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Abstract— Ensuring stability of discrete-time (DT) linear
parameter-varying (LPV) input-output (IO) models estimated
via system identification methods is a challenging problem as
known stability constraints can only be numerically verified,
e.g., through solving Linear Matrix Inequalities. In this paper,
an unconstrained DT-LPV-IO parameterization is developed
which gives a stable model for any choice of model parameters.
To achieve this, it is shown that all quadratically stable DT-
LPV-IO models can be generated by a mapping of transformed
coefficient functions that are constrained to the unit ball, i.e.,
a small-gain condition. The unit ball is then reparameterized
through a Cayley transformation, resulting in an unconstrained
parameterization of all quadratically stable DT-LPV-IO models.
As a special case, an unconstrained parameterization of all
stable DT linear time-invariant transfer functions is obtained.
Identification using the stable DT-LPV-IO model with neural
network coefficient functions is demonstrated on a simulation
example of a parameter-varying mass-damper-spring system.

I. INTRODUCTION

Ever stringent performance requirements from practice ne-
cessitate to also model and identify the nonlinear behavior of
systems [1]. These nonlinear characteristics make modeling
these systems based on first-principles increasingly difficult
and time-consuming, such that it becomes necessary to adopt
data-driven system modeling tools, i.e., system identification.

Linear parameter-varying (LPV) systems [2] are a power-
ful surrogate system class for capturing nonlinear and time-
varying behaviour. In LPV systems, the signal relations are
linear, but the coefficients describing these relations are func-
tions of a time-varying scheduling signal ρ that is assumed
to be measurable online. The resulting parameter-varying
behavior can embed certain nonlinear characteristics under
the correct choice of ρ [3]. Data-driven system identification
methods for LPV systems have been thoroughly developed
in the last decades, both for input-output (IO) [4]–[6] as well
as state-space (SS) representations [7], [8].

Even though many systems to be modeled in an LPV form
are known to be stable, ensuring stability of the identified
model is a challenging problem for two reasons. First, the
parameter estimates are sensitive to modeling errors, finite
data effects, and measurement noise, such that the identified
model can be unstable even if the underlying system is stable
[9], [10]. Second and most importantly, for LPV models there
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is no analytic explicit constraint on the model parameters that
ensures stability. Instead, stability can only be verified by
optimization, e.g., by testing the feasibility of Linear Matrix
Inequalities (LMIs) representing a stability condition [11].

To ensure stability of the identified model, recently uncon-
strained state-space (SS) models have been developed that
are stable for any choice of model parameters [12]–[14]. This
is achieved by reparameterizing the stability constraint in the
form of an LMI through new unconstrained parameters in
a necessary and sufficient manner, such for any choice in
these new parameters, the LMI is satisfied, i.e., stability is
guaranteed. In [12], such an unconstrained parameterization
is developed for discrete-time (DT) Lur’e models with neural
network nonlinearities. This technique has subsequently been
applied to continuous-time Lur’e models [13] and discrete-
time LPV SS models [14].

In contrast, to guarantee stability of an identified LPV
input-output (LPV-IO) model, current methods either ex-
plicitly enforce a stability constraint during identification
[15]–[17] or restrict the model class such that it is a priori
guaranteed to be stable [18], [19]. However, enforcing a
stability constraint - usually in the form of an LMI or sum of
squares condition - during identification severely increasing
the computational complexity of the optimization [9], [20].
Alternatively, restricting the model class is usually done
according to a simple but often conservative approximation
of all stable models, limiting the representation capability.

To overcome the computational complexity and conser-
vatism of the previous approaches, in this paper it is shown
that all quadratically stable (QS) DT-LPV-IO models can
be generated by a mapping of unconstrained transformed
coefficient functions. The approach is based on reparame-
terizating the LPV coefficient functions such that the LMI
representing the QS condition is satisfied for any choice of
model parameters, similar to the state-space case [12]–[14].
A consequence of this reparameterization is that still only
QS systems can be represented. Thus, an LPV system that
is stable but not quadratically cannot be exactly represented.
However, quadratic stability already represents a significant
improvement over the current conservative approximations,
and constrained approaches usually also consider QS.

The main contribution of this paper is an unconstrained pa-
rameterization of all quadratically stable DT-LPV-IO models,
allowing for unconstrained system identification with a priori
stability guarantees. The set of stable DT transfer functions
is obtained as a special case. The main contribution consists
of the following sub-contributions.
C1) A criterion in the form of a matrix inequality to

test stability of LPV-IO models (Section III), and a
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corresponding graphical interpretation of the allowed
coefficient function value sets in which stability is
guaranteed (Section V).

C2) A reparameterization of the coefficient functions of
LPV-IO models such that above criterion is satisfied for
any choice of the new model parameters (Section IV).

C3) A simulation example demonstrating the applicability
of the developed method (Section V).

Notation: ∥·∥2 represents the Euclidean vector norm. Z≥0

represents the set of non-negative integers. A symmetric
matrix P ∈ Rn×n is said to be positive definite if x⊤Px >
0 ∀x ∈ Rn \ {0}, also denoted by P ≻ 0 and P ∈ S≻0.
Similarly, P ≺ 0 and P ∈ Sn≺0 denote negative-definiteness.

II. PROBLEM FORMULATION

Consider the LPV-IO model with input uk ∈ R and output
yk ∈ R represented by the difference equation

yk = −
na∑
i=1

ai(ρk)yk−i +

nb−1∑
i=0

bi(ρk)uk−i, (1)

with time index k ∈ Z≥0, model order na ≥ 0, nb ≥ 1,
and coefficient functions ai(ρ), bi(ρ) : P → R describing
the dependence of the difference equation on the scheduling
signal ρk ∈ P ⊆ Rnρ .

The coefficient functions are parameterized by a function
gϕ(ρ) depending on model parameters ϕ ∈ Rnϕ , i.e.,

gϕ(ρ) =
[
a1(ρ) a2(ρ) · · · bnb−1(ρ)

]⊤
. (2)

Examples include affine coefficient functions, e.g., gaff
ϕ (ρ)=

Eρ + c with ϕ = vec(E, c), polynomial basis function
expansions [6], e.g., gpol

ϕ (ρ) = c+E1ρ+E2ρ
2+ . . .+Edρ

d

with ϕ = vec(E1, . . . , Ed, c), or a neural network [21], [22]

gNN
ϕ = ELσ(EL−1σ(· · · (E0ρ+ c0) · · · ) + cL−1) + cL,

with nonlinear activation function σ, e.g., σ(·) = tanh(·),
and parameters ϕ = vec(E0, c0, . . . EL, cL).

Remark 1 For ease of notation, uk, yk ∈ R is considered.
However, all results immediately extend to the setting in
which uk ∈ Rnu , yk ∈ Rny .

Given model class (1) and a parameterization of gϕ(ρ), a
natural question is if the model is stable for the chosen model
parameters ϕ and the relevant range of ρ. Here, stability is
defined as the model output yk asymptotically going to zero
for zero input, as defined next.

Definition 2 Given a parameterization gϕ : P → Rna+nb

with parameters ϕ ∈ Rnϕ , the LPV-IO model (1) is said
to be uniformly asymptotically stable if for any time k̄, any
scheduling signal ρ with ρk ∈ P, and any input u with uk =
0 ∀k > k̄, the response yk of (1) satisfies limk→∞ yk = 0.

The goal of this paper then is to parameterize gϕ(ρ) in (2)
in such a way that LPV-IO model (1) is stable for any choice
of ϕ, i.e., guaranteeing stability without constraints, for any
parameterization of gϕ (e.g., NN). Of course for stability
such a gϕ should necessarily result in finite ai(ρ), bi(ρ) for
all possible ρ, i.e., ∥gϕ(ρ)∥2 < ∞ ∀ρ ∈ P, which is taken
as a precondition in the remainder of the paper.

III. STABLE LPV-IO MODELS

To obtain an unconstrained parameterization of (1), first
a condition for determining stability of (1) as in Defintion
2 in terms of ai(ρ), bi(ρ) is required. This section derives
such a stability condition in the form of a matrix inequality,
constituting contribution C1.

A. Maximum State-space Representation
To derive a stability condition, first it is required to define

a state for (1) such that standard Lyapunov techniques can
be used. To avoid issues around minimum realizations in
absence of any structure in the coefficient functions [23], a
non-minimum state-space representation for (1) is used.

More specifically, (1) can be equivalently represented as
(4) with state x storing the previous inputs and outputs as

xk =
[
ȳ⊤k ū⊤

k

]⊤∈ Rna+nb

ȳk =
[
yk−1 . . . yk−na

]⊤∈ Rna

ūk =
[
uk−1 . . . uk−nb+1

]⊤∈ Rnb−1.

(3)

Representation (4) is compactly written as

xk+1 = A(ρk)xk +B(ρk)uk

yk = C(ρk)xk +D(ρk)uk,
(5)

where

A(ρ) =

[
F −GK(ρ) GL(ρ)

0 Fb

]
B(ρ) =

[
Gb0(ρ)
Gb

]
C(ρ) =

[
−K(ρ) L(ρ)

]
D(ρ) = b0(ρ). (6)

Matrices F, Fb and G,Gb correspond to a discrete-time
buffer system that collects past samples of yk and uk, i.e.,

F =

[
0 0

Ina−1 0

]
∈ Rna×na G =

[
1
0

]
∈ Rna , (7)

Fb =

[
0 0

Inb−2 0

]
∈ Rnb−1×nb−1 Gb =

[
1
0

]
∈ Rnb−1,

with 0 entries of appropriate dimensions. K(ρ), L(ρ) collect
coefficient functions ai(ρ), bi(ρ) as

K(ρ) =
[
a1(ρ) . . . ana−1(ρ) ana(ρ)

]
∈ Rna

L(ρ) =
[
b1(ρ) . . . bnb−2(ρ) bnb−1(ρ)

]
∈ Rnb−1.

(8)

Although representation (4) is not a minimal representation
of (1), if (1) is controllable and observable, (4) is controllable
and detectable, hence it can be used to directly characterize
stability of (1).

B. Quadratically Stable LPV-IO Models
Representation (5) allows for using standard Lyapunov

techniques to determine stability. Specifically, stability can
be analyzed by considering a common quadratic Lyapunov
function, as formalized next.

Lemma 3 Given parameters ϕ ∈ Rnϕ , the LPV-IO model
(1) is stable as in Definition 2 if there exists a P ≻ 0 such
that

P −A⊤(ρ)PA(ρ) ≻ 0 ∀ρ ∈ P. (9)

The proof follows by standard Lyapunov arguments. All
LPV-IO models that satisfy Lemma 3 are called quadratically
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xk+1 =



−a1(ρk) −a2(ρk) . . . −ana−1(ρk) −ana
(ρk) b1(ρk) b2(ρk) . . . bnb−2(ρk) bnb−1(ρk)

1 ∅ 0 0 0 . . . 0 0
1 0 0 0 . . . 0 0

. . .
...

...
...

...
...

∅ 1 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 1 ∅ 0
0 0 . . . 0 0 1 0
...

...
...

...
. . .

...
0 0 . . . 0 0 ∅ 1 0


xk +



b0(ρk)
0
0
...
0
1
0
0
...
0


uk (4a)

yk =
[
−a1(ρk) −a2(ρk) . . . −ana−1(ρk) −ana

(ρk) b1(ρk) b2(ρk) . . . bnb−2(ρk) bnb−1(ρk)
]
xk + b0(ρk)uk (4b)

stable (QS). Condition (9) provides a computational test for
determining QS of the LPV-IO model class (1), showing
that determining stability of IO parameterizations can be
addressed using state-space methods.

IV. UNCONSTRAINED PARAMETERIZATION OF STABLE
LPV-IO MODELS

In this section, it is shown that there exists P,K(ρ), L(ρ)
that satisfy (9) if and only if there exist unconstrained
variables X(ρ), Z(ρ),W related to P,K(ρ) in a one-to-
one way and that L(ρ) is irrelevant for satisfying (9). These
relations then allow for an unconstrained reparameterization
of the coefficient functions such that (9) is always satisfied,
constituting Contribution C2. Consequently, any choice of
model parameters ϕ of this unconstrained reparameterization
results in coefficient functions for which (1) is stable.

A. Eliminating the Influence of L(ρ)
First it is shown that only F−GK(ρ) has to be considered

to satisfy the stability condition (9), i.e., L(ρ) is already
unconstrained. Intuitively, since A(ρ) is upper block diago-
nal, only its diagonal blocks F −GK(ρ) and Fb determine
stability. However, Fb represents a simple LTI chain of
delays and is trivially stable, meaning that the stability of
F −GK(ρ) determines the stability of (1). These claims are
formalized by the following lemma.

Lemma 4 For a given A(ρ) as in (6), there exists a P ≻ 0
satisfying (9) if and only if there exists a P ≻ 0 such that

P − (F −GK(ρ))⊤P (F −GK(ρ)) ≻ 0 ∀ρ ∈ P, (10)

and ∥L(ρ)∥2 < ∞ ∀ρ ∈ P.

Thus, in the remainder, only (10) needs to be considered,
parameterizing all quadratic Lyapunov functions for F −
GK(ρ), i.e., for the recurrence yk = −

∑na

i=1 ai(ρ)yk−i.

B. Convex Reparameterization of K(ρ) for Stability
As a step towards an unconstrained reparameterization,

this subsection reparameterizes all P,K(ρ) that satisfy (10)
in terms of a convex set of variables W and M(ρ), turning
constraint (10) that is non-convex in P,K(ρ) into a convex
one in W,M(ρ). Condition (10) is rewritten as follows.

Lemma 5 For a given K(ρ) as in (6), there exists a P ≻ 0
satisfying stability condition (9) if and only if P , K(ρ) satisfy

P − F⊤PF + F⊤PG(G⊤PG)−1G⊤PF

−H⊤(ρ)G⊤PGH(ρ) ≻ 0 ∀ρ ∈ P,
(11)

with
H(ρ) = K(ρ)− (G⊤PG)−1G⊤PF. (12)

Proof. The proof is based on completing the squares of
the quadratic term (K⊤(ρ)G⊤PGK(ρ)) and linear term
(F⊤PGK(ρ)) in (10). First, note that H(ρ) is well-defined:
by the structure of G, G⊤PG is the (1,1) entry of P , which
is positive as P ≻ 0, and thus G⊤PG ∈ R>0 and its inverse
are well-defined. Second, with H(ρ) in (12), it holds that

−H⊤(ρ)G⊤PGH(ρ) = K⊤(ρ)G⊤PF + F⊤PGK(ρ)

−K⊤(ρ)G⊤PGK(ρ)− F⊤PG(G⊤PG)−1G⊤PF. (13)

Then expanding (10) and substituting (13) gives (11).

While Lemma 5 is just a reformulation of (10), it is useful
for characterizing all candidate P that should be considered
for (10), as formalized by the following corollary.

Corollary 6 Any P ≻ 0 satisfying (10) has to satisfy

P − F⊤PF + F⊤PG(G⊤PG)−1G⊤PF ≻ 0. (14)

This corollary immediately follows from (11) since
H⊤(ρ)G⊤PGH(ρ) ≻ 0. It illustrates that not any P ≻ 0 can
be a Lyapunov function because F − GK(ρ) is structured:
P needs to additionally satisfy the Riccati inequality (14).
Given this specification of all P that should be considered,
all solutions K(ρ), P that satisfy (10) can be reparameterized
in terms of a convex set of matrices, as formalized next.

Theorem 7 The LPV-IO model (1) satisfies (10) with a P ≻
0 if and only if there exists an M(ρ) : P → R1×na with
M⊤(ρ)M(ρ) ≺ I ∀ρ ∈ P and W ∈ Sna

≻0 such that

P − F⊤PF + F⊤PG(G⊤PG)−1G⊤PF = W (15)

K(ρ) = (G⊤PG)−1G⊤PF +X−1
Q M(ρ)XW (16)

where XW , XQ are matrix factorizations given by W =
X⊤

WXW , G⊤PG = X⊤
QXQ.

Proof. (10) ⇒ (15)-(16): If (10) is satisfied with a P ≻ 0,
then, by Corollary 6, P satisfies (14). Thus there exists a
W ≻ 0 such that (15) is satisfied, and W can be factorized
as W = X⊤

WXW with XW full rank. Then (11) reads as

X⊤
WXW −H⊤(ρ)G⊤PGH(ρ) ≻ 0 ∀ρ ∈ P, (17)

with H(ρ) as defined in (12). Since P ≻ 0, also G⊤PG ≻
0, such that it can be factorized as G⊤PG = X⊤

QXQ.
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Multiplying (17) on the left with X−⊤
W and on the right with

X−1
W , and substituting G⊤PG = X⊤

QXQ results in

I −X−⊤
W H⊤(ρ)X⊤

QXQH(ρ)X−1
W ≻ 0 ∀ρ ∈ P. (18)

Now define M(ρ) = XQH(ρ)X−1
W such that M(ρ) satisfies

I ≻ M⊤(ρ)M(ρ) ∀ρ ∈ P. Then M(ρ) is related to H(ρ) by
H(ρ) = X−1

Q M(ρ)XW and thus to K(ρ) by (12) giving

K(ρ) = (G⊤PG)−1G⊤PF +XQM(ρ)X−1
W . (19)

(10) ⇐ (15)-(16): Given any W ≻ 0, by controllability
of F,G, Riccati equation (15) has a unique positive definite
solution P ≻ 0 [24]. Then, given this P ≻ 0 and M(ρ),
construct K(ρ) as in (16) and substitute it in (10) to obtain

P − (F −GK(ρ))⊤P (F −GK(ρ)) = P − F⊤PF

+ F⊤PG
(
(G⊤PG)−1G⊤PF +X−1

Q M(ρ)XW

)
+
(
F⊤PG(G⊤PG)−1 +X⊤

WM⊤(ρ)X−⊤
Q

)
G⊤PF

− F⊤PG(G⊤PG)−1G⊤PG(G⊤PG)−1G⊤PF

−X⊤
WM⊤(ρ)X−⊤

Q G⊤PF − F⊤PGX−1
Q M(ρ)XW

−X⊤
WM⊤(ρ)X−⊤

Q G⊤PGX−1
Q M(ρ)XW ,

(20)

which can be simplified to

P − F⊤PF + F⊤PG(G⊤PG)−1G⊤PF

−X⊤
WM⊤(ρ)X−⊤

Q G⊤PGX−1
Q M(ρ)XW .

(21)

Using (15) and G⊤PG = X⊤
QXQ, this is equivalent to

W−X⊤
WM⊤(ρ)M(ρ)XW =X⊤

W(I−M⊤(ρ)M(ρ))XW ≻ 0,

where positive-definiteness follows by M⊤(ρ)M(ρ)≺I ∀ρ ∈
P, i.e., the constructed K(ρ), P satisfy (9).

Theorem 7 can be interpreted as a small-gain result, stating
that M(ρ) should be norm-bounded by 1 for all ρ. Theorem
7 then states that all coefficient functions K(ρ) that result
in a quadratically stable LPV-IO model can be generated
from transformed coefficient functions M(ρ) constrained to
the unit ball, and a rotation, scaling and translation of this
unit ball based on P through (16). The set of allowable P is
described by the image of the positive-definite cone W ≻ 0
under Riccati equation (15). Last, since {W | W ≻ 0} and
{M(ρ) | M⊤(ρ)M(ρ) ≺ I} are convex sets, Theorem 7
shows that the set of all quadratically stable LPV-IO models
is convex in W and transformed coefficient functions M(ρ).

C. Unconstrained Reparameterization of K(ρ) for Stability
To obtain an unconstrained parameterization, the convex

constraints on variables W,M(ρ) of Theorem 7 are repa-
rameterized in terms of unconstrained variables XW related
to W and XM (ρ), ZM (ρ) related to M(ρ). Specifically, the
convex set of norm-bounded matrices is generated from free
matrices through a Cayley transformation, as is defined next.

Lemma 8 Given M ∈ Rn×m with n ≥ m. Then M⊤M ≺ I
if and only if there exist XM , YM ∈ Rm×m, ZM ∈ Rn−m×m

with XM full rank such that

M =

[
(I −N)(I +N)−1

−2ZM (I +N)−1

]
(22)

with N = X⊤
MXM + YM − Y ⊤

M+ Z⊤
MZM .

Remark 9 The rank condition on XM is not restrictive:
without loss of generality, XM can be chosen upper triangu-
lar with its diagonal equal to ed with d ∈ Rm a free vector.

For a proof, see [14, Lemma 1]. Lemma 8 states that any
matrix that is norm-bounded by 1 can be formed through
a Cayley transformation of a passive matrix N , that is
formed as a positive definite term X⊤X + Z⊤Z and a
skew-symmetric term Y − Y ⊤. Given Lemma 8, the convex
constraint M⊤(ρ)M(ρ) ≺ I of Theorem 7 is satisfied if and
only if there exist unconstrained matrix functions related to
M(ρ) through this Cayley transformation, as shown next.

Theorem 10 The LPV-IO model (1) satisfies (10) with P ≻ 0
if and only if there exist XM (ρ) : P → R, ZM (ρ) : P →
Rna−1×1, XW ∈ Rna×na with XM (ρ) ̸= 0 ∀ρ ∈ P and XW

full rank such that

W = X⊤
WXW M(ρ) =

[
Cayley(N(ρ))

−2Z(ρ)(I +N(ρ))−1

]⊤
, (23)

with N(ρ) = X⊤
M(ρ)XM (ρ) + Z⊤

M(ρ)ZM (ρ) and W , M(ρ)
satisfying (15)-(16).

The proof of Theorem 10 follows by combining Theorem
7 with Lemma 8. In the above theorem, XM (ρ) and ZM (ρ)
can be any bounded function of ρ and the transformations
(23),(15),(16) guarantee that the resulting LPV-IO model
with K(ρ) is stable, with P ≻0 a Lyapunov function for F−
GK(ρ) as in (10). Thus, an unconstrained parameterization
of all quadratically stable DT-LPV-IO models is obtained.

Remark 11 Note that for a non-varying ρ, Theorem 10 gives
an unconstrained reparameterization of all stable linear
time-invariant DT transfer functions.

Zooming out to model class (1) with coefficient functions
ai(ρ), bi(ρ) described by gϕ as in (2), Theorem 10 states that
if a quadratically stable DT-LPV-IO model is desired, it can
be represented in an unconstrained way by a gϕ that consists
two elements: matrix functions XM (ρ), ZM (ρ), L(ρ) that
describe the coefficient functions in a transformed space, and
a transformation TXW

that maps XM (ρ), ZM (ρ) to K(ρ)
dependent on XW . Matrix functions XM (ρ), ZM (ρ), L(ρ)
can be any parameterized function, e.g., an affine map or
neural network, see also Section II, and TXW

ensures that
the DT-LPV-IO model with the resulting ai(ρ), bi(ρ) is QS.
The QS DT-LPV-IO model is visualized in Fig. 1.

V. APPLICATION TO SYSTEM IDENTIFICATION

In this section, the unconstrained parameterization of
quadratically stable DT-LPV-IO models of Theorem 10 is
applied in a system identification setup1.

A. LPV Output-Error System Identification Setup
The considered data-generating system with process com-

ponent G : uk, ρk → ỹk with uk, ρk, ỹk ∈ R is given by

uk = mδ2ỹk + cδỹk + k(ρk)ỹk yk = ỹk + vk, (24)

1The code used to generate the example can be found at https://gi
tlab.tue.nl/kon/stable-lpv-io-estimation
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a1(ρk)
...

ana(ρk)

b0(ρk)
...

bnb(ρk)



C
ay
ley

XW

M(ρ)ρk

P

yk = −
na∑
i=1

ai(ρk)yk−i +
nb−1∑
i=0

bi(ρk)uk−i

uk yk

K(ρ)
[
XM (ρ)
ZM (ρ)

] TXW

Riccati
W

L(ρ)

gϕ

(GTPG)−1GTPF

+X−1
Q M(ρ)XW

XT
QXQ = GTPGXT

WXW

Fig. 1. Diagram of the stable DT-LPV-IO model class. For any value
of XW , and for any parameterized functions XM (ρ), ZM (ρ), L(ρ), the
coefficient functions ai(ρ), bi(ρ) result in a stable DT-LPV-IO model.

with yk ∈ R the measurement of the true output ỹk
corrupted by i.i.d. white noise v with E(v2) = σ2

v , resulting
in an LPV output-error (OE) identification setup2. Here
δ = (1 − q−1)/Ts is the backward difference operator, q
is the forward-time shift, e.g., qyk = yk+1, and Ts is the
sampling time. Consequently, G can be recognized as the
Euler discretization of a mass-damper-spring system with
parameter-varying stiffness k(ρ) and fixed mass and damping
m, d. By expanding δ, G can be written as (1) with na =
2, nb = 1. Lastly, an LMI check shows that G is QS, such
that it can be represented by a stable DT-LPV-IO model.

In this simulation example, ρ ∈ P = [0, 1], Ts = 1 and
the true coefficient functions are given by

k(ρ) = 1− (1 + e−7ρ+7)−1, (25)

and m = 1, d = 0.1, where k(ρ) represents, e.g., spring
softening as a function of temperature. These coefficient
functions result in frozen LTI behaviours of G whose fre-
quency responses are visualized in Fig. 2.

A dataset D = {uk, yk, ρk}Nk=1 of length N = 1000
samples is generated by G with uk =

∑10
i=1 sin(2πfik/Ts),

a multisine with frequencies fi linearly spaced between
0.01 and 0.1 Hz, and ρk = 1 − kN−1 a linear scheduling
trajectory. The noise variance is set as σ2

v = 0.1 for signal-
to-noise ratio 10 log10(∥ỹ∥2/∥v∥2) = 19.5 dB.

B. Model Parameterization and Identification Criterion
A stable DT-LPV-IO model with na = 2, nb = 1 is chosen

as a model for G, i.e., the model has the same order as
G. Then any parameterization for L(ρ), XM (ρk), ZM (ρk)
can be considered, and the model can be optimized us-
ing prediction-error minimization based on unconstrained
gradient-based optimization [6], [22].

Specifically, in this paper, the transformed coefficient
functions XM (ρ), ZM (ρ), L(ρ) are parameterized as[
XM ZM L

]
(ρ) = E2σ(E1σ(E0ρ+ c0))+ c1)+ c2, (26)

with σ = tanh, E0 ∈ R5×1, E1 ∈ R5×5, E2 ∈
R3×5, c0 ∈ R5, c1 ∈ R5, c2 ∈ R3, i.e., a neural
network with 2 hidden layers of 5 nodes each and 3
outputs since L(ρk), XM (ρk), ZM (ρk) ∈ R for na =

2More generic noise model structures can easily be incorporated, but for
ease of notation, an LPV-OE setting is considered.

Fig. 2. Bode plot of frozen dynamics of G(δ, ρ), displaying a resonance
with scheduling-dependent stiffness.

Fig. 3. Prediction residuals y− ŷϕ ( ) and noise realization y− ỹ ( )
for the validation dataset. The prediction residuals coincide with the noise,
i.e., the LPV-IO model (1) with neural network coefficient functions is able
to learn all dynamics while simultaneously guaranteeing stability.

2, nb = 1. Consequently, the model parameters are ϕ =
vec(E0, c0, . . . E2, c2, XW ) ∈ Rnϕ with XW ∈ R2×2 upper
triangular such that nϕ = 58 + 3.

In the above OE setting with noiseless ρk, the model
parameters ϕ are found by minimizing the ℓ2 loss of the
prediction error VN (ϕ) as ϕ∗ = argminϕ VN (ϕ) with

VN (ϕ) =

√√√√ 1

N

N∑
k=1

(yk − ŷk,ϕ)2, (27)

where ŷk,ϕ is the simulated model response.
Criterion (27) is optimized using the Levenberg-Marquardt

optimization algorithm, resulting in a training time of 37
seconds on an Z-book G5 using a Intel Core i7-8750H CPU.

C. Identification with Stability Guarantees
For the training dataset, the estimated parameter vector

ϕ∗ achieves VN (ϕ∗) = 0.313, corresponding to the noise
level with σv = 0.316, illustrating that the only remaining
contribution to VN (ϕ∗) is noise that cannot be predicted. For
a similar but different validation dataset, VN (ϕ∗) = 0.320,
indicating that the model can generalize well. The residuals
y − ŷϕ for this validation dataset are shown in Fig. 3.

D. Visualization of Stability Sets
In this section, the evolution of the coefficient set that

can be represented by the DT-LPV-IO model during the
iterations of the optimization is visualized, i.e., the set KP

in which ai(ρ), bi(ρ) can take values ∀ρ by construction, see
Theorem 10. Specifically, given XW during optimization, all
coefficients K(ρ) =

[
a1(ρ) a2(ρ)

]
corresponding to this

XW can be constructed using (15),(16),(23), resulting in the
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Fig. 4. Coefficient set KP = {K(ρ) = [a1(ρ), a2(ρ)] | P ≻
0, (F − GK(ρ))⊤P (F − GK(ρ)) − P ≺ 0 ∀ρ ∈ P}, i.e., the set of all
possible values K(ρ) such that LPV IO-model (5) is stable with Lyapunov
certificate P at iteration 1 ( ), 10 ( ), and 100 ( ) of the optimization.
P is optimized such that the true coefficient functions ( ) are contained
within the stable coefficient set. Optimizing P thus corresponds to rotating,
scaling and translating this set. All stable coefficient sets are included in
the stability triangle that describes the stable coefficients for the LTI case
( ), and the full triangle can be represented by varying P .

coefficient sets KP of Fig. 4. The following observations are
made.

• Mapping (16) corresponds to scaling, rotating and trans-
lating the unit ball ∥M(ρ)∥22 < 1, resulting in the
ellipsoidal shape of KP . Thus, P can be thought of
as describing all possible rotations, translations and
scalings of K(ρ) such that LPV-IO model (1) is stable.

• Graphically, each KP visualizes a set in which the
function K(ρ) can generate outputs for the LPV-IO
model to be stable. Thus, the true coefficient functions
necessarily have to be fully contained in a KP for
K(ρ) to be able to describe them. Thus, optimizing XW

is equivalent to transforming the ellipsoid such that it
encapsulates the true coefficient functions.

• For an LPV-IO model to be quadratically stable, a
KP , corresponding to some P , must exist which fully
encapsulates the true coefficient functions. Fig. 4 thus
provides a graphical tool for accessing stability proper-
ties of an LPV-IO model.

VI. CONCLUSION

In this paper, the class of all quadratically stable DT-
LPV-IO models is reparameterized in terms of unconstrained
model parameters. This unconstrained parameterization is
achieved through reparameterizing the quadratic stability
condition in a necessary and sufficient way through a Riccati
equation and a Cayley transformation. The parameterization
allows for using arbitrary dependency of the scheduling
coefficients on the scheduling signal ρ, e.g., a polynomial
or neural network dependency.

The resulting stable DT-LPV-IO model class enables sys-
tem identification with a priori stability guarantees on the

identified model in the presence of modeling errors and
measurement noise. Since it does not require enforcing an
LMI condition during estimation, models within this class
can be identified using standard unconstrained optimization
routines, significantly decreasing the computational complex-
ity.
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[4] B. Bamieh and L. Giarré, “Identification of linear parameter varying
models,” Int. J. Robust Nonlinear Control, vol. 12 (9), 2002.
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