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Abstract— Treating dyspareunia, i.e., pain during vaginal
penetrative sexual intercourse, may include vaginal dilation
exercises that are often perceived as uncomfortable (or worse)
by patients. Being able to accurately predict the pain and
fear levels of these subjects during the treatments is thus in-
strumental in designing effective personalized dilation patterns
for therapies. Toward this goal, in this paper, we combine
an existing qualitative model of vaginal pressure, pain, and
fear relations with experimental data obtained during medical
trials to derive a parametric model. More precisely, we: 1)
analyze how to deal with the identifiability issues caused by the
presence of uninterpretable parameters in the original model,
2) use this analysis to derive a novel model that is better suited
for data-driven learning purposes, 3) perform a parameter
identification using weighted least squares on online and offline
measurement data, and 4) test the capability of the overall
approach in predicting signals that are proxies of fear and pain
levels, comparing the performance one obtains with this refined
approach against purely black box Autoregressive moving
average exogenous (ARMAX) models. The results indicate that
the proposed method works best as a predictive model of fear
and pain levels in response to visual and pressure stimuli but
still lacks a high level of generalizability.

I. INTRODUCTION

Genito-pelvic pain/penetration disorders (GPPPDs), for
example, painful experiences during sexual intercourse, is
estimated to affect a great number of people with vaginas
(e.g., 30–40 % are estimated to suffer from prolonged periods
of painful sexual intercourse experiences at some point
during their lives [1, Chap. 2]). GPPPDs may be caused
by physiological, psychological, and social factors, and the
union of these [1, Chap. 3]. Further, interpersonal and related
factors such as a hostile partner and other psycho-social
impacts contribute to the maintenance, exacerbation, and
chronicization of GPPPDs. Affected people are more likely
to develop co-morbid sexual difficulties, negative affect, and
relationship concerns [1, Chap. 3], which all significantly
diminish their quality of life.

Treatments for GPPPDs include psychological treatments,
e.g., cognitive behavioral therapies, and physiological treat-
ments such as the use of Vaginal Trainers (VTs) [2]. VTs, or
dilators, are tube-shaped devices used to stretch the vaginal
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duct. They often range from small (the size of a finger) to
large. VTs are a widely recommended treatment for GPPPDs
and are a required part of the postoperative care regimen
following vaginoplasty surgery [2], [3].

VTs as a treatment method are invasive and lengthy,
and many patients experience intense pain and failure when
trying to insert even the smallest dilator [4]. Treatment drop-
out rates force women to live with their debilitating disorders.
Thus, there is an obvious societal need to adapt physiological
treatments for GPPPDs to increase their appeal and consider
the psychological impact of invasive treatment methods.

A. Literature review

When it comes to existing models in literature for the
dynamics of genital pain during penetrative intercourse, it
is known that fear induces the activity of the pelvic floor
muscles, [5], [6]. Further, if the pelvic floor muscles are
active when attempting vaginal penetration, both lubrication
and vasocongestion levels decrease since the increased pres-
sure on the vulvar and vaginal skin leads to reduced blood
flow and lubrication [7], [8]. Importantly, this relationship
depends on the timing: initial stages of arousal lead to an
initial relaxation of the pelvic floor. As arousal increases,
the deeper-located pelvic floor muscles contract to achieve
the orgasmic phase, but these contractions do not affect the
lubrication and vasocongestion [6]. The previous implica-
tions then suggest that low physiological arousal or active
pelvic floor muscles lead to genital pain when penetration is
attempted. This logical chain is consistent with other existing
medical literature on the subject, e.g., [9]–[11].

To our knowledge, the relations mentioned above have not
been interconnected using explainable ordinary differential
equations. Indeed, all the models in the aforementioned med-
ical literature focus on understanding implications and cause-
effect relationships; in this specific field of medicine, though,
there is a lack of mathematical models that can be used
to build forecasters of when a specific person will start for
example developing unbearable pain if subjected to stimuli.
Towards closing this gap, [12] proposed a model to describe
the dynamics of pleasure and arousal response to visual
stimuli and vaginal pressure called the Circle Of Pleasure
(COP), seen on the left side of Figure 1 and the pressure vs.
pain mechanisms referred to as the Circle Of Fear (COF)
and shown on the right side of Figure 1. However, even
though the model was based on the implications published
in the medical literature and expert knowledge, it is yet
to be validated with data nor exploited for creating further
understandings of how treatments can be improved.
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Fig. 1: Schematic representation of the qualitative model
from [12]. This model assumes erotic stimuli to inhibit
fear by diminishing fearful thoughts. Pressure stimuli are
instead assumed to stimulate muscular tension, and thus
potentially lead to pain. Depending on the psychophysical
status, pressure stimuli are thus supposed to potentially lead
to either pain or pleasure.

B. Statement of contributions

From the domain side, we contribute with increasing the
scientific understanding of understanding the effects of pain
and fear, and provide models that may help designing vaginal
dilation therapies with a smaller likelihood of development
of undesirable effects in patients. From the methodological
side, we:

1) extend upon the qualitative model in [12] to make it
suitable for data-driven identification purposes;

2) propose a method for dealing with ill-posed problems
with uninterpretable parameters and a combination of
both online and offline measurements;

3) analyze the performance of the proposed grey-box
model compared to black-box methods with interpolated
data; and

4) perform a practical identifiability analysis that both
indicates which experiment design factors are important
in this specific domain, but that also may serve as a
template for similar analyses in other contexts.

C. Organization of the manuscript

Section II presents the medical trial setting and the col-
lected data. Section III extends the model in [12] to make it
more suitable for quantitative analysis. Section IV presents
methods for dealing with ill-posed problems, identifiability,
unknown parameter spaces, and online-offline measurements.
Section V presents the results from our quantitative analyses
for the COF, followed by Section VI, which concludes the
manuscript with some remarks on what methods could be
adopted to improve the model further.

II. MEDICAL TRIAL SETUP AND DATA

Medical trials were executed at Maastricht University
Hospital to investigate how the Pelvic Floor Muscles (PFMs)

Fig. 2: Picture of the VPI (left) and schematic description
of its utilization (right). The balloon is gradually filled with
water by a controlled pump. The device measures exerted
pressure by sensing the force exerted by the pump.

respond to forced vaginal dilation [13]. The data in this
trial comprises the responses of healthy people with vaginas
to the gradual vaginal dilation induced by an inflatable
balloon inserted at the introitus while watching sequences
of different 5-minute-long erotic or non-erotic films in a
controlled laboratory environment. The medical device is
called a Vaginal Pressure Inducer (VPI), shown in Figure 2.

A. Participants and experimental protocol

Given the limitations about the number of recruitable
participants, and aiming to create a homogeneous group
in terms of demographics, the study included 42 healthy
women aged between 18 and 45 years who had been in a
steady heterosexual relationship for at least 3 months, and
who in this period had been sexually active including coitus.
Each woman participated in individual sessions where they
recorded their perceived level of comfort with an opportune
slider while wearing the VPI and watching pre-defined film
sequences. Importantly, the participants could prematurely
end the experiments with a stop button as soon as the
pressure level felt unpleasant– forcing an instant deflation
of the balloon.

Each session started with an acclimatization phase in-
cluding the expansion of the VPI followed by showing a
high-arousal sexual film without inducing vaginal pressure
(control condition). Then, each woman watched four films (a
high-arousal & sexual, a low-arousal & sexual, a high-arousal
& nonsexual, and neutral) in random order with pressure
induced by the VPI and intermittent distraction tasks.

B. Data

During the experiment, the induced pressure in the water
was measured at the pump as an indirect measure of the
pelvic floor muscle activity at a frequency of 2 Hz. The
reported subjective pleasure (on a scale between 0 and 100)
was also recorded as well as the times when patients stopped
the experiment to force the deflation of the balloon. A typical
sample of the corresponding time series is shown in Figure 3.

III. A DYNAMIC MODEL OF THE CIRCLE OF FEAR

The qualitative model presented in [12] as shown in
Figure 1 has inputs upressure and ustimulus, corresponding
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Fig. 3: A typical patient dataset (min-max scaled). The six films; neutral (acclimatization), high arousal and sexual (control
condition), low arousal and sexual, high arousal and sexual, low arousal and non-sexual, high arousal and non-sexual; started
at minutes 3, 13, 26, 35, 43 and 52, respectively. Inflation of the VPI is shown by the volume plot and the pressure measured
in the balloon is indicated by the pressure curve. The pleasure is a subjective measure changed by the patient with a slider
and the stops indicate that the patient terminated the experiment early which resulted in an instant deflation of the VPI.

respectively to induced vaginal pressure levels through the
VPI, and an erotic stimulus due to watching different types of
films during the experiment. These inputs are considered to
be non-negative and less than one. We also note the existence
of the indirect measurement, the so-called “stop events”, i.e.,
where patients decide to stop the inflation of the VPI and
force its deflation, likely due to degrading comfort levels.
Further, the model is a positive system.

A. Process model

Referring to Figure 1, the right part of the model describes
the feedback loop between fear, muscular tension, and pain
by means of

ẋpain(t) = −θ1xpain(t)

+ θ2
√

xmuscles(t)upressure(t), (1a)
ẋmuscles(t) = −θ3xmuscles(t) + θ4xfear(t), (1b)

ẋfear(t) = −θ5xfear(t)− θ6xfear(t)ustimulus(t)

+ θ7xpain(t) . (1c)

For xCOF =
[
xpain xmuscles xpain

]⊤ ∈ R3, we
use the shorthand ẋCOF = f(xCOF, u, θ) , where u =[
upressure ustimulus

]⊤ ∈ [0, 1] and θ ∈ R11. In (1a), the
term

√
xmusclesupressure models the assumption that pelvic

muscle activity before or at the beginning of penetration
may lead to pain in the patient – if there is some vaginal
pressure applied. In this framework, xmuscles acts as an
enabling factor since the influence of upressure on xpain

increases relatively more when xmuscles is small rather than
large. This is compliant with the findings in [14]. Besides
this, equation (1b) qualitatively captures the fact that fear
leads to muscular tension. Finally, (1c) models the fact that
pain solicits fear. The effects of erotic stimuli are instead
modeled with the intuition that positive erotic stimuli may
temper fear. Thus, if the patient is being stimulated, i.e.,
ustimulus > 0, while feeling fear then xfearustimulus acts as
a fear-reduction mechanism. Finally, we note the presence
in all three equations above of opportune first terms on
the right-hand side that make the origin an asymptotically
stable point; this captures the intuition that in the absence of
external stimuli the person should ideally arrive at a neutral
resting condition.

B. Measurement model

We start the model-modification effort by rephrasing the
experimental data in Section II-B in terms of the information
introduced in Section III-A, i.e., define the measurement
model for the COF from the given data. More specifically,
we postulate that the measurement data about vaginal pres-
sure and the probability of the “stops” are measurements
of opportune transformations of the variable xCOF in the
following sense:

ypressure(t) = θ8xmuscles(t) + θ9upressure(t), (2a)
ystop(t) = θ10xfear(t) + θ11xpain(t) . (2b)

More precisely, (2a) captures the following considerations:
first, the measured pressure is the total pressure at the end
of the water pipe connecting the VPI with its pump. The
quantities resisting this pressure are then two: the actual pres-
sure stimulus applied to the vaginal duct and the activation
of PFMs. The equation captures the fact that there exists
a proportional (but typically unknown) relation between the
muscular pressure and its effects on ypressure. (2b) instead,
models the fact that a patient presses the stop button due to
a combination of pain and fear. Additionally, although ystop
is physically a binary variable, we anyway model it as a
continuous one, since we wish to use this value as a proxy
for the likelihood that a patient will stop the experiment at
any time.

We use the notation y =
[
ypressure ystop

]⊤
where

y = h(xCOF, u, θ) . We further denote the measurements
by YM =

[
yM (t1)

⊤ . . . yM (tN )⊤
]⊤ ∈ Rnd , where nd is

the number of measurements, noting that the ypressure mea-
surements are taken at a constant sampling time, i.e., online,
and ystop are only taken when the stop button is pushed; i.e.,
offline. Furthermore, the measurement model responses are
denoted as Y (u, θ) =

[
y(u, θ, t1)

⊤ . . . y(u, θ, tN )⊤
]⊤ ∈

Rnd .

IV. METHODS FOR IDENTIFICATION OF THE CIRCLE OF
FEAR MODEL

We show now that, as often happens with biological
systems (see [15]–[17]), the available measurements from
Section III-B are not rich enough to guarantee the identifia-
bility of the original vaginal pressure model. In this section
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we propose a method to deal with such problems where,
additionally, we have some sparse measurement data.

A. Detecting practical identifiability

Unstable and inaccurate solutions to parameter estimation
problems in nonlinear system identification can be caused
by over-parameterization (where some parameters have little
to no influence on the observations), a mismatch of the
model structure, limited experimental information, and/or
inaccurate initial parameter guesses [18].

1) Background on subset selection: Subset selection mit-
igates the issues of ill-posed problems. Here, we follow the
method proposed in [18] and [19] where the ill-conditioning
is assessed by means of sensitivity matrices. In our case,
this matrix computes the sensitivity of the observations with
respect to the model parameters, defined by

S(u, θ) =
dY (u, θ)

dθ
, (3)

where S(u, θ) ∈ Rnd×np for np parameters. We can further
define S̃(u, θ) = W 1/2S(u, θ) as the scaled sensitivity
matrix to account for a weighting factor W in the Parameter
Identification (PI) problem; see Section IV-C.

To calculate the sensitivity of the output, we use the chain
rule

dY (u, θ)

dθ
=

∂h(X,u, θ)

∂X

dX

dθ
+

∂h(X,u, θ)

∂θ
. (4)

We then define the state sensitivities to be XS = dX
dθ where

ẊS =
dXS

dt
=

d

dt

dX

dθ
=

d

dθ

dX

dt
=

d

dθ
f(X,u, θ)

and applying the chain rule gives

ẊS =
∂f(X,u, θ)

∂X

dX

dθ
+

∂f(X,u, θ)

∂θ

=
∂f(X,u, θ)

∂X
XS +

∂f(X,u, θ)

∂θ
. (5)

We thus need to compute the Jacobians ∂f(X,u,θ)
∂X , ∂f(X,u,θ)

∂θ

to solve (5) and use the Jacobians ∂h(X,u,θ)
∂X , ∂h(X,u,θ)

∂θ to
calculate the sensitivities in (4).

To analyze the ill-conditioning of S̃, we use Singular Value
Decomposition (SVD) such that

S̃ = UZV ⊤ . (6)

In (6), U ∈ Rnd×nd and V ∈ Rnp×np are orthogonal
matrices, and Z = diag(ζ1, . . . , ζnp

), where ζi are the
ordered singular values of S̃, i.e., ζ1 > ζ2 > · · · > ζnp

.
The presence of small singular values in Z indicates

that S̃ is ill-conditioned and hence rank deficient [20]. [18]
introduce an ε-threshold to put a lower bound on the Singular
Values (SVs) determined by the maximum condition number
κmax(S̃) and the collinearity index γmax(S̃). The condition
number is calculated with κ(S̃) = ζ1

ζnp
[21]. When κ(S̃) ≈ 1,

the matrix is well-conditioned, where κ(S̃) = 1 implies that
the columns of S̃ are orthogonal. Conversely, near linear
dependence results in a large κ. The degree of linear indepen-
dence is then determined by the collinearity index γ(S̃) =

1
ζnp

. Large values of γ(S̃) indicate linear dependence and
poor identifiability. Common empirical bounds, proposed in
[22], are κmax(S) ≈ 1000 and γmax(S) = 10. The ε-
threshold is then defined as ε = max

{
ζ1

κmax(S̃)
, 1
γmax(S̃)

}
.

We can use the ϵ-threshold to determine the largest collection
of linearly dependent columns of S̃, i.e., sets the number m
such that ζ1 > ζ2 > · · · > ζm > ε > ζm+1 > · · · > ζnp

.
In subset selection, the number of parameters in the iden-

tifiable parameter subset corresponds to m. The parameter
vector is reordered by a QR decomposition of S̃ where
the matrix P ∈ Rnp×np reorders S̃ according to linear
dependence such that S̃P = QR for the orthogonal matrix
Q ∈ Rnd×nd and the upper triangular matrix with decreasing
diagonal elements R ∈ Rnd×np . We can then use P to select
the identifiable parameters by θ̃ = Pθ.

2) Subset selection for the COF: We can thus analyze the
practical identifiability of our system by performing a SVD
of the sensitivity S(u, θ) which results in the Singular Value
Spectrum (SVS) shown in Figure 4 with the ε-threshold
set to 0.14. Using this ε-threshold results in six identifiable
parameters θ̃ =

[
θ2 θ5 θ6 θ8 θ9 θ11

]⊤
and five non

identifiable parameters ϕ =
[
θ1 θ3 θ4 θ7 θ10

]⊤
.

We thus choose the fixed values ϕ =[
0.1 6 1 1 0.75

]⊤
, where ϕ2 was chosen from [23],

and the other values were chosen from trial-and-error. The
new system equations become

ẋpain(t) = −ϕ1xpain(t)

+ θ̃1
√
xmuscles(t)upressure(t), (7a)

ẋmuscles(t) = −ϕ2xmuscles(t) + ϕ3xfear(t), (7b)

ẋfear(t) = −θ̃2xfear(t)− θ̃3xfear(t)ustimulus(t)

+ ϕ4xpain(t) , (7c)

and

ypressure(t) = θ̃4xmuscles(t) + θ̃5upressure(t), (8a)

ystop(t) = ϕ5xfear(t) + θ̃6xpain(t) . (8b)

B. Latin hypercube sampling
Since our parameters are uninterpretable, we use Latin

Hypercube Sampling (LHS) to generate diverse parameter
combinations and determine a reasonable range of the pa-
rameter search space.

1 2 3 4 5 6 7 8 9 10 11
10−16

10−12

10−8

10−4

100

104

Singular Values (ζi)

SVs
ε-threshold

Fig. 4: Singular value spectrum for determining the rank
deficiency of the COF system. We use the ε-threshold to
deal with the rank deficiency and determine the number of
linearly independent columns of the sensitivity matrix.
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TABLE I: Parameter ranges for θ̃ determined by LHS (left)
and the estimated parameters and standard deviations (right).

Parameter Lower Upper Initial Optimal Standard
bound bound value value deviation

θ̃1 0.05 1 0.19 0.18 0.38
θ̃2 0.5 2 0.73 0.75 1.63
θ̃3 0 1 0.29 0.08 0.58
θ̃4 0.4 0.9 0.49 0.58 0.85
θ̃5 0.15 1 0.46 0.43 0.16
θ̃6 0 1 0.67 0.51 1.14

1) Background on Latin hypercube sampling: LHS is a
statistical method that divides each variable into intervals
of equal probability content [24]. LHS is designed in such a
way as to create a more representative and efficient sampling
of multidimensional parameter spaces; as opposed to random
sampling. The general method of LHS is:

(i) Define the parameter ranges.
(ii) Divide the ranges into equal intervals.

(iii) Create a set of samples ensuring that each interval is
sampled exactly once.

(iv) Ensure that the samples are evenly distributed over the
parameter space.

2) Latin hypercube sampling for the COF: We use this
approach to reduce the parameter space of θ̃ by analyzing the
best ranges for each parameter and setting a reasonable initial
condition. We use 50 hypercubes within the range of [0, 6],
where 6 was chosen based on some initial simulations, to set
initial conditions for the parameter estimation. We then set a
threshold for the final cost of the parameter estimation, and
order the parameter estimates based on cost. The rounded
upper and lower parameter estimates within this set are then
used for the bounds, see Table I.

C. Parameter estimation with online-offline measurements

We consider here the problem of identifying the param-
eters θ̃ for (7) and (8) with the available measurement
data. We begin by assuming additive, normally distributed,
uncorrelated measurement errors εk ∼ N (0, σk), then the
measurement data is given by

yM (tk) = h(xCOF, u, θ
∗, tk) + εk , (9)

where θ∗ are the true parameters. Then the error of the k-th
observation is given by

e(tk, θ) = y(u, θ, tk)− yM (tk) . (10)

The model parameters, θ, can then be estimated by finding
the parameter vector that minimizes the weighted least
squares problem:

θ̂ = argminΦWLS(u, θ) , (11)

where

ΦWLS(u, θ) =

N∑
i=1

wiie(ti, θ)
2

= (YM − Y (u, θ))⊤W (YM − Y (u, θ)) ,

and W , with diagonal elements wii, includes both the
measurement uncertainty and varying weights for online vs.
offline measurements, i.e., due to data sparsity, the stops are
weighted differently against the pressure measurements.

We can moreover use the sensitivities from (4) to calculate
predefined gradients for faster and more robust PI optimiza-
tion by exploiting that

dΦWLS(u, θ)

dθ
= −2

dY (u, θ)

dθ

⊤
W (YM − Y (u, θ)) . (12)

V. RESULTS

Following the methods in Section IV-C, the patient data
was segmented per film and randomly allocated to an 80–
20 identification-validation set. In Table II, we present the
results for different modeling techniques, comparing the
online-offline method against black-box models. Specifically,
an ARMAX structure was selected as the best one based
on an iterative exploration of various black-box models and
model orders, including ARX, ARMAX, NLARX, Box-
Jenkins, and output error models.

Table I displays the estimated model parameters and their
corresponding standard deviations, derived from sensitivity
analysis, illustrating the parameter estimation’s volatility in
obtaining a generalized patient model.

Table II demonstrates that the proposed grey-box model
has significantly better predictive capabilities associated with
pain and fear but falls short of outperforming the ARMAX
model in pressure prediction. This contrast is further evident
in Figures 5–7, where the models are plotted using a random
patient dataset. In Figure 7, the grey-box method effectively
predicts stop events, while the ARMAX model shows only a
marginal increase in the predicted stop variable, see magni-
fication. Notably, in Figure 6, the ARMAX model excels
in predicting the pressure trend, but the grey-box model
provides a better prediction for the peak pressure.

TABLE II: Predictive capabilities of the different mod-
els as fit values (mean ± standard deviation), i.e., fit =

100
(
1− ∥YM−Y ∥2

∥YM−ȲM ]∥2

)
, where YM is the validation data with

mean ȲM , Y is the predicated value, and ∥·∥2 is the L2-norm.
A higher fit value indicates a better model performance.

Model Pressure Fit Stop Fit

ARMAX 44.68± 17.63 0.2691± 0.0575
Grey-box online-offline 28.41± 12.29 7.291± 4.689

VI. CONCLUSION

In this paper, we showed how one could obtain a param-
eterized model for predicting pain and fear as a response
to pressure and erotic stimuli. We proposed a method for
dealing with ill-posed systems, with parameters of low
interpretability, and some offline or sparse measurements
(occurring frequently in biological and medical experiments).
The proposed method resulted in a parameterized model
where the stop events, based on fear and pain, are predicted
significantly better than classical linear time-invariant (LTI)
black box models.
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Fig. 5: Input volumes and stimulus types.
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Fig. 6: Output pressure fits for different model types.
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Fig. 7: Prediction of stops for different model types.

The investigated model structure was inspired by the
correlations found in medical literature which were used
to obtain the original qualitative model. We then aimed to
validate the proposed model using medical trial data to obtain
a quantitative model. The model structure, however, could
be questioned based on the lack of linearity in the real data
and the practical identifiability analysis indicating that only
six of the eleven model parameters are identifiable. These
factors indicate some limitations, that we believe may be at
least partially mitigated by using different model structures
or deep learning approaches for non-linear systems.

We additionally note the presence of data that is unused
in our model, i.e., the subjective pleasure ratings shown in
Figure 3. We propose that the subjective pleasure ratings
could work as an inhibiting factor for the Circle Of Fear
(COF) model or could aid in the investigation of the influence
of the Circle Of Pleasure (COP) on the COF and thus provide
further insight into the pain and pleasure characteristics.

Lastly, patient models are highly subject-dependent. This
questions the viability of using a generalized model for
predicting patient outcomes, especially for events such as
stopping due to fear, where the combination of fear and pain
which leads to an individual stopping the experiment would
be highly subject-dependent, which questions the use of a
grey-box model to improve medical treatment.
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