
Robust Stability for Multiagent Systems with
Spatio-Temporally Correlated Packet Loss

Christian Hespe and Adwait Datar and Herbert Werner

Abstract— A problem with considering correlations in the
analysis of multiagent system with stochastic packet loss is that
they induce dependencies between agents that are otherwise
decoupled, preventing the application of decomposition methods
required for efficient evaluation. To circumvent that issue,
this paper is proposing an approach based on analysing
sets of networks with independent communication links, only
considering the correlations in an implicit fashion. Combining
ideas from the robust stabilization of Markov jump linear
systems with recently proposed techniques for analysing packet
loss in multiagent systems, we obtain a linear matrix inequality
based stability condition which is independent of the number of
agents. The main result is that the set of stabilized probability
distributions has non-empty interior such that small correlations
cannot lead to instability, even though only distributions of
independent links were analysed. Moreover, two examples are
provided to demonstrate the applicability of the results to
practically relevant scenarios.

I. INTRODUCTION

Interconnected systems and multiagent systems (MASs)
in particular have spurred a lot of interest in the last two
decades since they are uniquely suited to solve many large-
scale control problems. Whereas centralized solutions fail to
scale beyond a certain size, the distributed or decentralized
nature of interconnected systems allows for an efficient scaling
of the implementation [1].

An important aspect in the implementation of intercon-
nected systems is how the information exchange between
subsystems is handled. Especially for MASs, the choice
often falls on wireless communication networks. However,
even though wireless networks are inherently unreliable [2],
the communication aspect is neglected in many works on
MASs. For example, this is the case in the decomposable
systems framework proposed by Massioni and Verhaegen in
[3], which allows not only for scalable implementation but
also scalable system analysis and controller synthesis. Only
recently, [4] extended the framework to cover Markov jump
linear system (MJLS) and thus consider stochastic packet
loss and its detrimental effects.

Amongst the works that do consider the stochastic effects
introduced by wireless networking in MASs, one feature is a
common necessity: The need for simplifying assumptions on
the kind of packet loss the network is subject to. This is caused
by the need for some form of decoupling in the analysis in
order to handle the scale of MASs, while the most general
stochastic communication models with arbitrary correlations
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would introduce coupling between all agents. In the simplest
case, studied amongst others in [5], [6], it is assumed
that all communication links fail or succeed simultaneously,
resulting in the need for only a single random variable. For
most practical systems, this assumption is too restrictive
to be applicable, therefore other works consider a set of
independent stochastic variables, one for each edge. Often,
it is then assumed that the loss probability is homogeneous
across all communication links, e.g., in [1], [4], [7] and [8],
again limiting which system the results can be applied to.
Approaches that allow for heterogeneous probabilities are
less frequent. For example, [9] and [10] handle such cases by
introducing homogeneous bounds on the probabilities, while
[11], [12] restrict the analysis to directed tree graphs.

The works above have in common that they rely on
either independence or full correlation of the packet loss on
individual links. Two approaches that explicitly consider the
probability distribution of the whole communication network
are [6] and [13]. However, both rely on constructing the
transition probability matrix (TPM) in their analysis, which is
prohibitively expensive for large MASs, since the TPM is in
general a 2m×2m matrix for a MAS with m communication
links. In contrast, the current paper proposes to analyse
a collection of probability distribution with independent
communication links, neglecting the correlations in the
network at first. For this kind of packet loss distribution, we
can combine the analysis results for MJLSs with uncertain
TPM presented in [14], which by themselves are unsuitable
for systems with many modes, with the recently proposed
approach of [10] to obtain scalable analysis conditions for a
subset of MJLS called decomposable MJLS that is suitable
for many MASs. The key result is shown afterwards, by
proving that the considered kind of uncorrelated packet
loss distributions are in the interior of the uncertainty set
relative to all possible distributions including those with
correlations and, as such, there cannot exist small correlations
that induce instability. In this way, we can take advantage
of the excellent scalability of the results presented in [10]
even though the underlying distribution does not necessarily
feature independent links.

After the introduction, Section II defines the system and
packet loss model considered in this paper. The main robust
stability test is derived in Section III, while Section IV is
proving geometric properties of the involved uncertainty set.
To demonstrate the applicability of the proposed results,
Section V is discussing two examples, before Section VI
concludes the paper with closing remarks.
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A. Contribution

The contribution of this paper is a linear matrix inequality
(LMI) based sufficient condition for distributionally robust
stability of MASs subject to spatio-temporal correlations
between communication links. It consists of two main
components:

1) The stability test in Theorem 3 in terms of a set of
uncertain TPMs, and

2) a characterization of the uncertainty set in Theorem 6,
proving that it contains the considered kind of indepen-
dent distributions in its relative interior.

An important feature is the independence of its computational
complexity from the number of agents, enabling analysis of
arbitrarily large MASs.

B. Definitions & Notation

We use IN and 1N to denote the N ×N identity matrix
and N -dimensional vector of ones, respectively. A⊗B is the
Kronecker product of A and B. M ≻ 0 and M ≺ 0 mean
that the matrix M is positive or negative definite and ∗ is
used to indicate entries required for symmetry. A matrix is
row-stochastic if its entries are non-negative and its rows sum
up to one. Furthermore, for a set M, convM denotes its
convex hull and relintM its relative interior.

A graph G := (V, E) is composed of the vertex set
V := {1, 2, . . . , N} and the edge set E ⊂ V × V . In this
paper, we consider only undirected graphs such that an edge
eij ≡ eji := {i, j} is an unordered pair of vertices and is
seen as a bidirectional connection between vertices i and j.
Furthermore, we assume no self loops exist, i.e., eii /∈ E .
Finally, the Laplacian is defined as L(G) = [lij(G)] with

lij(G) :=


−1 if i ̸= j and eij ∈ E ,
0 if i ̸= j and eij /∈ E ,
−
∑

l ̸=ilil(G) if i = j.

II. MULTIAGENT SYSTEMS WITH PACKET LOSS

A. System & Packet Loss Model

Consider a MAS with N ≥ 2 agents that are exchanging
information over an unreliable communication network, which
we are modelling using tools from graph theory. The nominal
interconnection topology, i.e., if no information is lost,
is captured by the graph G0 := (V, E0) with one-to-one
correspondence between vertices and agents. We define
m := |E0| and furthermore introduce a stochastic process
{θk(eij)} for every edge eij ∈ E0 that takes values in {0, 1}
and governs the reception and loss of information. At step k,
θk(e

ij) = 1 means a packet is successfully transmitted over
eij and correspondingly data is lost for θk(eij) = 0.

By defining a function ν : E0 → {1, 2, . . . ,m} that
associates every eij ∈ E0 with a unique integer, we combine
all {θk} into a single stochastic process

σk = 1 +
∑

eij∈E0

θk(e
ij)2m−ν(eij) (1)

with σk ∈ K :=
{
1, 2, . . . , 2m

}
. For modelling purposes, we

then make the following assumption:

1 2 3
e12 e23

Fig. 1. Exemplary multiagent system with three agents and two links

Assumption 1. The stochastic process {σk} is a homoge-
neous Markov chain, i.e., there exist tij ≥ 0 such that

P(σk+1 = j | σk = i) = tij

for all k ≥ 0 and i, j ∈ K, where
∑

l∈K til = 1 for all i ∈ K.

In addition to the nominal graph G0, the packet loss is
inducing graphs Gi = (V, Ei) with i ∈ K, where Ei ⊆ E0 is
the subset of edges that successfully transmit information in
mode i. Combined with the Markov chain {σk}, these graphs
are determining the dynamics of the MAS at a particular time
step k. This behaviour is described by the MJLS

xk+1 = Aσk
xk, (2)

where xk ∈ RNnx is the dynamic state and the system matrix
is switched amongst {Ai ∈ RNnx×Nnx | i ∈ K} (cf., [15]).
More specifically, this paper is focused on systems that fit into
the decomposable systems framework proposed by Massioni
and Verhaegen in [3] and extended to MJLS in [4]. Therefore,
we assume that the system matrix is structured as

Ai = IN ⊗Ad + L(Gi)⊗Ac, (3)

where Ac and Ad are the coupled and decoupled component,
respectively, and the Laplacian takes the role of the pattern
matrix. In the following, we will be using the shorthand
notation L0 := L(G0) and Li := L(Gi) if it is clear from
context which graph the Laplacian corresponds to.

B. Independent Packet Loss Distributions

In contrast to most existing work on MASs with stochastic
packet loss, we make no a priori assumption on the spatial
or temporal independence of {θk(eij)} except for jointly
forming a homogeneous Markov chain. However, analysing
the system with a packet loss model this general is com-
putationally intractable even for moderately sized MAS [4].
Instead, we propose to use the approach recently introduced
in [10] to analyse the MAS with a simplified, spatially
independent packet loss model and show that these results
are distributionally robust, including against spatio-temporal
correlation.

As an example, consider the MAS of three agents shown
in Fig. 1. By the packet loss model introduced in the previous
subsection, we consider the joint probability distribution
of θk(e

12) and θk(e
23) which forms the three-dimensional

simplex (one dimension is lost due to the constraint that the
joint probabilities have to sum to one) . If, instead, we would
assume independence of θk(e12) and θk(e

23), we obtain
P(θk(e12) = 0, θk(e

23) = 0)
P(θk(e12) = 0, θk(e

23) = 1)
P(θk(e12) = 1, θk(e

23) = 0)
P(θk(e12) = 1, θk(e

23) = 1)

 =


(1− p12)(1− p23)

(1− p12)p23

p12(1− p23)
p12p23
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with pij := P
(
θk(e

ij) = 1
)

and are thus left with only
two degrees of freedom. This independence model thus
covers a two-dimensional surface embedded in the three-
dimensional simplex [16, Fig. 1]. However, we argue that by
robustly stabilizing a sufficiently large number of distributions
with independent θk(e12) and θk(e

23), we obtain a stability
guarantee that extends to distributions featuring spatial
correlation. This statement is made precise in Section IV.

III. UNCERTAIN TRANSITION PROBABILITIES

A. Distributionally Robust MJLS Analysis

Suppose now that the transition probabilities are not known
precisely, but that the TPM Γ = [tij ] belongs to the set

Γ :=

{
Γ ∈ Rm×m

∣∣∣∣∣ Γ =

nΓ∑
r=1

αrΓ
(r), α ∈ SnΓ

}
, (4)

where Sn is the unit simplex given by

Sn :=
{
α ∈ Rn

∣∣ ∑n
i=1 αi = 1, αi ≥ 0

}
(5)

and Γ(r) =
[
t
(r)
ij

]
are known row-stochastic matrices. The

TPMs in Γ are thus parametrized by α ∈ SnΓ
and we

write Γ(α) – and accordingly tij(α) – to refer to the TPM
corresponding to a specific value of α.

Based on the approach in [14], we want to study under
which conditions the MJLS is stable for all admissible TPMs.
First, we define stability for the MJLS:

Definition 1 (Robust Mean-Square Stability). The MJLS (2)
is said to be robustly mean-square stable if

lim
k→∞

E[xk] = 0 and lim
k→∞

E
[
∥xk∥2

]
= 0

for all x0 ∈ Rn, σ0 ∈ K and Γ ∈ Γ.

The results of [14] already include an LMI based test for
robust mean-square stability of the MJLS (2). However, for
our purpose an equivalent form of their result is more suitable,
which we state next:

Theorem 1. The MJLS (2) is robustly mean-square stable if
and only if there exist functions Xi(α) ≻ 0 such that∑

j∈K
tij(α)A

⊤
j Xj(α)Aj −Xi(α) ≺ 0 (6)

holds for all i ∈ K and α ∈ SnΓ
.

Proof. The equivalence to [14, Lemma 3] is established using
the procedure from [17]. See [18] for details.

The stability test in Theorem 1 is an infinite-dimensional
feasibility problem as the variables are arbitrary matrix-valued
functions and the constraints have to be satisfied for all
α ∈ SnΓ . The problem therefore has to be simplified to be
numerically tractable, which we achieve by restricting the
search to constant matrices.

Corollary 2. The MJLS (2) is robustly mean-square stable
if there exist Xi ≻ 0 such that∑

j∈K
t
(r)
ij A⊤

j XjAj −Xi ≺ 0 (7)

holds for all i ∈ K and r ∈ {1, . . . , nΓ}.

Proof. From (4), it follows that tij(α) =
∑nΓ

r=1 αrt
(r)
ij .

Substituting into (6), we obtain

∑
j∈K

(
nΓ∑
r=1

αrt
(r)
ij

)
A⊤

j XjAj −Xi

=

nΓ∑
r=1

αr

(∑
j∈K

t
(r)
ij A⊤

j XjAj −Xi

)
≺ 0,

where we have used that Xi =
∑nΓ

r=1 αrXi and the inequality
is implied by (7) for all r ∈ {1, . . . , nΓ}.

Remark. Restricting Corollary 2 to constant matrices is a par-
ticularly simple but conservative choice. A less conservative
reformulation is obtained in [14] by allowing Xi(α) to be
homogeneous polynomials and applying Pólya relaxations of
increasing order. However, these reformulations do not scale
well to systems with large nΓ, which will be the case for the
MAS considered in this paper.

B. Spatially Independent Vertices

Corollary 2 shows that sufficient stability conditions can
be obtained by testing only the vertices of Γ. Nonetheless,
testing (6) requires enumerating j ∈ K, which is intractable
for MAS with more than a few agents because |K| grows
exponentially with the number of edges. We therefore take
the approach of carefully choosing the vertices Γ(r) in a way
such that they can be efficiently analysed.

The first simplification is to restrict the matrix variables to
be identical and block-repeated, i.e., Xi = Xj = IN⊗X̃ . Due
to this change, we can take advantage of the mixed-product
property of the Kronecker product [19] to obtain

IN ⊗
(
Ad⊤X̃Ad − X̃

)
+
(∑

j∈K
t
(r)
ij L2

j

)
⊗ (Ac⊤X̃Ac

)
+
(∑

j∈K
t
(r)
ij Lj

)
⊗
(
Ad⊤X̃Ac +Ac⊤X̃Ad

)
≺ 0

(8)

as a sufficient condition for (7). Notably, the LMI constraints
for different i ∈ K and r ∈ {1, . . . , nΓ} are now decoupled
(except for the shared variable X̃), such that it is sufficient
to consider Γ(r) row by row.

The second and most important step in the process of
simplifying the analysis is to assume that, in the probability
distributions described by the vertices Γ(r), the processes
{θk(eij)} corresponding to different edges eij and ei

′j′

are independent. This implies that each row of Γ(r) is a
probability vector that can be written as

f(p) :=

[
1− p1
p1

]
⊗
[
1− p2
p2

]
⊗ · · · ⊗

[
1− pm
pm

]
(9)

for some vector p ∈ Pm := [0, 1]m. Now, chose two constants
0 ≤ ρl ≤ ρu ≤ 1 and define the set

t̂m :=
{
t = f(p)

∣∣ p ∈ Pm, pi ∈ {ρl, ρu}
}
⊂ S2m
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of probability vectors in which each edge has either proba-
bility ρl or ρu of transmitting successfully. Combining these
vectors into matrices, we obtain a set of TPMs

Γ̂m :=
{
Γ =

[
t1 t2 . . . t2m

]⊤ ∣∣∣ ti ∈ t̂m

}
⊂ Tm

describing temporally but not spatially correlated packet loss,
where Tm can be identified with S2m × · · · × S2m with 2m

factors and is the set of all 2m × 2m row-stochastic matrices.
Following next is the main stability condition of this paper.

It relies on treating the expectation and variance of Lσk
as

an uncertainty, captured edgewise by the uncertainty set

∆ :=


a 0
b 0
0 a

 ∣∣∣∣∣∣
a, b ≥ 0

a2 ∈ [ρl, ρu]

b2 = 1− a2


using the full-block S-procedure [20]. The result is a variant
of the approach proposed in [10] for analysing packet loss
in MAS without spatial correlation.

Theorem 3. The MJLS (2) is robustly mean-square stable
for all Γ ∈ conv Γ̂m if there exist X̃ ≻ 0 and

P ∈

{
P = P⊤

∣∣∣∣∣
[
∗
∗

]⊤
P

[
∆⊗ Inx

I2nx

]
≻ 0 ∀∆ ∈ ∆

}
(10)

such that the LMIs

Ad⊤X̃Ad − X̃ ≺ 0 (11a)

∗
∗
∗
∗
∗
∗



⊤
−X̃

X̃

2X̃

P





Inx 0

Ad
√
λI1

0 I2
0 I3nx

0 I3√
λAc 0


≺ 0 (11b)

hold for λ ∈ {λ2, λN}, where λ2 and λN are the smallest
and largest non-zero eigenvalue of L0, respectively, and Ij
is the jth block-row of I3 ⊗ Inx

.

Proof. A detailed derivation of a related result can be found
in [10]. The idea is to use the full-block S-procedure to ensure
X̃ is a solution of (8) for all probability vectors t ∈ t̂m (with
t
(r)
ij replaced by tj). Imposing block-repeated structure into

both the Lyapunov matrix and the multiplier lets us take
advantage of the decomposable systems framework to obtain
constraints with the size of a single agent (see [3], [4] for
details). Furthermore, due to convexity of (11b) in

√
λ, it is

sufficient to evaluate the constraint for λ2 and λN . Finally,
we invoke Corollary 2 with vertices Γ(r) ∈ Γ̂m, i.e., TPMs
that can be assembled row-wise from t ∈ t̂m, and conclude
robust mean-square stability for the polytope conv Γ̂m.

Remark. In contrast to Theorem 1 and Corollary 2, the number
of variables and constraints in Theorem 3 is constant, and
their dimensions depend on neither N , m, nor nΓ but only on
the state dimension nx. The stability test can thus be applied
to arbitrarily large MAS without scalability issues.

IV. CHARACTERISATION OF THE UNCERTAINTY SET

Even though both Theorem 1 and 3 are testing for robust
mean-square stability, the interpretation of their robustness
result is different. For Theorem 1, the set Γ of uncertain TPMs
is part of the system description, i.e., the question of robust
stability is meaningful for the MJLS only in combination
with the corresponding uncertainty set. On the other hand,
Theorem 3 is constructing the uncertainty set conv Γ̂m in a
way that is computationally favourable and up to now it is
unclear which TPMs are covered. We thus need to answer
whether stabilizing the MAS for all Γ ∈ conv Γ̂m provides
non-trivial distributional robustness or not.

We start by studying the smallest subspace that contains
t̂m and its relation to the simplex S2m . Before stating the
result, note that there always exists a 2m − 1 dimensional
affine subspace containing t̂m since |t̂m| ≤ 2m.

Lemma 4. Let ρl < ρu. There exists no affine subspace of
dimension 2m − 2 that contains t̂m.

Proof. Omitted for brevity, see [18].

Because of t̂m ⊂ S2m , Lemma 4 demonstrates that as
long as we allow for some uncertainty in the probability,
i.e., ρl ̸= ρu, the smallest affine subspace containing S2m

is also the smallest subspace containing t̂m. Intuitively, this
means the uncertainty model provided by t̂m is rich enough
to describe the relevant perturbed probability vectors.

Building upon this result, we consider not just individual
probabilities but intervals of probabilities. It is thus useful to
apply f to whole sets, where with a slight abuse of notation
we use f(M) := {f(p) |p ∈ M} for sets M ⊆ Pm. We can
then obtain a useful identity for the function f :

Definition 2. A point p in a convex set M is said to be an
extreme point of M if there exist no p′, p′′ ∈ M, p′ ̸= p′′

such that p = βp′ + (1 − β)p′′ with β ∈ (0, 1). We denote
the set of extreme points of M by µ(M) ⊆ M.

Lemma 5. Let B = [ρl, ρu]
m ⊂ Pm with ρl < ρu. Then f

satisfies the identity µ
(
conv f(B)

)
= f

(
µ(B)

)
.

Proof. Omitted for brevity, see [18].

Together, Lemma 4 and 5 imply that conv t̂m is a simplex
with non-empty relative interior if ρl < ρu, demonstrating
that Theorem 3 is guaranteeing stability for a non-trivial set
of distributions. The result can be strengthened by studying
which probability distributions are guaranteed to be in the
relative interior:

Theorem 6. Given p ∈ Pm and 0 ≤ ρ′l ≤ ρl < ρu ≤ ρ′u ≤ 1
with corresponding sets Γ̂m and Γ̂′

m. Then,

i) ρl = 0 and ρu = 1 imply conv Γ̂m = Tm,
ii) ρ′l < ρl or ρu < ρ′u imply conv Γ̂m ⊂ conv Γ̂′

m, and
iii) p ∈ (ρl, ρu)

m implies f(p)1⊤
2m ∈ relint conv Γ̂m.

Proof. Because of conv(A × B) = conv(A) × conv(B)
and relint(A × B) = relint(A) × relint(B) [21], we
can reduce claims on conv Γ̂m to conv t̂m. Furthermore,
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p1

p2

ρl ρu

ρl

ρu

v∗

v1

F̄

F

F ′
p

(a) Uncertainty set in the
edge probabilities.

f(F ′)
f(p)

F

f(F̄ )

f(F )

f(v∗)

f(v1)

(b) Projected view of the probability
vectors mapped by f .

Fig. 2. Visualization of the points and sets introduced in the proof of
Theorem 6, before and after being mapped by f . The four dimensional
probability vectors are projected orthogonally onto R3.

Lemma 5 with t̂m = f
(
µ([ρl, ρu]

m)
)

imply that conv t̂m =
conv f

(
[ρl, ρu]

m
)
.

i) With ρl = 0 and ρu = 1, we have conv t̂m = S2m .
ii) From the assumptions, it follows that [ρl, ρu] ⊂ [ρ′l, ρ

′
u]

and that both have non-empty interior. Thus Lemma 5
implies conv f

(
[ρl, ρu]

m
)

̸= conv f
(
[ρ′l, ρ

′
u]

m
)
. We

conclude f
(
[ρl, ρu]

m
)
⊂ f

(
[ρ′l, ρ

′
u]

m
)

from injectivity
of f and therefore conv t̂m ⊂ conv f

(
[ρ′l, ρ

′
u]

m
)
.

iii) We have to show f(p) ∈ relint conv t̂m and proceed by
induction. With m = 1, f is affine in p. By assumption,
there thus exists a β ∈ (0, 1) such that

f(p) = f
(
βρl + (1− β)ρu

)
= βf(ρl) + (1− β)f(ρu)

and therefore f(p) is in the relative interior.
Next, assume the statement holds for some m ≥ 1 and
consider the problem for m + 1. From the hypercube
[ρl, ρu]

m+1 ⊆ Pm+1, choose an arbitrary pair of
opposing facets F and F̄ and in addition a vertex
v∗ ∈ µ(F̄ ). We denote by V ⊂ µ(F ) × µ(F̄ ) the 2m

pairs of vertices (v1, v2) such that v1v2 is an edge of
[ρl, ρu]

m+1, where v1v2 is the line segment between v1
and v2. Finally, introduce F := conv

(
t̂m+1 \ {f(v∗)}

)
,

which by appropriate choice of v∗ can describe all
facets of the simplex conv t̂m+1 that contain f

(
µ(F )

)
.

A visualization of the points and sets can be found in
Fig. 2. By construction, f(v∗) /∈ F and there exists a
unique v1 ∈ µ(F ) such that (v1, v∗) ∈ V . Since v1v2 is
axis-aligned for all (v1, v2) ∈ V , we thus have

f
(
βv1 + (1− β)v∗

)
= βf(v1) + (1− β)f(v∗) /∈ F

for all β ∈ [0, 1). Now, consider β′ ∈ (0, 1) such that

p ∈ F ′ := conv
{
β′v1 + (1− β′)v2

∣∣ (v1, v2) ∈ V
}
,

where β′ is guaranteed to exist by assumption. Then
p ∈ relintF ′, which by the induction hypothesis implies
f(p) ∈ relint conv f(F ′). On the other hand, it follows
from f

(
β′v1+(1−β′)v∗

)
/∈ F that f

(
µ(F ′)

)
̸⊂ F and

therefore, because the choice of v∗ was arbitrary, there
is no facet that contains f

(
µ(F ′)

)
. We conclude that

f(p) ∈ relint conv f(F ′) ⊂ relint conv t̂m+1

because conv f(F ′) is not entirely contained in the rela-
tive boundary of conv t̂m+1 [22, Corollary 6.5.2].

Theorem 6 proves an important property of the uncertainty
model: For probability distributions of independent links with
probability within (ρl, ρu), it is guaranteed that there exists
no small perturbation pushing them out of the considered
uncertainty set conv Γ̂m. Since the smallest affine subspaces
containing Γ̂m and Tm are identical by Lemma 4, this includes
spatio-temporal correlations. Remarkably, this is the case even
though no dependent links are considered in the construction
of the sets t̂m and Γ̂m. However, no quantification of the
robustness is available, i.e., there are no bounds on the least
amount of robustness this result provides.

V. APPLICATION EXAMPLES

To demonstrate the applicability of the proposed results,
this section is discussing two examples.

A. Convergence of First-Order Consensus

The first example applies Theorem 3 to the first-order
consensus problem (cf., [23]). Therefore, we consider a set
of N integrators with state xi

k ∈ R following the difference
equation

xi
k+1 = xi

k + ui
k.

The agents have the shared goal of reaching agreement
asymptotically and apply the consensus protocol

ui
k = κ

∑
j∈Ni

θk(e
ij)
(
xj
k − xi

k

)
with gain κ > 0, where Ni := {j ∈ V | eij ∈ E0} is the
set of neighbours of agent i. Recall that we only consider
undirected graphs, i.e., eij = eji and thus θk(e

ij) = θk(e
ji).

By stacking the states as xk = [x1
k, . . . , x

N
k ]⊤, the consen-

sus problem can be formulated in terms of the MJLS (2) as
xk+1 = (IN−κLσk

)xk, which can be decomposed to Ad = 1
and Ac = −κ. Furthermore, introduce Π := IN− 1

N 1N1⊤
N as

the projection onto the disagreement space, i.e., the orthogonal
complement to the subspace spanned by 1N . This leads to
the following guarantee on the convergence of the agents:

Proposition 7. Let G0 be connected, 0 < κ < 2
λN

, and
0 < ρl ≤ ρu = 1, where λN is the largest eigenvalue of L0.
Then the first-order agents applying the consensus protocol
satisfy

lim
k→∞

E
[
∥Πxk∥2

]
= 0

for all Γ ∈ Γ̂m and all initial conditions x0, and σ0.

Proof. The result is shown by explicitly construction a
solution X ≻ 0 and P to (10) and (11b) that is valid for all
ρl > 0. A detailed construction can be found in [18].

Proposition 7 establishes that applying the consensus pro-
tocol leads to the agents asymptotically reaching agreement
under the same conditions as with ideal communication [23]
if every link has a non-zero chance to transmit. Similar
statements have been reported in [1, Chapter 5] and [9], rely-
ing however on the independence of the transmissions. This
demonstrates that Theorem 3 can be used to obtain stability
guarantees for broad ranges of probability distributions.
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TABLE I
SMALLEST PROBABILITY INTERVALS SUCH THAT THE TPM IS

CONTAINED IN Γ̂m FOR SIX PLATOONING SCENARIOS FROM [24]

Scenario Probability Interval

Traffic Density IPG in ms ρl ρu ∆ρ

Low 0 – 100 0.23 0.97 0.74
Low 200 – 300 0.18 0.68 0.50
Medium 0 – 100 0.23 0.92 0.69
Medium 200 – 300 0.11 0.56 0.45
High 0 – 100 0.34 0.98 0.64
High 200 – 300 0.13 0.57 0.45

B. Fitting Simulated Traffic Communication Data

The second example is concerned with demonstrating
that the uncertainty set conv Γ̂m not only has the abstract
properties guaranteed by Theorem 6 but covers TPMs
encountered in practical applications. As our dataset, we
use the TPMs obtained in [24] through means of high-fidelity
simulations of vehicle-to-vehicle communication. We can then
fit our model to the data by utilizing that, given a TPM Γ
and an interval [ρl, ρu], Γ ∈ conv Γ̂m is equivalent to the
existence of a solution Λ ∈ R2m×2m to the linear feasibility
problem

ΛM⊤ = Γ (12a)
Λ12m = 12m (12b)

Λ ≥ 0, (12c)

where M is defined as

M :=
[
f
(
p(1)
)

f
(
p(2)
)

. . . f
(
p(2

m)
)]

,

f
(
p(i)
)

are the elements of t̂m, and (12c) is an element-wise
inequality. We can thus obtain the smallest interval [ρl, ρu]
such that Γ ∈ conv Γ̂m through iterative solutions of (12),
which we implemented using YALMIP [25].

The dataset of [24] is parametrized through two quantities,
the traffic density and the inter-packet gap (IPG), i.e., the
time between two received packets. The results of the interval
minimization are listed in Table I. The table shows that we
are able to find non-trivial intervals for all six cases, which
demonstrates that it is possible to capture TPMs of correlated
networks as convex combinations of probability distributions
consisting of independent links.

VI. CONCLUSIONS

This paper has presented a scalable condition for ro-
bust mean-square stability of networked MASs subject
to stochastic packet loss with spatio-temporal correlations.
Its main novelty is that the stability condition is derived
from distributions of independent communication links only,
leading to conditions with a computational complexity that
is independent of the number of agents. Nonetheless, it
was shown that the stabilized uncertainty set has non-
empty relative interior, providing distributional robustness. An
important question left to study is how to obtain a quantitative
measure for the robustness provided by the result, that is, an
explicit lower bound on the available robustness margin.
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