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Abstract— This paper proposes a novel method to approx-
imate a stable and unique limit cycle, as obtained e.g. from
simulation of a nonlinear model or from experimental data, by
a planar switching affine system (PSAS) while preserving the
properties of uniqueness and stability. In contrast to existing
literature, which formulates elaborate procedures based on
system transformation to conclude on stability and uniqueness,
this paper provides easy to check sufficient conditions directly
formulated for the PSAS. Those conditions then serve as
equality and inequality constraints in an optimization problem
to determine the model parameters of the PSAS which best
approximate the data points measured for the given limit cycle.
It is shown that the sufficient conditions lead to the same results
as formulated in literature, while a system transformation is
not necessary. Efficiency, flexibility, and performance of the
proposed method are demonstrated for a numeric example.

I. INTRODUCTION

Limit cycles have been a subject of research for a long

period of time, since oscillations occur in a large variety

of domains (technical, biological, physical, astronomical,

etc.), see e.g. [1]–[3]. They have been analyzed in several

papers devoted to different nonlinear oscillators [4], [5]

and system theoretical investigations [6]. Many nonlinear

oscillators generate stable and unique limit cycles [7], [8].

However, the analytical characterization as well as conditions

ensuring uniqueness and stability are limited to very special

cases. This circumstances motivated the use of PSAS to

approximate, describe, and analyze limit cycles.

Techniques to approximate nonlinear oscillations while

preserving its properties are barely considered in literature.

Kai et al. provided stable limit cycles as polygonal curves,

by connecting vertices of polygons through line segments

determined by piecewise affine systems using state feedback

[9], [10]. However, this approach quickly becomes costly in

terms of the number of switching lines and subsystems, and

is based on state feedback laws. Moreover, the connection

of the vertices through line segments can limit the quality of

approximation considerably. In [11], a method to synthesize

the limit cycle of PSAS based just on four characteristic

data points was proposed, but the objective of obtaining an

optimized approximation was not considered.

In a different thread of investigations, literature has fo-

cused on studying the existence and number of limit cycles

in the qualitative theory of planar differential equations,

which are restricted to two planar piecewise linear systems
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separated by a straight line, leading to several challenges. A

number of at most eight limit cycles has recently been proven

by Carmona et al. [12] for a general setting, while specific

variants may show at most two [13], three [14], or four [15]

limit cycles. If, however, the existence of a single and unique

limit cycle is the objective of the considerations, additional

requirements need to be formulated: For two linear vector

fields separated by a straight line and a continuity condition,

the existence of one limit cycle was observed in [16], and first

proven in [17]. For the case without continuity assumption

for the gradients on the common boundary, a larger number

of papers has applied bifurcation theory to limit cycles of

discontinuous planar piecewise linear systems. These papers

are devoted to different cases of the phase portraits (node,

saddle, focus) and specific techniques to proof uniqueness

[18], [19], [20]. Li and Llibre [21] first proved the uniqueness

of limit cycles in the focus-saddle case, and recently Li

et al. [22] proposed results on the uniqueness of limit

cycles for the focus-node and focus-focus scenario. The

saddle-saddle case [23] as well as the node-node case [24]

have been studied by Huan and Yang. These investigations

involve rather elaborate system transformations, and only

refer a collection of analyzed specific scenarios examined

with respect to their mathematical characteristics. None of

these papers provides a system-theoretic interpretation, or

addresses conditions which are suitable for approximating

limit cycles observed from data or for nonlinear oscillator

models without discontinuities of the state derivatives.

This paper, however, provides easy to evaluate sufficient

conditions for PSAS in order to approximate given limit cy-

cles, while ensuring the properties of uniqueness and stability

for the constructed limit cycles. The proposed new conditions

are set in context to those for the node-node case in [24],

which can be related to the PSAS set-up considered here.

Accordingly, Sec. II briefly recalls the methodology from

[24] to conclude on unique and stable limit cycles, while also

highlighting requirements, challenges and problems. In Sec.

III, new sufficient conditions for the PSAS are introduced,

and it is shown that these sufficient conditions allow the

same conclusion on uniqueness and stability as the approach

in [24]. Sec. III uses the proposed conditions to set up

optimization problems for approximating unique and stable

limit cycles from measured data, and extensions are reported

to emphasize the versatility of the method. In Sec. IV, an

illustrative numeric example is provided to illustrate the

procedure, the work is concluded in Sec. V with an outlook

on future work.
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II. PROBLEM DESCRIPTION

The paper addresses periodic behavior represented by a

limit cycle φc ⊂ R
2, as observed from experimental data

or generated by a nonlinear dynamic system which is too

complicated to allow for rigorous mathematical analysis. The

standing assumption is that φc is unique and asymptotically

stable on an appropriate region for the underlying oscillator,

i.e., any trajectory initialized on this region converges to

φc. The intuitive approach followed in this paper is that

the periodic behavior represented by φc is approximated by

a substitute system which shares an almost identical limit

cycle (in form, period length, uniqueness and stability) while

enabling mathematical analysis. For this purpose, the class of

planar switching affine system (PSAS) is used [11], written

here in the specific following form to allow later the transfer

of results from [25] and [24]:

ẋ =

{

AIx+BI , x1 < 0

AIIx+BII , x1 > 0
, x = [x1, x2]

T ⊂ R
2 (1)

The coordinates x1, x2 are assumed to be chosen such that

the given limit cycle φc oscillates around the origin. The

matrices AI and AII , as well as the vectors BI and BII

are parameters to be determined. It is pointed out, that, in

general, a system of type (1) may establish more than one

limit cycle (in fact, a number in between zero and eight,

[12]), and that a limit cycle may also be unstable. Thus,

even if (1) generates a limit cycle similar to φc, a lack of

uniqueness and stability of the limit cycle may prevent it

from being a suitable approximation of the original system.

A. Limit Cycles of PSAS

Given the system (1) with parameters:

AI=

[

aI11 aI12
aI21 aI22

]

, AII=

[

aII11 aII12
aII21 aII22

]

, BI=

[

bI1
bI2

]

, BII=

[

bII1
bII2

]

(to be determined), a step often used in literature (see [25]

for example) to prepare analysis is to transfer the system into

Liénard-like canonical form (LCF):

ẋ =































[

T I −1

DI 0

]

x+

[

0

−m

]

, x1 < 0

[

T II −1

DII 0

]

x+

[

p

−n

]

, x1 > 0

. (2)

In here, T I and DI denote the trace and determinant of AI

(likewise T II and DII ), while the other parameters are:

m := aI12b
I
2 − aI22b

I
1, n :=

aI12
aII12

(aII12b
II
2 − aII22b

II
1 )

p :=
aI12
aII12

bII1 − bI1.

The reason for getting to the LCF is that its limit cycle (if

existing) shares the same properties regarding uniqueness and

stability with the limit cycle of (1), while less parameters are

involved. Note that the corresponding limit cycles of (1) and

(2) are not the same (see [25] for more details), as is also

shown in Fig. 1 for an example.

Next, the concept of a sliding set Σs ⊆ R
2 of (1) is

introduced, which is defined as:

Σs :=

{

[

0
x2

]

∈ R
2

∣

∣

∣

∣

(
[

aI11 aI12
]

[

0
x2

]

+bI1)(
[

aII11 aII12
]

[

0
x2

]

+bII1 ) ≤ 0

}

. (3)

Note that the sliding set Σs denotes the part of the x2-axis

(i.e. the switching line of (1)) on which the x1-components of

the two affine dynamics of (1) point into opposite directions.

If an LCF correspondence (2) is obtained for a system (1),

the sliding set is transformed, too, but the following relation

of uniqueness and stability of the limit cycles for the two

representations was established in [24]:

Theorem 1: Let the system (1) with a sliding set Σs

as well as an LCF according to (2) be given such that

the following conditions are satisfied: m > 0, n < 0,

min{DI , DII} > 0, (T I)2 > 4 · DI , (T II)2 > 4 · DII ,

T I · T II > 0, and p 6= 0. Then the following statements

hold:

• If T II · p > 0, (1) has no limit cycle without a point

being also contained in Σs.

• If T II ·p < 0, a limit cycle of (1) without a point being

contained in Σs is unique. In addition, such a limit

cycle is asymptotically stable if p > 0 and unstable if

p < 0. �

This theorem can be used to examine based on the LCF

whether a given system (1) has a unique and stable limit

cycle without a point in Σs. However, in order to use these

results to determine a system (1) such that the latter shows

a limit cycle similar to φc, a number of problems need to be

addressed first: The conditions above are tailored to the LCF

(2), while the actual objective is to design a system of type

(1) (containing a larger number of parameters). In addition,

the existence, the uniqueness, and the stability properties in

Theorem 1 are all referring to a limit cycle without points
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Fig. 1. For a system (1) with AI =

[

−3 1

3 −2

]

, AII =

[

−4 1

−3 0.25

]

,

BI =

[

3

−3

]

and BII =

[

5

0.75

]

on the left, and a corresponding LCF on

the right, stabilizing (but different) limit cycles exist for both representations.
The arrows in red and blue represent the phase portrait of the two systems.
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in the sliding set Σs. As both, the limit cycle and the sliding

set Σs of (1), are dependent upon the values of AI , AII , BI

and BII , uniqueness and stability results for a limit cycle of

(1) need to be related to these parameters, and the design of

approximations of φc needs to consider that no intersection

of the approximating cycle with the set Σs occurs.

With these aspects in mind, the objective is to formulate

a set of new conditions tailored to the system (1), such that

a unique and stable limit cycle is obtained. Furthermore,

the additional degrees of freedom in (1) will be used to

approximate φc in an optimal sense.

III. DETERMINATION OF PSAS WITH UNIQUE AND

STABLE LIMIT CYCLE

By temporarily neglecting the task of approximating the

given limit cycle φc, a new theorem is formulated with the

objective to ensure the existence, the uniqueness, and the

stability of the limit cycle of (1):

Theorem 2: For a system of type (1), let the following

conditions be satisfied:

1) The matrices AI and AII of (1) are Hurwitz and have

distinct real-valued and negative eigenvalues.

2) Let x̄I = [x̄I
1, x̄

I
2]

T and x̄II = [x̄II
1 , x̄II

2 ]T ∈ R
2 denote

the equilibrium point of the dynamics ẋ = AIx+BI ,

and ẋ = AIIx+BII respectively, with:

x̄I
1 > 0, x̄II

1 < 0; (4)

3) Two points x̂1 = [0, x̂1,2]
T and x̂2 = [0, x̂2,2]

T on the

x2-axis exist with x̂1,2 < 0 and x̂2,2 > 0, as well as

two time points T1, T2 ∈ R
>0 satisfying:

x̂2 = eA
IT1 x̂1 +

∫ T1

0

eA
I(T1−τ)BIdτ (5)

x̂1 = eA
IIT2 x̂2 +

∫ T2

0

eA
II(T2−τ)BIIdτ ; (6)

4) For the two points x̂1 and x̂2, the following inequalities

hold in addition:

aI12x̂1,2 + bI1 < 0, aI12x̂2,2 + bI1 > 0 (7)

aII12x̂1,2 + bII1 < 0, aII12x̂2,2 + bII1 > 0. (8)

Then, the limit cycle of system (1) exists and contains no

point in the sliding set Σs according to (3), and the limit

cycle is unique and asymptotically stable. �

Proof. Since the conditions 1)-4) of Theorem 2 represent a

special form of the existence conditions from Theorem 1 in

[11], the existence of the limit cycle follows immediately.

As the eigenvalues of AI and AII are negative and real-

valued, their determinants must satisfy:

DI > 0, DII > 0, (9)

and for the traces of AI and AII holds:

T I < 0, T II < 0, T I · T II > 0. (10)

As the eigenvalues of AI and AII are distinct, it applies that:

(T I)2 > 4 ·DI , (T II)2 > 4 ·DII (11)

since (λ1 +λ2)
2 − 4λ1λ2 > 0 holds for any λ1 6= λ2. Thus,

the equalities in (5) and (6) determine a limit cycle of (1),

which has a period of T1 +T2, and two switching points x̂1

and x̂2 on the x2-axis exist.

The next part of the proof shows that the limit cycle

through the points given by (5) and (6) contains no point

in the sliding set Σs. Let the points [0, ǫI ]T and [0, ǫII ]T on

the x2-axis denote the system state satisfying:

aI12ǫ
I + bI1 = 0 aII12ǫ

II + bII1 = 0. (12)

Given the inequalities in (7), as well as the fact that the

equilibrium point x̄I of ẋ = AIx + BI is located on the

right side of the x2-axis, the inequality:

x̂1,2 < ǫI < x̂2,2 (13)

hold and the relations:

aI12ǫ+ bI1 < 0, ∀ ǫ < ǫI (14)

aI12ǫ+ bI1 > 0, ∀ ǫ > ǫI (15)

hold for all points [0, ǫ]T on the x2-axis (See Fig. 2 for an

illustration of these relations). Equivalently, the relations:

x̂1,2 < ǫII < x̂2,2 (16)

aII12ǫ+ bII1 < 0, ∀ ǫ < ǫII (17)

aII12ǫ+ bII1 > 0, ∀ ǫ > ǫII . (18)

hold for the dynamics ẋ = AIIx + BII and for all points

[0, ǫ]T on the x2-axis.

Assume that ǫII ≥ ǫI applies (as in Fig. 2), then the

sliding set Σs of (1) turns out to be:

Σs :=

{

[

0 ǫ
]T

∈ R
2

∣

∣

∣

∣

ǫ ∈ [ǫI , ǫII ]

}

. (19)

As a result, both switching points x̂1 and x̂2 must be located

outside of Σs, i.e., the limit cycle through (5) and (6) has

no common point with the sliding set (the same implication

also holds for ǫII ≤ ǫI ). Moreover, it is known from [25]

ǫII

ǫI

I II

x1

x2

0

x̂2 =

[

0
x̂2,2

]

x̂1 =

[

0
x̂1,2

]

aII12ǫ+ bII1 > 0

aII12ǫ+ bII1 < 0

aI12ǫ+ bI1 > 0

aI12ǫ+ bI1 < 0

Fig. 2. The trajectory in green represents the limit cycle of (1) determined
by (5) and (6), while the sliding set Σs is the part between ǫI and ǫII on
the x2-axis.

1462



that the existence of such a limit cycle implies the following

two facts:

1) The matrices AI and AII , satisfy the relation:

aI12a
II
12 > 0. (20)

2) As T I · T II > 0, T I + T II < 0, a parameter:

p 6= 0 (21)

must exist for the LCF (2) according to the Remark

3.8 of [25]1.

To show that m > 0 and n < 0 hold in (2), it is known

that the equilibrium point x̄I of ẋ = AIx+BI satisfies the

equation:

x̄I =

[

x̄I
1

x̄I
2

]

= −(AI)−1BI =
1

DI
·

[

aI12b
I
2 − aI22b

I
1

aI21b
I
1 − aI11b

I
2

]

. (22)

As DI > 0 and x̄I
1 > 0, the relation:

m = aI12b
I
2 − aI22b

I
1 > 0 (23)

applies, and similarly, it can be shown that:

aII12b
II
2 − aII22b

II
1 < 0 (24)

holds. This together with (20) implies that:

n =
aI12
aII12

· (aII12b
II
2 − aII22b

II
1 ) < 0. (25)

Thus, all conditions in Theorem 1 are satisfied, as well as

the fact that T II < 0 and p 6= 0. Assuming p < 0, which

implies T II · p > 0, there should exist no limit cycle that

has no common point with Σs according to Theorem 1.

This result, however, contradicts with the fact that a limit

cycle from (5) and (6) indeed exists (premise of Theorem

2). Accordingly, the relation p > 0 must hold, which implies

according to Theorem 1 that the limit cycle through (5) and

(6) is unique and asymptotically stable. �

Note that by designing the system (1) such that it shows

a limit cycle similar to φc, the values of x̂1,2, x̂2,2 as well

as of T1 and T2 can be fixed in the first place, since they

are determined by the points in which φc crosses the x2-axis

and by the period of φc. The conditions in Theorem 2, can

be cast into a set of inequalities/equalities for AI , AII , BI

and BII according to the following considerations:

• The requirement that AI (like-wise for AII ) must have

distinct and negative real-valued eigenvalues is ensured

by the constraints:

aI11 + aI22 < 0, (26)

aI12a
I
21 − aI11a

I
22 < 0, (27)

and (aI11 − aI22)
2 + 4aI12a

I
21 > 0. (28)

• The requirement for the equilibrium points x̄I and x̄II

in (4) can be ensured by enforcing:

aI12b
I
2 − aI22b

I
1 > 0 and aII12b

II
2 − aII22b

II
1 < 0, (29)

1Note that p 6= 0 also implies that ǫII 6= ǫI , i.e., the sliding set Σs is
not a singleton.

since AI and AII are Hurwitz.

• For given values of x̂1,2, x̂2,2, T1, and T2, the conditions

(5), (6) as well as (7) and (8) represent constraints to

be considered for the selection of the parameters in AI ,

AII , BI and BII .

A. Approximation of a Given Limit Cycle φc

Assuming that a limit cycle φc was observed (e.g.) in

an experiment, the objective addressed now is to determine

a system of type (1) which constitutes a limit cycle that

approximates φc with high accuracy, while ensuring the

established properties of uniqueness and stability. First of

all, based on the switching points x̂1 = [0, x̂1,2]
T and

x̂2 = [0, x̂2,2]
T as well as the period length T1 and T2 of

φc, a number of N different points x
[i]
s (t

[i]
j ), i ∈ {1, . . . , N},

j ∈ {1, 2} along φc are sampled on each side of the

switching line with ordering:

0 < t
[1]
j < t

[2]
j < . . . t

[N ]
j < Tj , j ∈ {1, 2}, (30)

see Fig. 3. In order to measure the distance between the limit

cycle of (1) and φc at each sampling time t
[i]
j , the following

cost function is defined:

J :=

N
∑

i=1

(||eA
It

[i]
1 x̂1 +

∫ t
[i]
1

0

eA
I(t

[i]
1 −τ)BIdτ − x[i]

s (t
[i]
1 )||2

+||eA
IIt

[i]
2 x̂2 +

∫ t
[i]
2

0

eA
II(t

[i]
2 −τ)BIIdτ − x[i]

s (t
[i]
2 )||2).

(31)

and used within the following optimization to determine the

system (1):

min
AI ,BI ,AII ,BII

J (32)

s.t. constraints:

(26) − (28) for AI and AII (33)

(5), (6), (7), (8), (29). (34)

From the constraints included in this problem, the ones

references as (5) and (6) are numerically difficult, since

they contain the matrix exponential function and cannot

φc

I II

x1

x2

0

x̂2 =

[

0
x̂2,2

]

x̂1 =

[

0
x̂1,2

]

x(t
[i]
1 )

x
[i]
s (t

[i]
1 )

x(t
[i]
2 ) x

[i]
s (t

[i]
2 )

Fig. 3. The distance between φc (in red) and the limit cycle resulting from

(1) (in green) at all sampled times t
[i]
j

is minimized by optimization.
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be treated directly by solvers, such as YALMIP [26]. As

countermeasures, one can either approximate the matrix

exponential function by Taylor expansion with sufficiently

large order, or use a diagonalized form of the matrices AI

and AII (possible since the eigenvalues are distinct). For the

latter option, the eigenvalues:

λI
1 =

1

2

(

(aI11+aI22)+
√

(aI11 + aI22)
2−4(aI11a

I
22−aI12a

I
21)

)

λI
2 =

1

2

(

(aI11+aI22)−
√

(aI11 + aI22)
2−4(aI11a

I
22−aI12a

I
21)

)

of AI (same for AII ) and a corresponding matrix of eigen-

vectors V I are determined, and the equality (5) is written

as:

x̂2 =V I

[

eλ
I

1T1 0

0 eλ
I

2T1

]

(V I)−1x̂1

+ V I





eλ
I
1T1−1
λI

1
0

0 eλ
I
2T1−1
λI

2



 (V I)−1BI

(likewise for (6)).

B. Flexible Switching Points and Period Length

For solution of the optimization problem (32) - (34), the

switching points x̂1 and x̂2 as well as the semi-periods T1

and T2 could be treated as fixed, if determined a-priori from

the given limit cycle φc. This option, however, may lead to a

poor approximation of φc with regard to the distance to the

other sample points x
[i]
s (t

[i]
j ), or even to infeasibilities with

respect to the constraints in (33) - (34). Alternatively, x̂1, x̂2,

T1, and T2 can be treated as additional degrees of freedom

of the optimization, to let them take values within a bounded

distance to their counterparts in φc.

C. Continuity of the Gradient at Switching Points

The question of whether ẋ is permitted to be discontinuous

at the two switching points of the limit cycle of (1), or

whether it is enforced to be continuous, is treated differently

in literature, and leads to different properties with respect to

uniqueness and stability, see [27]. The work [24] presenting

Theorem 1 does not require the gradient to be continuous. As

a result, the gradient of the limit cycle obtained from solving

(32) - (34) may show sudden jumps at the switching points.

This outcome, can be undesired if the oscillating behavior of

the underlying system changes smoothly over time. To avoid

this situation, the difference of the gradients at the switching

points:

||AI x̂1 +BI −AII x̂1 −BII ||2, (35)

||AI x̂2 +BI −AII x̂2 −BII ||2

can be minimized in addition by extension of the cost

function J , or by introducing a new constraint to ensure (35)

to be bounded by an appropriate value.

x1

x2

5

0

−5

−2 −1 0

x̂2 =

[

0
2

]

x̂1 =

[

0
−2

]

x
[1]
s (t

[1]
1 )

x
[2]
s (t

[2]
1 )

x
[3]
s (t

[3]
1 )

I

Fig. 4. ẋ = AIx + BI for x1 < 0 with (36) shown in solid green,
determined from the data points shown as red circles, while x̂1, x̂2 are
marked by black circles. The arrows in black represent the phase portrait
of (36).

x1

x2

4

2

0

−2

0 0.5 1 1.5

x̂2 =

[

0
2

]

x̂1 =

[

0
−2

]

x
[1]
s (t

[1]
2 )

x
[2]
s (t

[2]
2 )

x
[3]
s (t

[3]
2 )

II

Fig. 5. ẋ = AIIx + BII for x1 > 0 with (37) shown in solid green.
Other data is marked as in Fig. 4.

IV. NUMERIC EXAMPLE

To illustrate and evaluate the performance of the proposed

method, the limit cycle φc as shown in Fig. 4 and 5 (marked

by the red-dashed line) is approximated by a system of

type (1). Note that due to the asymmetrical form of φc

on both sides of the switching line, the use of standard

oscillators, such as the van-der Pol one, would result in

poor approximation performance. Given the switching points

x̂1 = [0,−2]T and x̂2 = [0, 2]T of φc, as well as the semi-

periods T1 = 3.125 and T2 = 0.8090, a set of N = 3 points

x
[i]
s (t

[i]
j ) are taken into account for each side of the switching

line in the cost function J , namely:

Sample point Time t
[i]
1 Value

x
[1]
s (t

[1]
1 ) 0.8925 [−1.5945,−1.2636]T

x
[2]
s (t

[2]
1 ) 1.5175 [−1.9985,−0.0088]T

x
[3]
s (t

[3]
1 ) 2.8925 [−0.4910, 1.8931]T

Sample point Time t
[i]
2 Value

x
[1]
s (t

[1]
2 ) 0.0893 [0.2543, 2.0370]T

x
[2]
s (t

[2]
2 ) 0.2097 [0.4910, 1.8930]T

x
[3]
s (t

[3]
2 ) 0.6797 [0.4306,−0.5664]T
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50−5
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0

5

Fig. 6. Limit cycle (solid green) of system (1) parameterized with (36),(37)
for different initial values shown as red stars. The solid black lines represent
the transient behavior, together with the phase portrait of (36) (blue arrows)
and (37) (red arrows); stability and uniqueness of the limit cycle is evident.

The system (1) obtained from solving the optimization

problem (32) - (34) is parametrized by:

AI=

[

0.0261 1.2443
−0.0008 −0.0380

]

, BI=

[

−0.0154
1.2733

]

, (36)

AII=

[

−2.8338 1.5499
−4.3628 2.3678

]

, BII=

[

0.1748
−4.6737

]

, (37)

and the resulting limit cycle is marked in green in Fig. 4 -

6. It can be noticed from the first two figures that φc is well

approximated on both sides of the switching line. To further

evaluate the uniqueness and the stability of the obtained limit

cycle, the above system can also be examined by use of

Theorem 1 with m = 1.5838 > 0, n = −6.1478 < 0,

min{DI = 1 · 10−5, DII = 0.0518} > 0, T I = −0.0118,

T II = −0.4661, p = 0.1558 6= 0, as well as a sliding set Σs

obtained to the interval [−0.113, 0.012] on the x2-axis. All

conditions in the latter theorem are satisfied, which implies

that the resulting limit cycle is unique and asymptotically

stable. The convergence to the limit cycle is also illustrated

for different initial states in Fig. 6.

V. CONCLUSIONS

In this paper, a novel method to approximate limit cycles

obtained from experimental data by using PSAS is proposed.

A set of sufficient conditions are also proposed to ensure the

resulting PSAS has a unique and stable limit cycle. These

conditions are later used in an optimization-based approach

to compute the model parameters for the best approximation

(wrt. a selected cost function). Future work aims at extending

the method to higher-order systems and to more switching

lines.
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