H). We denote the realization of a
vector x ∈ Rn at time k by xk, and its i-th entry by xi,k.

B. Problem Formulation

In this paper, we focus on feedback optimization for a
networked system with N agents. The plant is represented
by an asymptotically stable linear time-invariant (LTI) system

xk+1 = Axk +Buk,

yk = Cxk +Duk + d,
(1)

where x ∈ RN is the state, u ∈ RN is the input, y ∈ RN is
the output, and d ∈ RN is a constant unknown disturbance.
Every element of x, y, and u is the local state, output,
and input of the corresponding agent. The plant (1) has a
linear steady-state input-output map y = Hu + d, where
H = C(I −A)−1B +D ∈ RN×N is the sensitivity matrix.
The scalar input and output of each agent are considered for
notational convenience. In fact, the design and analysis can
be easily extended to the multivariate setting with decoupled
input constraint sets. An example of a system with three
agents is given in Fig. 1.

We aim to drive the plant (1) to an optimal steady-state
operating point defined by

min
u,y

Φ(u, y) (2a)

s.t. y = Hu+ d, (2b)

where the global objective function Φ(u, y) =∑N
i=1 Φi(ui, yi) is the sum of all the local objectives

Φi(ui, yi), and ui and yi are the input and output of agent
i, respectively. By replacing y in the objective, problem (2)
is transformed to the following unconstrained problem:

min
u

Φ̃(u), (3)

where Φ̃(u) =
∑N

i=1 Φ̃i(u), and Φ̃i(u) = Φi(ui, yi). We
make the following assumptions about the objective function.

Assumption 2.1: The following conditions hold:
1) Agent i’s objective function Φi(ui, yi) : R×R → R is

separable with respect to ui and yi, i.e., Φi(ui, yi) =

Φ
(1)
i (ui) + Φ

(2)
i (yi);

2) Φ
(1)
i (ui) : R → R is continuously differentiable, Lu-

smooth, and mu-strongly convex;
3) Φ

(2)
i (yi) : R → R is continuously differentiable, Ly-

smooth, and my-strongly convex.
The assumptions on smoothness and strong convexity are
common in the literature of numerical optimization and
control [5], [21]. Furthermore, the assumption on separable
objective functions is largely satisfied in practical appli-
cations [3]. It follows by Assumption 2.1 that the global
objective functions Φ(1)(u) =

∑N
i=1 Φ

(1)
i (ui) and Φ(2)(y) =∑N

i=1 Φ
(2)
i (yi) are NLu and NLy-smooth, respectively. The

objective function Φ̃(u) is L-smooth and m-strongly convex,
where L = NLu + Nσ2

max(H)Ly and m = Nmu +
Nσ2

min(H)my , respectively.

III. DESIGN OF THE DECENTRALIZED CONTROLLER

Existing centralized feedback optimization controllers ex-
ploit the following gradient-based iterative update [4]

uk+1 = uk − η
(
∇uΦ(uk, yk) +H⊤∇yΦ(uk, yk)

)
, (4)

where yk is the real-time measurement, and η > 0 is the step
size. Note that the update in (4) involves the full sensitivity
matrix H , where its element Hij represents the sensitivity
of agent j’s output to agent i’s input. In practice, such
a coupling sensitivity requires subsystems to exchange a
large amount of information at each sampling instant k. In
scenarios where i) communication is hard to establish (due
to cost, privacy, etc.), ii) the sampling period is too short
for communication to occur, or iii) the cross-coupling terms
defining how agents influence one another are unknown,
the centralized controller (4) may not be implementable in
practice. Instead, we propose a fully decentralized controller
via an approximate and decoupled sensitivity matrix.

A. Decentralized Controller

To develop a decentralized counterpart of (4), each agent
updates its control input only based on its local sensitivity
and measurement, i.e.,

ui,k+1 = ui,k − η (∇uΦi(ui,k, yi,k) +Hii∇yΦi(ui,k, yi,k)) ,

where the local sensitivity information Hii and the local
measurement yi,k are utilized to calculate ui,k+1. From a
system perspective, the update is represented by

uk+1 = uk − η
(
∇uΦ(uk, yk) +H⊤

diag∇yΦ(uk, yk)
)
. (5)

By using the diagonal matrix Hdiag to approximate the sen-
sitivity matrix H , this controller is fully decoupled over the
network. Hence, each agent can perform local adjustments
without any communication.
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B. A Game-Theoretic Interpretation

Next, we analyze the stationary points u∞ to which the
decentralized controller (5) converges.

Theorem 3.1: Given Assumption 2.1, the stationary points
of the controller (5), if they exist, equal to the Nash equilibria
of the following convex game:

∀i, min
ui

Φ̃i(u). (6)
Proof: The i-th entry of the fixed point u∞ of (5) satisfies

∇uΦi(ui, (Hu∞)i + di)+Hii∇yΦi(ui, (Hu∞)i + di) = 0.

The system-level representation of the above update is

∇uΦ(u∞, Hu∞ + d) +H⊤
diag∇yΦ(u∞, Hu∞ + d) = 0.

The left-hand side of the above equation is also the pseudo-
gradient mapping, i.e., u 7→ [∂u1

Φ̃1(u), · · · , ∂uN
Φ̃N (u)]⊤,

of the game (6), whose zeros are the Nash equilibria [22,
Theorem 5]. Thus, the stationary points of (5) are the Nash
equilibria of the game (6).

IV. PERFORMANCE ANALYSIS

The update direction on the right-hand side of (5) does not
align with the gradient of the objective function (3). To study
the stability and sub-optimality of the interconnection of the
controller (5) and the plant, we establish the condition of the
plant such that the iteration of this decentralized controller is
strongly monotone [23, Def. 22.1]. We develop the analysis
for two separate cases, i.e., the plant is represented by the
steady-state map (2b) or by the LTI plant (1).

A. Interconnection with an Algebraic Plant

We first consider the case where the plant has fast-
decaying dynamics given any fixed inputs. Then, the plant
can be replaced by its linear steady-state map (2b) [10]. The
closed-loop system with the decentralized controller (5) is

yk = Huk + d, (7a)

uk+1 = uk − η(∇Φ(1)(uk) +H⊤
diag∇Φ(2)(yk)). (7b)

Furthermore, the right-hand side of (7b) is strongly monotone
when the plant (7a) is weakly coupled, see the characteriza-
tion (8) below.

Lemma 4.1: Given Assumption 2.1, we conclude that
∇Φ(1)(u)+H⊤

diag∇Φ(2)(Hu+d) is a (m−c)-strongly mono-
tone operator if m > c, where m = Nmu +Nσ2

min(H)my

and c = Nσmax(H −Hdiag)σmax(H)Ly .
Proof: The proof can be found in Appendix A.
Note that the condition m > c is equivalent to

σmax(H −Hdiag) ≤
mu + σ2

min(H)my

σmax(H)Ly
. (8)

A diagonally dominant sensitivity matrix H can help to
satisfy this condition.

If the plant satisfies (8), the stationary point u∞ of the
closed-loop interconnection (7) exists and is unique [23,
Corollary 23.37]. Let u∗ be the globally optimal point of (2)
and y∗ = Hu∗+d be the corresponding steady-state output.

The following theorem shows that the system (7) converges
to a neighborhood of u∗ with a linear rate.

Theorem 4.1: Let Assumption 2.1 hold, and let the plant
(7a) satisfy the diagonal dominance (8). For all η ∈
(0, 2m−2c

L2−m2 ), the closed-loop system (7) satisfies

∥uk−u∗∥ ≤ ρk∥u0−u∗∥+η∥(H⊤−Hdiag)∇Φ(2)(y∗)∥
k−1∑
j=0

ρj ,

(9)
where ρ =

√
1− 2mη + L2η2 + cη, 0 < ρ < 1, and m and

c are given in Lemma 4.1.
Proof: Please see Appendix B.
To characterize the sub-optimality, we bound the distance

between the globally optimal point u∗ and the limit point u∞
to which the controller (5) converges. The following theorem
provides this upper bound.

Theorem 4.2: If 2m > 1 and the conditions in Theo-
rem 4.1 hold, then we have

∥u∗ − u∞∥ ≤ ∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥
√

1

2m− 1
. (10)

Proof: Please see Appendix C.
We obtain the bound (10) by analyzing the trajectory of

the centralized controller (4) while taking the limit point u∞
of the decentralized controller (5) as a reference. Note that
2m > 1 is a sufficient condition for establishing closed-loop
stability from this perspective.

Remark 4.1: The sub-optimality of the controller (5) de-
pends on the coupling degree H⊤−Hdiag and the properties
of objective functions (e.g., ∇Φ(2)(y) and m). The bound
decreases as m increases. It provides an estimate of the
distance between the Nash equilibrium and the globally
optimal solution. We will illustrate the tightness of this bound
via simulations later in Section V.

B. Interconnection with an LTI Plant

Consider the closed-loop interconnection of the LTI plant
(1) and the controller (5)

xk+1 = Axk +Buk, (11a)
yk = Cxk +Duk + d, (11b)

uk+1 = uk − η(∇Φ(1)(uk) +Hdiag∇Φ(2)(yk)). (11c)

The existence of plant dynamics will cause a difference
between the real-time measurement and the steady-state
response. Hence, we consider the coupled errors involving
the distance to the steady state of the plant (1) given a fixed
input (i.e., ∥x−Hxu∥2) and the distance to the equilibrium
point of the controller (5) (i.e., ∥u − u∞∥2). These two
coupled dynamics decay to zero with a linear rate if the
steady-state map of the LTI plant (1) satisfies the diagonal
dominance (8).

Theorem 4.3: Suppose that the stable LTI plant (1) satis-
fies (8) and that Assumption 2.1 holds. Then, there exists a
positive constant η∗ such that ∀η ∈ (0, η∗), the closed-loop
system (11) exhibits a linear convergence, i.e.,∥∥∥∥xk −Hxuk

uk − u∞

∥∥∥∥2 ≤ (λmax(Ξ))
k

∥∥∥∥x0 −Hxu0

u0 − u∞

∥∥∥∥2 , (12)
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where Hx = (I − A)−1B, 0 < λmax(Ξ) < 1, Ξ is a
symmetric matrix given in Appendix D, and η∗ is given in
Appendix D.

Proof: Please see Appendix D.
Note that the steady-state inputs of systems (11) and (7)

are identical. By Lemma 4.1, if (8) holds, the stationary point
u∞ of the system (7) is unique. It means that the system (11),
if it converges, will converge to the stationary point of the
system (7). Hence, the upper bound on the distance between
u∞ and the globally optimal point u∗ in (10) still holds.

V. NUMERICAL RESULTS

We consider a voltage control problem for a direct current
(DC) power system. The model is adapted from [24], and it
is illustrated in Fig. 2. This system consists of 8 nodes and
9 edges. There are two hub-like structures with a connection
between nodes 4 and 5. The system dynamics are[

C 0
0 L

] [
V̇

ḟ

]
=

[
G −B
B⊤ −R

] [
V
f

]
+

[
I∗ + Ic

0

]
,

Vm =V + d,

(13)

where V ∈ R8 is the node voltage, Vm ∈ R8 is the measured
voltage with the unknown measurement error d ∈ R8,
f ∈ R8 is the line current, I∗ ∈ R8 is the reference current
injection, and Ic ∈ R8 is the vector consisting of controllable
current injection at each node. There are two diagonal
matrices C ∈ R8×8 and G ∈ R8×8, where the diagonal
elements represent the capacitance and the resistance of each
node, respectively. Moreover, L ∈ R9×9 and R ∈ R9×9 are
also diagonal matrices, where the diagonal elements indicate
the inductance and the resistance of each line, respectively.
The incidence matrix of the electrical network is B ∈ R8×9.

Given an unknown change ∆I ∈ R8 in current injection
I∗, the objective is to operate the system such that the
voltage measurement Vm at each node tracks the reference
value Vm, ref with a minimal control effort related to Ic.
Furthermore, we consider scenarios where communication
is unfavorable (e.g., to avoid attacks). Hence, the current
injection at each node is independently decided based on
locally available measurements. This objective is

min
Ic,Vm

1

2
(γ1∥Ic∥2 + γ2∥Vm − Vm, ref∥2)

s.t. Vm = H(Ic + I∗ −∆I) + d,
(14)

where the input-output steady-state sensitivity matrix H =[
I 0

] [ G −B
B⊤ −R

]−1 [
I
0

]
∈ R8×8, and Vm, ref = HI∗ + d.

We set C and L to be the identity matrix. We set I∗ and
∆I to be all-ones vectors. The resistor R at each line equals
10. We choose different values of G to analyze cases with
different levels of coupling (see (8)). The resulting system
(13) is stable [24]. We further discretize the system (13)
using Euler forward discretization with a step-size ϵ = 0.1.
We set γ1 = γ2 = 1 and select the step size used by the
controllers η = 0.05, which meets the stability condition
provided in Theorem 4.1.

Fig. 2. An 8-node DC power system.

(a) Algebraic steady-state map. (b) LTI plant.

Fig. 3. Relative distance to the globally optimal point (G=1).

Fig. 4. Relative distance to the globally optimal point with different values
of G (i.e., different degrees of diagonal dominance).

In Fig. 3, the relative errors (i.e., ∥uk − u∗∥/∥u∗∥) for
the input u ≜ Ic are plotted when G = 1. We observe that
the normal gradient method (i.e., the centralized controller)
brings the system to the optimal operating point, whereas the
decentralized controller (5) leads to a sub-optimal solution.
Furthermore, in Fig. 4, we illustrate the evolution of the
upper bound (10) and the corresponding true sub-optimality
when the parameter G varies from 1 to 100. As the degree
of diagonal dominance of the sensitivity matrix H increases
(i.e., G increases from 1 to 100), we observe a decrease
in sub-optimality, which aligns with the results outlined in
Theorem 4.2. Notably, the bound (10) provides a rather
accurate estimation of the sub-optimality associated with the
decentralized controller. From the perspective of the system
operator, the bound (10) can act as a surrogate reference for
the price of decentralization, namely, the extra cost incurred
by disregarding the dynamic cross-coupling.

VI. CONCLUSION

We considered feedback optimization for networked sys-
tems, where inter-agent communication may be expensive
or hard to establish. We proposed a fully decentralized
controller through an approximated sensitivity matrix based
on local model information. We proved that the resulting
steady-state operating points are Nash equilibria. Moreover,
we derived sufficient conditions for the stability of the
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closed-loop systems. We explicitly characterized the sub-
optimality of the decentralized controller, reflecting the price
of decentralization. Through simulations on a DC power grid,
we illustrated the performance of the decentralized controller
and the tightness of the bound on sub-optimality.
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APPENDIX

A. Proof of Lemma 4.1

For ∀u1, u2 ∈ RN , we have

(∇Φ(1)(u1) +H⊤
diag∇Φ(2)(Hu1 + d)

−∇Φ(1)(u2)−H⊤
diag∇Φ(2)(Hu2 + d))⊤(u1 − u2)

(s.1)
≥ Nmu∥u1−u2∥2+

(
∇Φ(2)(Hu1+d)−∇Φ(2)(Hu2+d)

)⊤

· (Hdiag(u1−u2) +Hu1+d− (Hu2+d)−H(u1−u2))
(s.2)
≥ (Nmu +Nmyσ

2
min(H))∥u1 − u2∥2

− σmax(Hdiag −H)σmax(H)NLy∥u1 − u2∥2

=
(
Nmu+Nmyσ

2
min(H)−σmax(Hdiag−H)σmax(H)NLy

)
· ∥u1 − u2∥2

=(m− c)∥u1 − u2∥2,

where in (s.1), we use the strong convexity of Φ(1)(u)
and reorganize the terms. The strong convexity and the
smoothness of Φ(2)(y) are utilized in (s.2).

B. Proof of Theorem 4.1

The sub-optimality of the input u at time step k+1 satisfies

∥uk+1−u∗∥ = ∥uk−u∗−η
(
∇Φ̃(uk)−(H⊤−Hdiag)

· (∇Φ(2)(yk)−∇Φ(2)(y∗) +∇Φ(2)(y∗))
)
∥

(s.1)
≤ ∥uk − u∗ − η∇Φ̃(uk)∥+η∥(H⊤−Hdiag)∇Φ(2)(y∗)∥
+ ησmax(H

⊤ −Hdiag)NLyσmax(H)∥uk − u∗∥
(s.2)
≤ (

√
1− 2mη + L2η2 + cη)∥uk − u∗∥

+ η∥(H⊤ −Hdiag)∇Φ(2)(y∗)∥,

where the triangle inequality and the smoothness of Φ(2)(y)
are utilized in (s.1). In (s.2), the strong convexity and
smoothness of Φ̃(u) are used to bound ∥uk−u∗−η∇Φ̃(uk)∥.
After reorganizing the terms, we obtain the above bound.
Telescoping the inequality (s.2), we finished the proof with

∥uk−u∗∥ ≤ ρk∥u0−u∗∥+η∥(H⊤−Hdiag)∇Φ(2)(y∗)∥
k−1∑
j=0

ρj ,

where ρ is defined as in Theorem 4.1.

C. Proof of Theorem 4.2

Let (ũk)k∈N and η̃ be the sequence of the inputs and the
step size of the centralized controller (4), respectively. Then,

∥ũk+1−u∞∥2 = ∥ũk − u∞∥2

− 2η̃∇Φ̃(ũk)
⊤(ũk − u∞) + η̃2∥∇Φ̃(ũk)∥2
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(s.1)
≤ (1− 2mη̃ + L2η̃2)∥ũk − u∞∥2

+ 2η̃
(
(H⊤ −Hdiag)∇Φ(2)(y∞)

)⊤

· (η̃(∇Φ̃(ũk)−∇Φ̃(u∞))− (ũk − u∞))

+ η̃2∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2
(s.2)
≤ (1− 2mη̃ + L2η̃2)∥ũk − u∞∥2

+ η̃∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2

+ η̃∥η̃(∇Φ̃(ũk)−∇Φ̃(u∞))− (ũk − u∞)∥2

+ η̃2∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2
(s.3)
= (1− 2mη̃ + L2η̃2)∥ũk − u∞∥2

+ η̃(∥η̃(∇Φ̃(ũk)−∇Φ̃(u∞))∥2

−2η̃(∇Φ̃(ũk)−∇Φ̃(u∞))⊤(ũk−u∞)+∥ũk−u∞∥2)
+ (η̃2 + η̃)∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2

(s.4)
≤ (1− 2mη̃ + L2η̃2)(η̃ + 1)∥ũk − u∞∥2

+ (η̃2 + η̃)∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2,

where in (s.1), we rewrite ∇Φ̃(ũk) = ∇Φ̃(ũk)−∇Φ̃(u∞)+
∇Φ̃(u∞) − ∇∗Φ̃(u∞) and reorganize the terms. In (s.2),
we use the inequality 2a⊤b ≤ ∥a∥2 + ∥b∥2,∀a, b. In (s.3),
we expand ∥η̃(∇Φ̃(ũk) − ∇Φ̃(u∞)) − (ũk − u∞)∥2 and
reorganize the terms. In (s.4), we use the strong convexity
and smoothness of Φ̃(u). By recursively using the above
formula for 0, 1, · · · , k, we obtain

∥ũk−u∞∥2 ≤ ρ̃k∥u0 − u∞∥2

+ (η̃ + η̃2)∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2
k−1∑
j=0

ρ̃j ,

(15)

where ρ̃ = (1− 2mη̃ + L2η̃2)(η̃ + 1), and ρ̃ < 1 for a suf-
ficiently small η̃ > 0 provided that 2m > 1. For every such
η̃, (15) always holds, and the left-hand side of (15) remains
the same. By analyzing the derivative of the right-hand side
of (15) with respect to η̃, we observe that it is monotonically
increasing for η̃ > 0. When η̃ → 0, we obtain the smallest
possible upper bound ∥(H⊤ −Hdiag)∇Φ(2)(y∞)∥2 1

2m−1 .

D. Proof of Theorem 4.3

To start, we define

φ1 = ∇Φ(1)(uk) +Hdiag∇Φ(2)(yk),

φ2 = xk −Hxuk.

Then, we provide a preparatory lemma that presents some
useful technical results. Note that y∞ ≜ Hu∞ + d.

Lemma 4.1: The following inequalities hold:
1) ∥xk+1 − Hxuk+1∥2 ≤ η2φ⊤

1 H
⊤
x Hxφ1 +

2ησmax(H
⊤
x A)∥φ1∥∥φ2∥+ φ⊤

2 A
⊤Aφ2;

2) φ⊤
1 (uk − u∞) ≥ Nmu∥uk − u∞∥2 + Nmy∥yk −

y∞∥−NLyσmax(Hdiag −H)∥yk − y∞∥∥uk − u∞∥−
NLyσmax(C)∥yk − y∞∥∥φ2∥;

3) ∥yk − y∞∥ ≤ σmax(C)∥φ2∥+ σmax(H)∥uk − u∞∥;
4) ∥φ1∥ ≤ (NLu +NLyσmax(Hdiag)σmax(H)) ∥uk −

u∞∥+NLyσmax(Hdiag)σmax(C)∥φ2∥.
Proof: The proof can be found in our online report [25].

Now we are ready to prove Theorem 4.3. Consider∥∥∥∥xk+1 −Hxuk+1

uk+1 − u∞

∥∥∥∥2 = ∥xk+1−Hxuk+1∥2 + ∥uk+1−u∞∥2

= ∥xk+1 −Hxuk+1∥2 + ∥uk − u∞∥2

− 2ηφ⊤
1 (uk − u∞) + η2∥φ1∥2.

By using the bounds derived in Lemma 4.1, we obtain∥∥∥∥xk+1 −Hxuk+1

uk+1 − u∞

∥∥∥∥2 ≤ λmax(Ξ)

∥∥∥∥xk −Hxuk

uk − u∞

∥∥∥∥2 , (16)

where Ξ =

[
λmax(A

⊤A) + a3η
2 + a4η a1η

2 + a2η
a1η

2 + a2η 1−m′η + L′η2

]
and the parameters therein are defined as

m′ =2(Nmu +Nmyσ
2
min(H)

−NLyσmax(Hdiag −H)σmax(H)),

L′ =λmax(H
⊤
x Hx+I)(NLu+NLyσmax(Hdiag)σmax(H))2,

a1 =λmax(H
⊤
x Hx + I)NLyσmax(Hdiag)σmax(C)

· (NLu +NLyσmax(Hdiag)σmax(H)),

a2 =λmax(H
⊤
x A)(NLu +NLyσmax(Hdiag)σmax(H))

+ 2Nmyσmax(C)σmax(H)

+NLyσmax(C)(σmax(Hdiag −H) + σmax(H)),

a3 =λmax(H
⊤
x Hx + I)N2L2

yσ
2
max(Hdiag)σ

2
max(C),

a4 =2(λmax(H
⊤
x A)σmax(Hdiag)σmax(C)

− (Nmyσ
2
min(C)−NLyσ

2
max(C))).

Note that if m′ > 0 and η < m′

L′ , by Schur’s complement,
the sufficient and necessary condition for λmax(Ξ) < 1 is

(a3m
′ +2a1a2 − a4L

′)η2 + (a4m
′ + a22 + tL′)η− tm′ < 0,

where t = 1 − λmax(A
⊤A). The previous inequality yields

the following stability bounds

η <

{
η∗1 if a3m′ + 2a1a2 − a4L

′ > 0,

η∗2 if a3m′ + 2a1a2 − a4L
′ ≤ 0,

where η∗1 and η∗2 are defined as

η
∗
1 =

√
(a4m′+a2

2+tL′)2+4tm′(a3m′+2a1a2−a4L′)−(a4m′+a2
2+tL′)

2(a3m′+2a1a2−a4L′)
,

η
∗
2 =

tm′

a4m′ + a2
2 + tL′

.

The proof is finished by recursively applying (16).
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