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Abstract— We propose an online identification scheme for
discrete-time piece-wise affine state-space models based on
a system of adaptive algorithms running in two timescales.
A stochastic approximation algorithm implements an online
deterministic annealing scheme at a slow timescale, estimating
the partition of the augmented state-input space that defines the
switching signal. At the same time, an adaptive identification
algorithm, running at a higher timescale, updates the parame-
ters of the local models based on the estimate of the switching
signal. Identifiability conditions for the switched system are
discussed and convergence results are given based on the
theory of two-timescale stochastic approximation. In contrast to
standard identification algorithms for piece-wise affine systems,
the proposed approach progressively estimates the number of
modes needed and is appropriate for online system identification
using sequential data acquisition. This progressive nature of
the algorithm improves computational efficiency and provides
real-time control over the performance-complexity trade-off,
desired in practical applications. Experimental results validate
the efficacy of the proposed methodology.

I. INTRODUCTION

Switched systems constitute a class of universal approxi-
mation models with important applications in identification,
verification, and control synthesis of hybrid, and complex
nonlinear systems [1]–[3]. Piece-Wise Affine (PWA) sys-
tems, in particular, are a special class of switched systems,
defined as a collection of affine dynamical systems, often
called modes, indexed by a discrete-valued switching vari-
able that depends on a partitioning of the state-input domain
into a finite number of polyhedral regions [1], [2].

Most existing identification approaches for switched sys-
tems can be categorized by the problem formulation as
optimization-based [4], algebraic [5], [6], or clustering-based
[7]–[9], and by the the method used as offline [7], [10] or
online (recursive) [6], [11]. In particular, clustering-based
methods are optimization-based methods that make use of
unsupervised learning techniques to estimate the partition of
the domain that is needed for the switching signal [7]–[9],
[11], [12]. It is worth noticing that most such approaches
are offline methods that first classify each observation and
estimate the local model parameters (either simultaneously
or iteratively), and then reconstruct the partition of the
switching signal. The local models are reconstructed using
classical realization theory results, while the partition recon-
struction is typically addressed by resorting to standard linear
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classification algorithms, such as support vector machines or
neural network classifiers. Overall, a research trend can be
identified towards efficient optimization tools to tackle the
identification problem of switched and PWA systems. Hence,
the tradeoff between computational complexity and quality of
a suboptimal solution is still a key issue driving the research
endeavors in this field.

In this work, we follow a progressive clustering-based
method to identify a PWA system in a state space representa-
tion, extending our prior work on PWA system identification
in the input-output form [11]. The estimation of the partition
defining the switching signal is based on a Voronoi tessella-
tion of the observation (state-input) space with respect to a
progressively growing set of codevectors that are computed
using an online deterministic annealing learning algorithm
[11], [13]–[15]. This method progressively estimates the
optimal codevectors and simulates an annealing process
that induces a series of bifurcation phenomena, according
to which, the number of codevectors K is adjusted, thus
estimating the number of modes in a PWA system.

Adopting the above adaptive partitioning framework, we
propose an online identification scheme for discrete-time
state-space PWA models on a system of adaptive algorithms
running in two timescales. A stochastic approximation al-
gorithm based on online deterministic annealing runs at a
slow timescale estimating the partition of the space that
defines the switching signal, as well as the number of
modes (Section IV). At the same time, a second stochastic
approximation algorithm based on standard recursive system
identification methods, running at a higher timescale, updates
the parameters of the local models based on the estimate
of the switching signal (Section V-A). The identifibility and
convergence properties of this system of recursive algorithms
are studied in Section III and Section V-B, respectively. In
contrast to standard identification algorithms for piece-wise
affine systems, the proposed approach is appropriate for real-
time system identification using sequential data acquisition,
and provides computational efficiency compared to standard
algebraic, mixed-integer programming, and clustering-based
methods. In addition, the progressive nature of the algorithm
provides real-time control over the performance-complexity
trade-off, desired in practical applications. Experimental re-
sults validate the efficacy of the proposed approach.

II. SWITCHED AND PIECEWISE AFFINE SYSTEMS

A switched affine system consists of multiple affine
systems indexed by a discrete-valued switching signal. In
discrete-time, a state-space representation of such a system
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is
xt+1 = Aσtxt +Bσtut + fσt + wt

yt = Cσtxt +Dσtut + gσt + vt, t ∈ Z+,
(1)

where xt ∈ Rn is the state vector of the system, evolving on
the same space for all modes, ut ∈ Rp is the input, yt ∈ Rq

is the output, and wt ∈ Rn and vt ∈ Rq are noise terms.
The signal σt ∈ {1, . . . , s} represents the discrete state of
the system and defines the mode (affine dynamics) which
is active at time t. The matrices Ai ∈ Rn×n, Bi ∈ Rn×p,
Ci ∈ Rq×n, Di ∈ Rq×p, fi ∈ Rn, and gi ∈ Rq define the
affine dynamics for each mode i ∈ {1, . . . , s}.

The discrete state σt can be either an exogenous input, e.g.
triggered by some event, or a function of the system state
and input. In particular, when σt is defined according to a
polyhedral partition of the state and input space, i.e., when

σt = i ⇐⇒
[
xt
ut

]
∈ Ri ⊂ R, (2)

where {Ri}si=1 are convex polyhedra defining a complete
partition of the state-input domain R ⊆ Rn+p, the switched
system is called Piece-Wise Affine (PWA).

A. Uniqueness of Realization

The problem of identifying a state-space representation
of a switched affine system can be quite challenging. Tra-
ditionally, it has been handled linked to applying results
from classical realization theory to each linear subsystem
[16]. However, identifiability issues arise regarding the char-
acterization of minimality of discrete-time switched linear
systems, as will be discussed in Section III-A. The first issue
relates to the known fact that realizations of a switched affine
system are not unique [17]. The lack of uniqueness is related
to the (i) the minimal realizations of the local linear systems
from input-output observations are non-unique, and (ii) a
realization of a switched affine system can be constructed
for any arbitrary number of modes s′ ≥ s [17]. The effect
of the number of modes to the realization of system (1)
will be discussed in Section V. To ensure uniqueness of the
realizations, given that all subsystems i ∈ {1, . . . , s} share
the same state space, we make the following assumptions:

Assumption 1: We assume that Ci = C, ∀i ∈ {1, . . . , s}
holds for system (1).

Assumption 2: Moreover, we assume no affine dynamics
fσt

, gσt
, no feed-forward terms Dσt

, C = I is the identity
matrix, i.e., that the states are fully observable, and that the
error terms wt and vt share the same statistics for every mode
of the system.

Assumption 1 enforces that the set of observations is ac-
quired using the same observation mechanism, which leads to
the realization of (1) being unique. Assumptions 2 are made
to simplify the presentation of the proposed methodology
without loss of generality.

In view of Assumptions 1, 2, and by defining an aug-
mented vector rt ∈ Rn+p as

rt =

[
xt
ut

]
∈ Rn+p, (3)

the PWA system of the form (1) becomes:


xt+1 = A1xt +B1ut + wt, if rt ∈ R1

...
...

xt+1 = Asxt +Bsut + wt, if rt ∈ Rs,

(4)

where Ri ⊂ R are polyhedra in Rn+p for all i = 1, . . . , s,
such that Ri ∩Rj = ∅ for i ̸= j, and

⋃
iRi = R. In the rest

of the paper, we will focus our attention to system (4).

III. IDENTIFICATION OF SWITCHED SYSTEMS

In addition to the realizations of the local systems being
non-unique, minimality and identifiability of the switched
system does not necessarily imply that of the local sub-
systems [18]. In particular, without additional assumptions,
estimating the parameters of a linear switched system of the
form (4) by first estimating the parameters of the correspond-
ing linear subsystems independently may fail.

A. Identifiability, Minimality, and Persistence of Excitation

In this section, we describe the conditions, under which,
the local linear models of (4) can be identified, even when
a subset of them is not controllable (minimal) in isolation.
These conditions will take the form a persistence of excita-
tion criterion, according to Theorem 1 below.

Theorem 1: Let a bounded-input bounded-output linear
discrete-time system of the form:

xt+1 = Axt +But, t ∈ Z+

yt = xt,
(5)

where xt ∈ Rn, ut ∈ Rp, A ∈ Rn×n, and B ∈ Rn×p.
Denote rt = [xTt u

T
t ]

T. Then, if there exist some α, β, T > 0
such that

αIn+p ⪯
t+T∑
τ=t

rτr
T
τ ⪯ βIn+p, ∀t ≥ 0, (6)

the augmented parameter matrix Θ̂t = [Ât|B̂t] updated by
the recursion

Θ̂t+1 = Θ̂t − γ
(
Θ̂trt − xt+1

)
rTt , t ≥ 0, (7)

for some γ > 0, asymptotically converges to Θ = [A|B].
Proof: We construct the system

x̂t+1 = Âxt + B̂ut, t ∈ Z+, (8)

where Â ∈ Rn×n, and B̂ ∈ Rn×p. Subtracting (5) from (8),
we get:

et+1 = Θ̄rt, t ∈ Z+, (9)

where et = x̂t − xt ∈ Rn is the observation error, rt =
[xTt |uTt ]T ∈ Rn+p is the augmented state-input vector as
defined in (3), and Θ̄ = [(Â−A)|(B̂−B)] is an augmented
matrix of the system parameters of size n × (n + p). Then
(7) is equivalent to:

Θ̄t+1 = Θ̄t − γet+1r
T
t , t ≥ 0. (10)
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Notice that (10) can be written in the form of a linear time-
varying dynamical system:

Θ̄t+1 = Θ̄t(In+p − γrtr
T
t ), t ≥ 0. (11)

By vectorizing Θ̄t such that θ̄t = vec(Θ̄t), (11) becomes:

θ̄t+1 = (In(n+p) − γψtψ
T
t )θ̄t = Ξtθ̄t, t ≥ 0, (12)

where ⊗ denotes the Kronecker product, and ψt = [rTt ⊗
In]

T is a n(n + p) × n matrix. We will show that (12) is
exponentially stable in the large as long as (6) is satisfied.
Let the Lyapunov function V (t, θ̄) = θ̄Tt θ̄t. It is obvious that
there exist k1, k2 > 0 such that k1∥θ̄∥2 ≤ V (t, θ̄) ≤ k2∥θ̄∥2.
Notice that V (t + 1, θ̄t+1) − V (t, θ̄t) = θ̄Tt Ξ

T
t Ξ

tθ̄t. As a
result, by summing the differences for T timesteps, we get:

V (t+T + 1, θ̄t+T+1)− V (t, θ̄t) =

=

t+T∑
τ=t

V (τ + 1, θ̄τ+1)− V (τ, θ̄τ )

=

t+T∑
τ=t

θ̄Tτ
(
ΞT
τ Ξτ − In(n+p)

)
θ̄τ

= θ̄Tt

[
t+T∑
τ=t

Φ(τ ; t)T
(
ΞT
τ Ξτ − In(n+p)

)
Φ(τ ; t)

]
θ̄τ

≤ −α1θ̄
T
t In(n+p)θ̄t = −α1V (t, θ̄t),

(13)
for some 0 < α1 < 1. Here Φ(τ ; t) = ΞtΞt+1 . . .Ξτ−1

is the transition matrix of (12), and the inequality follows
from condition (6). Notice that the first inequality in (6)
is equivalent to αIn+p ⪯

∑t+T
τ=t r

T
τ rτ and directly implies

that α2In(n+p) ⪯
∑t+T

τ=t ψ
T
τ ψτ , for some α2 > 0, as

well. As a result
∑t+T

τ=t Ξ
T
τ Ξτ ⪯ α3TIn(n+p) for some

0 < α3 < 1, and, therefore,
∑t+T

τ=t

(
ΞT
τ Ξτ − In(n+p)

)
⪯

−α4TIn(n+p) for some 0 < α4 < 1. Finally this implies that[∑t+T
τ=t Φ(τ ; t)

T
(
ΞT
τ Ξτ − In(n+p)

)
Φ(τ ; t)

]
≤ −α1In(n+p)

for some 0 < α1 < 1 [19]. Notice that the second inequality
of (6) is necessary to ensure non-singularity of the transition
matrix Φ(τ ; t) [20]. Finally, as an immediate result of (13),
V (t + T + 1, θ̄t+T + 1) ≤ (1 − α1)V (t, θ̄t), ∀t ≥ 0, which
implies uniform asymptotic stability in the large, and, due to
linearity, exponential stability in the large.

As a result of Theorem 1, we make the following assump-
tion to ensure identifiability of (4):

Assumption 3: All linear subsystems i ∈ {1, . . . , s} of
(4) are asymptotically bounded, and a bounded control input
ut is designed such that for every mode i ∈ {1, . . . , s} of
(4), there exist some αi, βi, Ti > 0 for which the following
persistence of excitation condition holds:

αiIn+p ⪯
t+Ti∑
τ=t

[
xτx

T
τ xτu

T
τ

uτx
T
τ uτu

T
τ

]
⪯ βiIn+p, ∀t ≥ 0. (14)

Remark 1: The condition (14) implies that not every sub-
system in (4) should be controllable (minimal), as long as
the boundaries of each mode (region Ri in the state-input

system) are visited often enough and from a rich-enough set
of different states.

Remark 2: The assumption of assymptotic boundedness
and controllability (thus, minimality) for all subsystems of
(4) would simplify the condition (14) to a persistence of
excitation criterion for the input ut for each subsystem
separately. Although this assumption is usually adopted, it is
a limiting assumption in a practical sense. The assumption
that all the local systems share the same state space of order
n is a modeling assumption that facilitates the identification
of the switched signal as a partition of the state-input
space. However, it allows for situations when the minimal
realization of some of the local models is of order n′ < n,
as long as the switched system as a whole is identifiable.

B. Identification as an Optimization Problem

Consider the state-input observations of system (4) written
in the form

yt = Θirt + wt,

= [rTt ⊗ In]θi + wt, if rt ∈ Ri, t ≥ 0,
(15)

for all i = 1 . . . , s, where yt := xt+1, Θi = [Ai|Bi], θi =
vec(Θi) ∈ Rn(n+p), rt is as defined in (3), and ⊗ denotes
the Kronecker product. Under the identifiability conditions
discussed in Section III-A (Assumption 3), the general iden-
tification problem for a PWA system in the state-space as
given in (4) can be formulated as a stochastic optimization
problem over the parameters

{
n, s,

{
θ̂i

}s

i=1
, {Ri}si=1

}
, as

follows:

min
n,s,{θi},{Ri}

E

[
s∑

i=1

1[r∈Ri]d(y, [r
T
t ⊗ In]θi)

]
, (16)

where y ∈ Rn and r ∈ Rn+p represent random variables,
realizations of which constitute the system observations, the
nonnegative measure d is an appropriately defined dissimi-
larity measure, and the expectation is taken with respect to
the joint distribution of (y, r) ∈ R2n+p that depends on the
system dynamics, the control input, and the noise term.

It is clear that the optimization problem (16) is intractable
as is. In particular, notice that the both the model order n, and
the number of modes s, completely alter the cardinality and
the domain of θi, i ∈ {1, . . . , s} that represent the dynamics
of the system. In addition, a parametric representation for the
polyhedral regions Ri, i ∈ {1, . . . , s}, that form a partition
of R ⊆ Rn+p satisfying Ri ⊂ R, Ri ∩ Rj = ∅ for i ̸= j,
and

⋃
iRi = R, should be defined. Finally, the expectation

operation cannot be analytically computed in general. On
the other hand, under Assumption 2, because of full state
observability (C = I), knowledge of the dimension n of the
state space can be assumed a priori.

IV. MODE IDENTIFICATION WITH ONLINE
DETERMINISTIC ANNEALING

In this section we will adopt the online deterministic
annealing method [11], [14], [15] to solve the problem of
finding s and {Ri}si=1 given that {θi}si=1 are known. We
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introduce a set of variables {ρi}Ki=1, ρi ∈ R each one
representing a region

Σi =

{
r ∈ R : i = argmin

j
d(r, ρj)

}
, (17)

for a given dissimilarity measure d. The measure d can be
designed such that the Voronoi regions Σi are polyhedral,
e.g., Euclidean distance or any Bregman divergence, as will
be explained in Section IV-A. In this sense, each Ri can be
mapped to a region Σj (for K = s) or a union of adjacent
sets {Σj} (for K > s), as will be explained in Section V-B.

Problem (16) then becomes a clustering problem:

min
{r̂i}

E

[
K∑
i=1

1[r∈Σi]d(X,µi)

]
, (18)

on the augmented space of the random variable X =
[θTrT]T ∈ S ⊆ R(n+1)(n+p) defined in a probability space
(Ω,F,P), where µi is the augmented codevector:

µi :=

[
θ̂i
r̂i

]
∈ S, i = 1, . . . ,K, (19)

with θ̂i being an estimate of θi (so far we assume θ̂i = θi).
Here the measure d : S × S → [0,∞) is a dissimilarity
measure defined on S. Problem (18) is a hard clustering
problem with respect to the parameters {r̂i}Ki=1. The lowest
possible number K should also be computed.

A. Online Deterministic Annealing

To construct a recursive stochastic optimization algorithm
to solve problem (18) and progressively estimate the number
K of the augmented codevectors {µi}Ki=1, we adopt the
online deterministic annealing approach [14], [15]. Recall
that the observed data are represented by the random variable
X : Ω → S ⊆ R(n+1)(n+p) defined in a probability
space (Ω,F,P), and the augmented codevectors {µi}Ki=1 are
treated as constant parameters to be estimated. According
to the online deterministic annealing principles [14], [15],
we extend this approach and define a probability space over
an infinite number of codevectors, while constraining their
distribution using a maximum-entropy principle at different
levels. First we define a quantizer Q : S → ri(S) as a
discrete random variable in the same probability space with
countably infinite domain µ := {µi}. Then we formulate the
multi-objective optimization

min
µ
Fλ(µ) := (1− λ)D(µ)− λH(µ), λ ∈ [0, 1), (20)

where D(µ) := E [d (X,Q)] =
∫
p(x)

∑
i p(µi|x)d(x, µi)dx

takes the place of the objective in (18), and H(µ) :=
E [− logP (X,Q)] is the Shannon entropy which can be
written as H(µ) = H(X)

∫
p(x)

∑
i p(µi|x) log p(µi|x)dx.

This is now a problem of finding the locations {µi}
and the corresponding probabilities {p(µi|x)} :=
{p(Q = µi|X = x)}.

The Lagrange multiplier λ ∈ [0, 1) controls the trade-off
between D and H . As λ is varied, we essentially transition
from one Pareto solution of the multi-objective optimization

to another. The entropy term, however, introduces several
properties to the approach that can be useful in many appli-
cations [14], [15], [21]–[23]. First, it introduces robustness
with respect to initial conditions [14], [24]. Second, as we
will discuss in Section IV-B, reducing the values of λ defines
a direction that resembles an annealing process [14], [25] and
induces a bifurcation phenomenon such that the number K
of the codevectors is finite and depends on the value of λ.

To solve (20) for a given value of λ, we successively
minimize Fλ first with respect to the association probabilities
{p(µi|x)}, and then with respect to the codevector locations
µ. In particular, as shown in [14], [15], the sequence µi(n)
constructed by the stochastic approximation updates{

ρi(t+ 1) = ρi(t) + β(t) [p̂(µi|xt)− ρi(t)]

σi(t+ 1) = σi(t) + β(t) [xtp̂(µi|xt)− σi(t)] ,
(21)

where xt ∼ X ,
∑

t β(t) = ∞,
∑

t β
2(t) < ∞, and

the quantities p̂(µi|xt) and µi(t) are recursively updated as
follows:

µi(t) =
σi(t)

ρi(t)
, p̂(µi|xt) =

ρi(t)e
− 1−λ

λ d(xt,µi(t))∑
i ρi(t)e

− 1−λ
λ d(xt,µi(t))

,

(22)
converges almost surely to a solution of (20) provided that
the dissimilarity measure d belongs to the family of Breg-
man divergences—information-theoretic dissimilarity mea-
sures play an important role in learning applications and
include the widely used Euclidean distance and Kullback-
Leibler divergence [14]. Therefore, throughout this paper,
we will assume that the dissimilarity measure d in (17) is a
Bregman divergence. In addition, the following remark holds:

Remark 3 ( [11]): The partition {Σi} induced by (17)
and a dissimilarity measure d that belongs to the family of
Bregman divergences, is separated by hyperplanes, such that
each Σi is a polyhedral region for a bounded domain R.

B. Bifurcation and The Number of Modes
According to the online deterministic annealing approach,

we solve a sequence of optimization problems (20) with
decreasing values of λ. This process grants λ the name
of a ’temperature’ parameter, and induces a bifurcation
phenomenon, where, as λ is lowered below some critical
values, the unique values of the set {µi} that solves (20)
(referred to as “effective codevectors”), form a finite set
K(λ) of increasing cardinality, which defines the estimated
number of modes s [11], [14], [15], [26]. In addition, from
Remark 3, it follows that the partition {Σi} of R defined in
(17) is polyhedral. Therefore, each region Ri in (4) can be
mapped to a region Σj , if the number of effective codevectors
is K = s, or a union of adjacent sets {Σj} (for K > s). In
this case, the inverse process of increasing the temperature
parameter λ to merge adjacent sets Σi, Σj can be followed.
For more details, the readers are referred to [11].

V. PIECEWISE AFFINE SYSTEM IDENTIFICATION

A. Identification of Local Models
Recall that, given knowledge of the partition {Ri}si=1,

each local linear model of the PWA system in (4) is
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completely defined by the parameters {θi} of (15). In the
following, we develop a stochastic approximation recursion
to estimate

{
θ̂i

}
. First we define the error ϵ(t) = [rTt ⊗

In]θi(t) − yt. A stochastic gradient descent approach aims
to minimize

min
θ̂i

1

2
E
[
∥ϵ(t)∥2

]
, (23)

using the recursive updates:

θ̂i(t+ 1) = θ̂i(t)− α(t) (∇θiϵ(t)) ϵ(t)

= θ̂i(t)− α(t)[rTt ⊗ In]
Tϵ(t),

(24)

where
∑

n α(n) = ∞,
∑

n α
2(n) <∞. Here the expectation

is taken with respect to the joint distribution of (y, r)
as explained in III-B. This is a stochastic approximation
sequence and converges almost surely to the equillibrium
of the differential equation ˙̂

θi = h(θ̂i), t ≥ 0, which can
be shown to be a solution of (23) with standard Lyapunov
arguments. For more details the reader is referred to [15],
[27]. Moreover, notice that (24) is a vectorized representation
of (7), for γ = α(t) > 0. Therefore, under the PE condition
(14), and under the zero-mean noise assumption, it follows
that θ̂i converge asymptotically to θi for all i = 1, . . . , s,
i.e., the global minimum of (23) is achieved.

B. Combined Partitioning and Local Model Identification

Notice that the estimation updates of the number of
modes s and the partition {Σi}si=1 in (21) is a stochastic
approximation algorithm with a stepsize schedule β(t). At
the same time, the recursive system identification technique
to estimate {θi}si=1 given {Σi}si=1 in (24) is a stochastic
approximation sequence with a stepsize schedule α(t). The
two recursive systems can be combined using the theory
of two-timescale stochastic approximation if β(t)/α(t) → 0,
i.e., the estimation of the partition {Σi}si=1 is updated at a
slower rate than the updates of the parameters {θi}si=1. This
follows directly from Theorem 2 in [15]. In practice, the
condition β(t)/α(t) → 0 is satisfied by stepsizes of the form
(α(t), β(t)) = (1/t, 1/1+t log t), or (α(t), β(t)) = (1/t2/3, 1/t).

VI. EXPERIMENTAL RESULTS

We illustrate the properties and evaluate the performance
of the proposed algorithm in the following linearized PWA
system:
xt+1 = (I2 + dt

[
0 1

0 0

]
)xt + dt

[
0

1

]
ut, if |ut| > 1

xt+1 = (I2 + dt

[
0 1

0 −1

]
)xt + dt

[
0

0

]
ut, if |ut| ≤ 1,

(25)
where xt ∈ R2 and ut ∈ R. System (25) has three
modes (s = 3) and the and the switching signal is de-
fined by the regions R1 =

{
[xT|uT ]T ∈ R3 : u < −1

}
,

R2 =
{
[xT|uT ]T ∈ R3 : −1 ≤ u < 1

}
, and R3 ={

[xT|uT ]T ∈ R3 : 1 < u
}

. Notice that the linear system of
the second mode (s = 2) is not minimal. To preserve the
PE conditions of Assumption 3, the input signal is chosen

Fig. 1: Time evolution of system (25) for T = 5 seconds.
The mode-switching behavior is depicted.

Fig. 2: Mode estimation illustrating the bifurcation phe-
nomenon described in Section IV-B. The evolution of the
ûi coordinate of the codevectors {µi} is depicted.

as ut = 2 cos(2πt ∗ dt), t ∈ Z+, and the noise term wt is
a zero-mean Gaussian random variable with σ2 = 0.1. The
evolution of (25) over time, as well as the mode switching
behavior, are shown in Fig. 1.

The system is allowed to run for T = 5s (sec-
onds), with dt = 0.01, i.e., a total of N = 500 ob-
servations are acquired online. The temperature parame-
ters used for the online deterministic annealing algorithm
are (λmax, λmin, γ) = (0.99, 0.1, 0.8), and the stepsizes
(α(t), β(t)) = (1/1+0.01t, 1/1+0.9t log t). The estimated pa-
rameter θ̂1 gets updated by the iterations (24). We have
assumed θ̂1(0) = [1, 1, 1, 1, 1, 1]T. The bifurcation phe-
nomenon is illustrated in Fig. 2 where the third coordinate of
the codevectors {r̂i}, which gives an estimate of the control
input representation of the mode, is depicted.

The estimation error and the estimated modes are shown in
Fig. 3. The algorithm identifies a total of K = 4 modes, with
the modes for which σ̂t = 1, and σ̂t = 2 representing the
same dynamics of the original mode σt = 2. These can be
combined with the inverse process explained in Section IV-B,
if necessary. In Figure 4, the convergence of the parameters{
θ̂i

}4

i=1
are shown.

VII. CONCLUSION

We proposed a real-time identification scheme for discrete-
time piece-wise affine state-space models. In contrast to
most standard identification algorithms for piece-wise affine
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Fig. 3: Estimation error over time. The estimated modes are
also compared against the original modes.

Fig. 4: Convergence of the parameters
{
θ̂i

}4

i=1
.

systems, the proposed approach is appropriate for online
identification of both the modes and the subsystems of
the switched system. The progressive nature of the algo-
rithm also provides real-time control over the performance-
complexity trade-off. Future directions include extensions of
the proposed approach for identification of partially observ-
able general switched models.
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