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Abstract— In this paper, we present a novel statistical conver-
gence analysis for bilinear parameter estimators. We account
for two variations of a two-stage separation technique intro-
duced by Bai [1], where the variations differ in the second
stage. It turns out for both estimators that the probability
of a large error decreases as the inverse square root of the
number of measurements. We numerically demonstrate the
estimators’ performance by solving a water leak localization
problem involving bilinear parameter estimation.

I. INTRODUCTION

This paper deals with a two-stage approach to solve a
bilinear parameter estimation problem. Bilinear equations,
that depend linearly on each of two sub-parameters, x ∈ Rr

and y ∈ Rm, however, nonlinearly on the total parameter
(x, y), are abundant throughout physics and engineering.
This type of nonlinear equation appears in various parts
of physics and engineering. Historical examples can be
found in economic models [2], fluid dynamics [3], biological
models [4], and mixture analysis in chemistry [5]. At the end
of our paper, we present an application in water distribution
system leak localization with uncertain pipe parameters.

Basic theory for systems of bilinear equations, including
a general formulation and an account for the existence of
solutions, is found in [6], [7].

When the system of bilinear equations is overdeter-
mined and inconsistent, as is the case in a noisy esti-
mation setting, least squares constitute a natural solution
approach. In the control systems literature, such a setting
arises in Hammerstein-Wiener system identification. With the
Hammerstein-Wiener problem as motivation, bilinear param-
eter estimation is treated in [1], and a two-stage algorithm is
suggested. It is shown that the two-stage algorithm estimates
converge to the true parameters.

Further analysis of the bilinear estimation problem is
conducted in [8], [9], [10], [11]. In [11], the two-stage
method from [1] is analyzed for weighted and unweighted
least squares. In [9], the convergence of an iterative alter-
native to the two-stage approach is analyzed. In [10], the
two-stage approach is compared numerically to an iterative
alternative and a third algorithm based on elimination theory.
In [8], various iterative algorithms for the bilinear parameter
estimation problem are compared numerically.

In this work, we return to the two-stage approach presented
by Bai [1]. We suggest a variation of the two-stage approach
with an alternative second stage. Our main contribution is the
convergence rates that we derive for Bai’s original two-stage
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algorithm, as well as for our variation. Our convergence rates
in probability are more explicit than the convergence results
in [1], which do not include any rate, and all other analyses
of the bilinear parameter estimation we have seen.

In water distribution systems engineering, leak localization
is an essential maintenance task. Automation of this task
using smart sensors, is an active research field. See for
example, the recent survey [12]. For a long transportation
pipe, with flow and pressure sensors at the inlet and outlet
of the pipe, it is possible to infer the leak location using
sensor measurements along with a model of the head-loss
function of the pipe, i.e., the relation between flow and
pressure drop, due to friction losses. This problem is treated
in [13]. However, uncertainty in the knowledge of the head-
loss function makes leak localization difficult. Uncertain
head-loss functions are analyzed in [14]. In that work, there
are assumed bounds for pipe parameters. Leak locations that
disagree with the model and these bounds are ruled out. An
alternative in the case of the long transport pipe in [13], under
pipe head-loss uncertainty, is to estimate the leak location
and the pipe parameters simultaneously. We model the head-
loss function so that this task takes the form of a bilinear
parameter estimation problem, as discussed above. We use
an EPANET [15] simulation of a leaky water pipe problem
to verify the convergence rates we have derived for the two-
stage approach presented by Bai [1] and for our variation of
this.

The paper is organized as follows. In Section II, we state
the bilinear parameter estimation Problem 1. In Section III,
we show how Problem 1 can be solved via a two-stage
procedure, as done in [1]. In Section IV, we propose an
alternative solution to the second stage. We show that the
probability of a large error decreases as the inverse square
root of the number of measurements. In Section V, we find
a similar convergence rate for the SVD method used for the
second stage in [1]. The probability of a large error decreases
as the inverse square root of the number of measurements
with this approach as well. In Section VI, we apply both
alternative estimators in a water leak localization scenario
with data from EPANET [15]. Finally, in Section VII, we
summarize our findings and present future research paths.

II. PROBLEM FORMULATION

In this section, we present a bilinear parameter estimation
problem, which includes the problem in [1].

We consider a set of N equations

gt = xTA(t)y + εt, t = 1, . . . , N, (1)
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where gt ∈ R, x ∈ Rr, y ∈ Rm, A(t) ∈ Rr×m, and εt ∈
R. The right-hand side of (1) is linear in x and y both.
However, it is not linear in the total parameter (x, y), It
is bilinear.The matrices A(t) describe the relation between
the parameter (x, y) and the observations gt. In [1], the
equivalent, ϕ(k), (although formulated slightly differently)
of A(t), contains transformations of the past inputs and
outputs of the Hammerstein-Wiener dynamical system. In
the current work, we do not make specific assumptions on
the origin of A(t), but take them as given. The vector ε =[
ε1 · · · εN

]T ∼ ρ is i.i.d. measurement noise, from some
distribution ρ, with expectation Eρ[εt] = 0, and variance
Eρ[ε

2
t ] = σ2, σ > 0. The noise is independent of the A(t).

It should be noted that while we use the index t, which
is common for correlated time series, we do not consider a
dynamical system, and each instance of (1) is independent
of the other.

Our problem is to estimate x and y, given g =[
g1 · · · gN

]T
and {A(t)}Nt=1. However, for every γ ∈ R\

{0}, it follows that x′TA(t)y′ = xA(t)y, where x′ = γx and
y′ = γy. Thus the parameters x and y that solve (1) are not
unique unless we add further constraints. Therefore, we will
assume a constraint xT b = 1, for a known b ∈ Rr. We note
that there are equally valid alternative constraints, such as
∥x∥ = 1, with xT1 > 0, etc. We summarize the estimation
task in Problem 1.

Problem 1: Given g =
[
g1 . . . gN

]T
and {A(t)}Nt=1,

from (1), estimate x and y, where xT b = 1.

III. OVER-PARAMETERIZATION

In this section, we show how Problem 1 can be solved via
a two-stage procedure and give a convergence rate for the
first stage.

We repeat the over-parameterization procedure in [1],
rewriting (1) as a linear equation system

g = A(x⊗ y) + ε. (2)

Here

x⊗ y =

x1y
...

xry

 = vec(yxT ) ∈ Rrm

is the Kronecker product between x and y, and

A =


a
(1)
11 . . . a

(1)
1m · · · a

(1)
r1 · · · a

(1)
rm

...
...

...
...

a
(N)
11 . . . a

(N)
1m · · · a

(N)
r1 · · · a

(N)
rm

 ,

A ∈ RN×rm, is a matrix where each row is a flat-
tened A(t), t = 1, . . . , N .

Based on the reformulated equation (2), the bilinear pa-
rameter estimation problem can be solved via a two-stage
procedure:

1) finding an estimate x̂⊗ y of x⊗ y,
2) finding estimates x̂ and ŷ of x and y through an

approximation x̂⊗ ŷ of x̂⊗ y.

Remark 1: Stage 2) above is essentially a rank-one ap-
proximation problem, where ŷx̂T approximates

ŷxT := vec−1(x̂⊗ y)

:=
[
(x̂⊗ y)1:m · · · (x̂⊗ y)(r−1)m+1:rm

]
∈ Rm×r.

Now if both stages 1) and 2) can be solved with small
errors, then Lemma 1 ensures that x̂ and ŷ estimate x and y
with small errors.

Lemma 1: For x, x′ ∈ Rr, y, y′ ∈ Rm and δ > 0, under
the uniqueness condition xT b = x′T b = 1,

∥x′ ⊗ y′ − x⊗ y∥ < δ (3)

implies
∥y′ − y∥ < δ∥b∥. (4)

Furthermore, for δ < ∥y∥/∥b∥, (3) and (4) imply

∥x′ − x∥ < δ
1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

. (5)

Proof: We have

∥y′ − y∥ = ∥y′1− y1∥ = ∥y′x′T b− yxT b∥
≤ ∥y′x′T − yxT ∥F ∥b∥
= ∥x′ ⊗ y′ − x⊗ y∥∥b∥

Thus (3) implies (4). Now assuming (3) and (4),

∥x′ − x∥(∥y∥ − δ∥b∥) < ∥x′ − x∥(∥y∥ − ∥y − y′∥)
≤ ∥(x′ − x)∥∥y′∥
= ∥(x′ − x)⊗ y′∥
≤ ∥x′ ⊗ y′ − x⊗ y∥+ ∥x∥∥y − y′∥
< δ + δ∥x∥∥b∥.

Therefore, if δ < ∥y∥/∥b∥, (5) follows.
Remark 2: Regarding exact approximation, under xT b =

x′T b = 1, x′ ⊗ y′ = x⊗ y if and only if y′ = y, x′ = x.
We now start with stage 1) of the two-stage procedure,

which can be efficiently solved with the linear least squares
estimator.

Lemma 2: Suppose A has full column rank
(dim(range(A)) = rm). Let x̂⊗ y = A+g = (ATA)−1AT g.
Then

Eρ[x̂⊗ y] = x⊗ y,

and

Eρ[(x̂⊗ y − x⊗ y)(x̂⊗ y − x⊗ y)T ] = σ2(ATA)−1.
Lemma 2 is a standard linear least squares result, so the
proof is omitted.

We now introduce some notation to describe
how (ATA)−1 can approach zero.

Definition 1: The set {A(t)}∞t=1 is PE(c, n) (persistently
exciting of order (c, n)) if for c ∈ R, c > 0, n ∈ N and
every t ≥ 1, (A(t:t+n−1))TA(t:t+n−1) − cI ≥ 0, where ≥ 0
means positive semidefinite and

A(t:t+n−1) =


a
(t)
11 . . . a

(t)
rm

...
...

a
(t+n−1)
11 · · · a

(t+n−1)
rm

 ∈ Rn×rm,
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are rows t through t+n− 1 of A. We say that {A(t)}∞t=1 is
PE (persistently exciting) if it is PE(c, n) for some c and n.

Remark 3: In simpler terms, {A(t)}∞t=1 being PE(c, n)
implies that for every n new measurements we get a new
full column rank A(t:t+n−1). Thus the PE property says
something about the variation in {A(t)}∞t=1. In Section VI,
we will explain how we can make sure that {A(t)}∞t=1 is PE
in a water leak localization scenario.

Lemma 3: If {A(t)}∞t=1 is PE(c, n), then the smallest sin-
gular value of the full A-matrix satisfies s2min(A) ≥ c⌊N/n⌋.

Proof: We notice that

ATA =

N∑
t=1

vec((A(t))T )vec((A(t))T )T

=

⌊N/n⌋∑
k=1

(
(A(1+(k−1)n:kn))TA(1+(k−1)n:kn)

)
+ (A(⌊N/n⌋n+1:N))TA(⌊N/n⌋n+1:N).

We multiply from left and right with the unit eigenvec-
tor ξ associated with the smallest eigenvalue λmin(A

TA) =
s2min(A).

ξTATAξ ≥
⌊N/n⌋∑
k=1

ξT (A(1+(k−1)n:kn))TA(1+(k−1)n:kn)ξ

≥
⌊N/n⌋∑
k=1

cξT ξ ≥ c⌊N/n⌋

We can now give a convergence rate for the error of stage 1).
Theorem 1: If {A(t)}∞t=1 is PE(c, n), then

Eρ[∥x̂⊗ y − x⊗ y∥2] ≤ σ2rm/(c⌊N/n⌋).
Proof: Using Lemma 2, we get Eρ[∥x̂⊗ y − x ⊗

y∥2] = trace(Eρ[(x̂⊗ y − x ⊗ y)(x̂⊗ y − x ⊗ y)T ]) =
σ2trace((ATA)−1) ≤ σ2rm/s2min(A) ≤ σ2rm/(c⌊N/n⌋),
where the last part follows from Lemma 3.
According to Lemma 1 and Theorem 1, if we can solve
stage 2), we can accurately estimate x and y (assum-
ing {A}∞t=1 is PE). In Sections IV and V, we present and
show convergence for two alternative solutions to stage 2).

IV. SEPARATED SOLUTION

In this section, we present our new approach to calculate
the estimates x̂ and ŷ as an approximation x̂ ⊗ ŷ of x̂⊗ y.
The approach consists of two steps:

a) estimating y via ŷ = (bT ⊗ I)x̂⊗ y =[
b1Im · · · brIm

]
x̂⊗ y.

b) estimating x via the least squares estimator x̂ =
argminz ∥z ⊗ ŷ − x̂⊗ y∥2.

For ŷ of step a), we have a result similar to Lemma 2 and
Theorem 1.

Lemma 4: Eρ[ŷ] = y. Further, if A is PE(c, n), Eρ[∥ŷ −
y∥2] ≤ σ2∥b∥2rm2/(c⌊N/n⌋).

Proof:

Eρ[ŷ] = (bT ⊗ I)Eρ[x̂⊗ y]

= (bT ⊗ I)(x⊗ y) =

r∑
i=1

bixiy = (bTx)y = y.

For the variance, we can expand y = (bT ⊗ Im)(x⊗ y). So
ŷ − y = (bT ⊗ Im)(x̂⊗ y − x⊗ y), which gives

Eρ[(ŷ − y)(ŷ − y)T ] = (bT ⊗ Im)σ2(ATA)−1(bT ⊗ Im)T

Therefore

Eρ[∥ŷ − y∥2] = trace(Eρ[(ŷ − y)(ŷ − y)T ])

≤ σ2trace((bT ⊗ Im)T (bT ⊗ Im))

× trace((ATA)−1)

≤ σ2m∥b∥2rm/(c⌊N/n⌋)

Finding x̂ in step b) is easy. We notice that
argminz ∥z⊗ ŷ− x̂⊗ y∥2 = argminz

∑r
i=1 ∥zi

∑m
j=1 yj −∑m

j=1(x̂⊗ y)(i−1)m+j∥2 separates into one problem for
each component zi. The solution is

x̂ =
1

ŷT ŷ
(Ir ⊗ ŷT )x̂⊗ y =

1

∥ŷ∥2

ŷ
T · · · 0
...

. . .
...

0 · · · ŷT

 x̂⊗ y.

This estimator fulfills the constraint

x̂T b = bT x̂ =
1

∥ŷ∥2
[
b1 · · · br

] ŷ
T · · · 0
...

. . .
...

0 · · · ŷT

 x̂⊗ y

=
1

∥ŷ∥2
[
b1ŷ

T · · · brŷ
T
]
x̂⊗ y

=
1

∥ŷ∥2
ŷT

[
b1Im · · · brIm

]
x̂⊗ y

=
∥ŷ∥2

∥ŷ∥2
= 1.

However, x̂ does not depend linearly on ε, making it difficult
to analyze the mean and variance without auxiliary informa-
tion about the distribution ρ. Instead, we give a convergence
bound in probability.

Theorem 2: For every δ′ > 0,

Pρ(∥x̂− x∥ > δ′) ≤ σf̂(∥x∥, ∥y∥, ∥b∥,m, r, δ′)

δ′
√
c⌊N/n⌋

,

where f̂(∥x∥, ∥y∥, ∥b∥,m, r, δ′) =
√
rm(∥x∥∥b∥

√
m +

2)(1 + ∥b∥∥x∥+ δ′∥b∥)/∥y∥.
Proof: According to Lemma 1, for every δ such that

∥y∥/∥b∥ > δ > 0, if ∥x̂ ⊗ ŷ − x ⊗ y∥ < δ then ∥x̂ − x∥ <

δ
1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

. That is,

Pρ

(
∥x̂− x∥ > δ

1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

)
≤ Pρ(∥x̂⊗ ŷ − x⊗ y∥ > δ).
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We will upper bound this probability.

∥x̂⊗ ŷ − x⊗ y∥ ≤ ∥x̂⊗ ŷ − x̂⊗ y∥+ ∥x̂⊗ y − x⊗ y∥
≤ ∥x⊗ ŷ − x̂⊗ y∥+ ∥x̂⊗ y − x⊗ y∥
= ∥x∥∥ŷ − y∥+ 2∥x̂⊗ y − x⊗ y∥.

Therefore

Pρ(∥x̂⊗ ŷ − x⊗ y∥ > δ)

≤ Pρ(∥x∥∥ŷ − y∥+ 2∥x̂⊗ y − x⊗ y∥ > δ)

≤ ∥x∥Eρ[∥ŷ − y∥] + 2Eρ[∥x̂⊗ y − x⊗ y∥]
δ

≤
∥x∥

√
Eρ[∥ŷ − y∥2] + 2

√
Eρ[∥x̂⊗ y − x⊗ y∥2]

δ
.

Using Theorem 1 and Lemma 4 we get

Pρ(∥x̂− x∥ > δ
1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

)

≤
∥x∥

√
σ2∥b∥2rm2/(c⌊N/n⌋) + 2

√
σ2rm/(c⌊N/n⌋)

δ
.

Now if we let δ′ = δ
1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

, we get δ =

δ′
∥y∥

1 + ∥b∥∥x∥+ δ′∥b∥
, and the result follows. What re-

mains to show is that δ < ∥y∥/∥b∥ for every δ′ >

0. To this end, see that δ∥b∥ = δ′
∥y∥

1/∥b∥+ ∥x∥+ δ′
=

∥y∥
1/(δ′∥b∥) + ∥x∥/δ′ + 1

< ∥y∥.

Remark 4: The key element in the proof of Theorem 2
is noticing that the least square property of x̂ gives ∥x̂ ⊗
ŷ − x̂⊗ y∥ ≤ ∥x⊗ ŷ − x̂⊗ y∥. The SVD estimators in the
coming Section V are (x̃, ỹ) = argminz,w ∥z⊗w− x̂⊗ y∥2.
Therefore ∥x̃ ⊗ ỹ − x̂⊗ y∥ ≤ ∥x̂ ⊗ ŷ − x̂⊗ y∥ and so the
bounds we derive there (Theorem 3) are necessarily tighter.
However, as we will see in Example 1, this does not mean
that ∥x̃− x∥ ≤ ∥x̂− x∥ always.

V. SVD SOLUTION

In this section, we present the SVD solution to the
approximation stage 2) that Bai [1] uses. While there is a
convergence proof (Theorem 2.1) in the original paper, no
specific rate is given. We give such a rate in our Theorem 3.

The estimators in this section are based on the SVD
of ŷxT . In particular, we let x̃ = v̂1/v̂

T
t b and ỹ = û1v̂

T
t b,

be the singular vectors associated with the largest singular
value ŝ1, where

∑p
i=1 ŝiûiv̂

T
i = ŷxT (p = min(m, r),

ŝ1 ≥ ŝ2 ≥ . . . ŝp ≥ 0) is the SVD.
We know from the proof of Lemma 2 that x̂⊗ y =

x ⊗ y + A+ε. Therefore ŷxT = yxT + vec−1(A+ε).
We let

∑p
i=1 s

(ε)
i u

(ε)
i v

(ε)T
i = vec−1(A+ε) be the SVD

of the error vec−1(A+ε). Lemma 5 relates ŝ2, . . . , ŝp
and s

(ε)
1 , . . . , s

(ε)
p .

Lemma 5: ŝi ≤ s
(ε)
i−1, i = 2, . . . p. Therefore ∥x̃ ⊗ ỹ −

x̂⊗ y∥ ≤ trace(A+εεT (A+)T ).

Proof: We rewrite yxT =
∑p

i=1 siuiv
T
i , where

clearly s1 = ∥x∥∥y∥, u1 = y/∥y∥, v = x/∥x∥, si = 0, i =
2, . . . , p. Assume for the rest of the proof that i ≥ 2. We let

V2 = span({vj}rj=2),

V
(ε)
i−1 = span({v(ε)j }rj=i−1).

Then dim(V2 ∩ V
(ε)
i−1) ≥ r − i+ 1. Therefore

ŝi = min
(V̂i∈Rr:dim(V̂i)=r−i+1)

max
(v̂∈V̂i:∥v̂∥=1)

∥ŷxT v̂∥

≤ max
v̂∈(V2∩V

(ε)
i−1):∥v̂∥=1

∥ŷxT v̂∥

≤ max
v̂∈(V2∩V

(ε)
i−1):∥v̂∥=1

∥(yxT + vec−1(A+ε))v̂∥

≤ max
v̂∈(V2∩V

(ε)
i−1):∥v̂∥=1

(∥yxT v̂∥+ ∥vec−1(A+ε)v̂∥)

≤ max
v∈V2:∥v∥=1

∥yxT v̂∥

+
(ε)
max

v(ε)∈Vi−1:∥v(ε)∥=1
∥vec−1(A+ε)v̂∥

= s2 + s
(ε)
i−1 = 0 + s

(ε)
i−1.

Using this first result, we get ∥x̃ ⊗ ỹ − x̂⊗ y∥ = ∥ỹx̃T −
ŷxT ∥2F = ∥ŝ1û1v̂

T
1 −

∑p
i=1 ŝiûiv̂

T
i ∥ = ∥

∑p
i=2 ŝiûiv̂

T
i ∥ =√∑p

i=2 ŝ
2
i ≤

√∑p
i=1(s

(ε)
i )2 = ∥vec−1(A+ε)∥F =

∥A+ε∥ =
√

trace(A+εεT (A+)T ).
Remark 5: Lemma 5 is a special case of Weyl’s inequality.

A full proof can be found in the book [16].
Following Lemma 5, we get a result with a probability
convergence rate bound on ∥x̃− x∥, similar to Theorem 2.

Theorem 3: For every δ′ > 0,

Pρ(∥x̃− x∥ > δ′) ≤ σf̃(∥x∥, ∥y∥, ∥b∥,m, r, δ′)

δ′
√
c⌊N/n⌋

,

where f̃(∥x∥, ∥y∥, ∥b∥,m, r, δ′) = 2
√
rm(1 + ∥b∥∥x∥ +

δ′∥b∥)/∥y∥.
Proof: The proof is similar to that of Theorem 2. We

will use Lemma 1 and 5. ∥x̃ ⊗ ỹ − x ⊗ y∥ ≤ ∥x̃ ⊗ ỹ −
x̂⊗ y∥ + ∥x̂⊗ y − x ⊗ y∥ = ∥ỹx̃T − ŷxT ∥F + ∥x̂⊗ y −
x ⊗ y∥ ≤ 2

√
trace(A+εεT (A+)T ), where we used Lemma

5 for the last inequality. Now using Lemma 1, Pρ(∥x̃ −

x∥ > δ
1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

) ≤ Pρ(∥x̃ ⊗ ỹ − x ⊗ y∥ > δ) ≤

2
√
Eρ[trace(A+εεT (A+)T )]

δ
=

2
√

σ2rm/(c⌊N/n⌋)
δ

. Now

we let δ′ = δ
1 + ∥b∥∥x∥
∥y∥ − δ∥b∥

like in the proof of Theorem 2 and

the result follows.
Remark 6: Theorem 2 and Theorem 3 display similar-

ity between x̂ and x̃ (same dependence on σ, c, N , n),
but differ in the functions f̂ and f̃ . In particular, the
ratio f̂(∥x∥, ∥y∥, ∥b∥,m, r, δ′)/f̃(∥x∥, ∥y∥, ∥b∥,m, r, δ′) =
1 + ∥x∥∥b∥

√
m/2 > 1. As we mentioned in Remark 4,

this means that Theorem 3 provides a tighter bound than
Theorem 2. However, we want to emphasize again that this

37



hin, qin hout, qout

l

x1 x2

qleak

Fig. 1. A water pipe with a leak, as described in Section VI.

does not necessarily mean that ∥x̃ − x∥ < ∥x̂ − x∥, in all
problem instances.

Remark 7: Lemma 4 in Section IV provides a bound
for the ŷ error. Using Lemma 1, and the reasoning in
the proof of Theorem 3, it is possible to prove a similar
bound for the ỹ error. Namely, Pρ(∥ỹ − y∥ > δ′) ≤

σ

δ′
√
c⌊N/n⌋

2∥b∥
√
rm. However, we refrain from formally

articulating this for two reasons. First, it is not necessary
for deriving Theorem 3 (unlike the necessity of Lemma 4
for deriving Theorem 2). Second, our focus within the water
leak localization problem does not concern the estimation
of y but solely centers on the estimation of x.

VI. WATER LEAK LOCALIZATION APPLICATION

In this section, we apply the estimators x̂ and x̃ in a water
leak localization scenario. The problem concerns a leaking
water pipe, as shown in Fig. 1. At the inlet (left), there is
a flow qin and a hydraulic head hin. At the outlet (right),
there is a flow qout and a hydraulic head hout. At position x1

between the inlet and the outlet, there is a leak, with outflow
qleak = qin −qout. The problem at hand is to estimate the leak
position x1. The sum x1 + x2 = l, where l is the (known)
length of the pipe.

There is a steady-state head-loss relation

hin − hout = x1U(qin) + x2U(qout), (6)

where the head-loss function U(q) describes the rate per unit
length at which the hydraulic head decreases along a pipe
section with flow q.

Estimation of x1, has been treated in [13]. In that work,
the water system operator is assumed to know the head-loss
function U(q). Under this assumption, can be readily found
given measurements of hin, hout, qin and qout. Unfortunately,
in practice, due to aging pipes, effects of changing temper-
ature, etc. When a-priori unknown, U(q) and x1 have to be
estimated simultaneously.

We consider a parameterization of U(q) for which the si-
multaneous estimation of the leak position and the head-loss
function is an instance of our bilinear parameter estimation
problem.

Specifically, we assume a model U(q) = ϕ(q)y

where ϕ(q)T =
[
ϕ1(q) · · · ϕm(q)

]T ∈ Rm, y ∈ Rm,
and an observation model

ĥin,t − ĥout,t = x1ϕ(qin,t)y + x2ϕ(qout,t)y + εt (7)

=
[
x1 x2

] [ϕ(qin,t)
ϕ(qout,t)

]
y + εt, t = 1, . . . , N.

Here, ĥin,t and ĥout,t are sensor readings of the hydraulic
head, corrupted by noise (of which the difference is εt).
For simplicity, we assume perfect measuring of flows, i.e.,
we know qin,t and qout,t. However, we plan to extend our
analysis to an error-in-variables model, where qin,t and qout,t

are also corrupted by noise. We recognize that ĥin,t−ĥout,t =

gt,
[
x1 x2

]
= xT and

[
ϕ(qin,t)
ϕ(qout,t)

]
= A(t) puts (7) in the

form of (1).We can apply the estimators described throughout
Sections III, IV and V.

The convergence results of Theorems 2 and 3, require that
{A(t)}∞t=1 is PE. This is a property of {(qin,t, qout,t)}Nt=1 and
ϕ(q). We have

A =

ϕ(qin,1) ϕ(qout,1)
...

...
ϕ(qin,N ) ϕ(qout,N )

 .

If for example qin,1 = qin,2 = · · · = qin,N (and m > 1), we
get

A


1

−ϕ1(qin,1)/ϕ2(qin, 1)
0
...
0

 = 0,

i.e., A is not even full rank. Informally, for {A}∞t=1 to be PE,
the flows need to fulfill some notion of sufficient variation.
We will not investigate such a notion any further. Instead,
we present two cases where {A(t)}∞t=1 is indeed PE.

The first case describes a general result for a water system
where the operator has control capabilities. According to
Proposition 1, a water system operator with access to pumps
and valves to control the flow in the pipes can repeat a set
of flows to attain a matrix A that is PE.

Proposition 1: Repeated measurements. If there is a
set {(qin,t, qout,t)}nt=1 such that smin(A

(1:n)) = c > 0,
that is repeated over and over: {(qin,t, qout,t)}(k+1)n

t=kn+1 =
{(qin,t, qout,t)}nt=1, k = 1, . . . , then A is PE(c, n).

Proof: Follows immediately from Definition 1.
The second case is a scenario where we do not show formally
that {A}∞t=1 is PE, but where the leak position estimates x̂1

and x̃1 (first elements of x̂ and x̃) converge in practice.
Example 1: Numerical simulation. We generate data mim-

icking a leaking pipe using the water network simulation
software EPANET [15]. We define pipe parameters such as
length, diameter, friction factor, and leak position, as well as
a pressure dependent leak function qleak = C

√
hleak, based on

Bernoulli’s principle. We simulate the leaking pipe with qout
drawn uniformly between 10 and 20 liters per second, and
hin drawn uniformly between 100 and 110 meters elevation,
independently of qout. Given qout and hin, EPANET calculates
the hydraulic state of the pipe. The sample means and
standard deviations for the variables available to the system
operator are shown in Table I. The values in Table I are
presented excluding the sensor noise ε, which is normal with
σ = 0.1 meter.
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TABLE I
DATA DISTRIBUTION FOR EXAMPLE 1.

variable sample mean sample standard deviation
qin (l/s) 22.1 2.9
qout (l/s) 15.0 2.9
hin (m) 105.0 2.9
hout (m) 98.4 3.5

Fig. 2. Convergence of x̂1 and x̃1 in Example 1. 95%-quantile for errors.

EPANET uses the Darcy-Weisbach head-loss function in
the simulation. We approximate this function with ϕ(q)y =[
q/q0 (q/q0)

2
]
y, where y (m = 2) is to be deter-

mined (feature scaling by the typical flow q0 improves
numerical stability). Then, we calculate estimators x̂ and x̃
using the procedures described in Section IV and V. Fig. 2
shows the convergence of the first elements x̂1 and x̃1,
representing the leak position estimates. The convergences
are as we expect from Theorem 2 and Theorem 3 inversely
proportional to the square root of the number of mea-
surements. Furthermore, we see that, while the probability
error upper bound we managed to derive for the separated
solution (Theorem 2) is larger than that of the SVD solu-
tion (Theorem 3), the separated estimator performs better
for small numbers of measurements N . For large N , the
estimators are comparable.

Remark 8: Lemmas and theorems in this paper do not take
into account the distribution of the flows qin and qout (es-
sentially the distribution of A). In the theoretical results we
explicate the noise distribution ρ (Eρ and Pρ), and assume A
as given.

VII. CONCLUSION

In this paper, we have derived convergence rates for two
bilinear parameter estimators. We have demonstrated their
performance in a water leak localization scenario. In fu-
ture work, we will incorporate an error-in-variables analysis
to deal with imperfect flow measurements. We will also
investigate the difference between the separated and SVD
estimators for small numbers of measurements.
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