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Abstract— We derive the rate of convergence to the globally
strongly variationally stable Nash equilibrium in a convex
game, for a zeroth-order learning algorithm. Though we do
not assume strong monotonicity of the game, our rates for the
one-point feedback, O

(
Nd

t1/2

)
, and for the two-point feedback,

O
(

N2d2

t

)
, match the best known rates for strongly monotone

games under zeroth-order information.

I. INTRODUCTION

Game-theoretic learning under zeroth-order information
consists in deriving an algorithm for each player that uses
only evaluations of the player’s cost function and converges
to an equilibrium of the game. The zeroth-order setting
arises in applications in which each agent does not know the
functional form of her objective or cannot readily compute
its gradient, due to complex dependence of her cost on other
players’ actions. For example, price functions in electricity
markets depend on consumption/production of all agents in
non-trivial way [22], travel times in a routing or transporta-
tion network depend on routes taken by other agents and the
link capacities [5]. In contrast, each agent can evaluate her
objective at her chosen action, given actions played by other
agents, and thus, obtain the zeroth-order information (cost
function values).

The works [2], [18], [17] proposed zeroth-order learning
algorithms for games over continuous action sets. The un-
derlying idea in the proposed algorithms of the above works
is developing a randomized sampling technique to estimate
gradients of players’ cost functions using the zeroth-order
information, and to then use the estimated gradient in a
stochastic gradient descent scheme. In general, convergence
in zeroth-order learning is slow due to the high variance
of the gradient estimators. Hence, it is relevant to establish
optimal rates of convergence for this class of problems. Our
goal in this paper is to estimate rate of convergence for
zeroth-order learning algorithms in a specific class of games.

While convergence rates in zeroth-order convex optimiza-
tion have been well-explored, less work has been dedicated
to deriving convergence rates for zeroth-order learning in
convex games. Under strong monotonicity assumption on the
game pseudo-gradient, past work derived a rate of O

(
1

t1/3

)
in [2, Theorem 5.2], [17, Theorem 3], for the corresponding
algorithms in each work. Recently, [3] demonstrated that
the rate of O

(
1

t1/3

)
for the algorithm proposed in [2] is
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suboptimal. Indeed, a refined analysis technique of the same
algorithm along with suitable choices of the stepsize and
sampling distribution can ensure O

(
1

t1/2

)
[3]. Independently,

[19] showed that the rate derived in [17, Theorem 3] for their
proposed algorithm can be improved to O

(
1

t1/2

)
. The rate

of O
(

1
t1/2

)
is optimal as it matches the lower bound for the

class of zeroth-order strongly convex smooth optimization
under one-point feedback (a subset of the class of strongly
convex games considered in the works mentioned above)
[10]. Both [3], [19], require strong monotonicity of the game
pseudo-gradient in their rate analysis.

A major recent interest in learning equilibria in convex
games is on relaxing the requirement of monotonicity on the
game pseudo-gradient. To this end, some works have relaxed
the assumption of strongly monotone pseudo-gradients and
considered games with pseudo-gradients which are restricted
strongly monotone with respect to a Nash equilibrium [7],
[12], [21]. However, the convergence rate of zeroth-order
learning algorithms for such games have not been addressed.
Further relaxing the monotonicity requirements, the work

[13] considers the so-called (local/global) variational stabil-
ity of an equilibrium. While the game monotonicity implies
variational stability of the equilibria, an equilibrium can
be variationally stable (VS) even when the game psuedo-
gradient is not (strongly) monotone or restricted strongly
monotone, see Examples 1 and 21.

It has been shown that the existence of a globally strongly
VS Nash equilibrium is sufficient for convergence of the
first-order learning algorithms proposed in [2], [13]. Given
stochastic first-order information, [13] derived a convergence
rate to the strongly VS Nash equilibrium. This rate was in
terms of ergodic average of the sequence of played actions,
a weaker notion of convergence than the last iterate of the
played actions addressed in [2], [17], [3], [19]. Relaxing
from strong to mere variational stability of an equilibrium,
the work in [8] proposed an algorithm that converges to
an interior mere VS equilibrium of a convex game under
exact first-order feedback, i.e. knowledge of game pseudo-
gradient, and characterized its convergence rate. Building on
this, [9] addressed learning of a mere VS equilibrium with
zeroth-order information. However, convergence rates were
not established in that work.

Summarizing the above, the problem of characterizing the

1In contrast to strong monotonicity, which is a property of the game
pseudo-gradient only, the conditions of variational stability and restricted
strong monotonicity entail properties of the pseudo-gradient and a Nash
equilibrium of the game. Accordingly, to establish these latter properties
theoretically, one requires knowledge regarding the equilibrium point. This
is a trade-off allowing for establishing convergence and its rate in games
with non-(strongly) monotone pseudo-gradients.
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rate of convergence of the iterates to the strongly varia-
tionally stable equilibrium under zeroth-order feedback to
our knowledge was not addressed. Addressing this gap, our
contributions are as follows.

• We derive the convergence rate of the zeroth-order
gradient play to the strongly VS Nash equilibrium of
a convex game using a one-point feedback as O

(
1

t1/2

)
.

This is the best rate (as a function of t) since it meets
the known best bound in a subclass containing potential
strongly monotone games given the same information
setting (see Theorem 3 in [10]).

• We consider a two-point zeroth-order feedback model,
motivated by the rate improvement achieved with the
two-point feedback model in the zeroth-order opti-
mization literature [4]. By adapting our randomized
gradient estimation approach, we also improve the rate
of convergence to the order of O

(
1
t

)
which is the tight

bound according to the literature on strongly convex
stochastic optimization (see Theorem 2 in [1]).

Notations. The set {1, . . . , N} is denoted by [N ]. We
consider real normed space Rd. The column vector x ∈
Rd is denoted by x = (x1, . . . , xd). We use superscripts
to denoted coordinates of vectors and the player-related
functions and sets. We use the subscript j which takes values
j ∈ {1, 2} to differentiate between particular terms in the
proposed algorithm for one and two-point feedback models,
respectively. For any function f : K → R, K ⊆ Rd,
∇xif(x) = ∂f(x)

∂xi is the partial derivative taken in respect to
the xith variable (coordinate) in the vector argument x ∈ Rd.
We use ⟨·, ·⟩ to denote the inner product in Rd. We use ∥ · ∥
to denote the Euclidean norm induced by the standard dot
product in Rd. A mapping g : Rd → Rd is said to be
strongly monotone on Q ⊆ Rd with the constant η, if for
any u, v ∈ Q, ⟨g(u) − g(v), u − v⟩ ≥ η∥u − v∥2; strictly
monotone, if the strict inequality holds for η = 0 and u ̸= v,
and merely monotone if the inequality holds for η = 0. We
use ProjΩv to denote the projection of v ∈ E to a set
Ω ⊆ E. The mathematical expectation of a random value
ξ is denoted by E{ξ}. Its conditional expectation in respect
to some σ-algebra F is denoted by E{ξ|F}. We use the big-
O notation, that is, the function f(x) : R → R is O(g(x))
as x → a for some a ∈ R, i.e. f(x) = O(g(x)) as x → a,
if limx→a

|f(x)|
|g(x)| ≤ K for some positive constant K. We use

the little-o notation, that is, the function f(x) : R → R is
o(g(x)) as x → a for some a ∈ R, i.e. f(x) = o(g(x)) as
x → a, if limx→a

|f(x)|
|g(x)| = 0.

II. GAME SETUP AND THE ZEROTH-ORDER ALGORITHM

Consider a game Γ = Γ(N, {Ai}, {J i}) with N players,
the sets of players’ actions Ai ⊆ Rd, i ∈ [N ], and the cost
(objective) functions J i : A → R, where A = A1 × . . . ×
AN denotes the set of joint actions2. Thus, each joint action
is a vector a = (a1, . . . ,aN ) ∈ A ⊆ RNd, where ai =

2For notation simplicity, we assume the dimension of each action set to
be d. The algorithm and analysis readily generalize to the case of different
dimensions di, i ∈ [N ].

(ai,1, . . . , ai,d) ∈ Rd. We use the notation a = (ai,a−i),
where a−i is actions of players not including player i.

Definition 1: A vector a∗ = (a∗1, . . . ,a∗N ) ∈ A is
called a Nash equilibrium if J i(ai∗,a−i∗) ≤ J i(ai,a−i∗)
for any i ∈ [N ] and ai ∈ Ai.
We restrict the class of games as follows.

Assumption 1: The game under consideration is convex.
Namely, for all i ∈ [N ] the set Ai is convex and closed, the
cost function J i(ai,a−i) is defined on RNd, continuously
differentiable in a and convex in ai for fixed a−i.

Assumption 2: The action sets Ai, i ∈ [N ], are compact.
Note that Assumptions 1 and 2 together imply the existence
of a Nash equilibrium in the game Γ [15]. In a convex game,
the Nash equilibrium can be characterized through the so-
called pseudo-gradient of the game defined below.

Definition 2: The mapping M : RNd → RNd,
referred to as the pseudo-gradient of the game
Γ(N, {Ai}, {J i}), is defined by M(a) =
(∇aiJ i(ai,a−i))Ni=1 = (M1(a), . . . ,MN (a))⊤,
where M i(a) = (M i,1(a), . . . ,M i,d(a))⊤, M i,k(a) =
∂Ji(a)
∂ai,k ,a ∈ A, i ∈ [N ], k ∈ [d].

In a convex game, i.e. under Assumption 1, a∗ is a Nash
equilibrium if and only if ⟨M(a∗),a − a∗⟩ ≥ 0, ∀a ∈
A (see, for example, [15]). However, this characterization
alone is not sufficient to ensure convergence of learning
algorithms using the idea of a (stochastic) gradient descent
approach (called also gradient play) in convex games.In
particular, in most past work on learning algorithms certain
structural assumptions on the game pseudo-gradient, such
as strong/strict monotonicity, or assumptions on the Nash
equilibrium such as variational stability, are required to prove
convergence of algorithms.

Definition 3: A Nash equilibrium a∗ is globally ν-
strongly variationally stable (SVS), if ⟨M(a),a − a∗⟩ ≥
ν∥a− a∗∥2 for any a ∈ A and some ν > 0.
In the definition above, if the inequality holds with ν = 0,
then the Nash equilibrium at a∗ is referred to as globally
merely variationally stable. On the other hand, if the above
properties hold only on a neighborhood D ⊂ A, then the
Nash equilibrium is locally (strongly/merely) VS.

Assumption 3: The Nash equilibrium in Γ is globally ν-
strongly variationally stable with the constant ν.
If a game has a strongly variationally stable (SVS) Nash
equilibrium, then the Nash equilibrium is unique [13, Propo-
sition 2.5]. Furthermore, if a game has a strongly monotone
pseudo-gradient, then its unique Nash equilibrium is strongly
variationally stable. However, the converse statement is not
true. The example below illustrates these definitions.

Example 1: Consider a 3-player game, where each
player’s action set is [−1, 2] ⊂ R. The cost of player
i, for i ∈ {1, 2, 3} is J i(a1, a2, a3) = a1a2a3 + (ai)2.
Hence, the game pseudo-gradient is given by M(a) =
(a2a3 + 2a1, a1a3 + 2a2, a1a2 + 2a3)⊤. It can be verified
that there exists a Nash equilibrium at a∗ = (0, 0, 0), since
M(a∗) = 0 and the game is convex. Furthermore, this Nash
equilibrium is globally strongly VS with ν = 1/2, since
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⟨M(a),a − a∗⟩ = 3a1a2a3 + 2
∑3

i=1(a
i)2 ≥ ∥a−a∗∥2

2 for
any a ∈ A = [−1, 2]3.

Notice that the game is not monotone since the Jacobian
of the M(a), given as

∇M(a) =

 2 a3 a2

a3 2 a1

a2 a1 2


has a negative eigenvalue for a = (2, 1, 2). Furthermore, the
restriction of the game to the action set [−1, 0] results in the
same unique globally stable Nash equilibrium, but this time,
this equilibrium will be on the boundary.

For further examples of games exhibiting variationally
stable equilibria, please, see examples in [13], [9]. For
examples of games from telecommunication or adversarial
learning domains with VS Nash equilibria, please, see [9].

Remark 1: Recent works have addressed convergent pro-
cedures in games with restricted strongly monotone pseudo-
gradients [7], [12], [21]. This property is formulated as
follows: The pseudo-gradient M is called restricted strongly
monotone in the game Γ possessing a Nash equilibrium a∗,
if ⟨M(a) − M(a∗),a − a∗⟩ ≥ ν∥a − a∗∥2 for some
ν > 0 and any a ∈ A. If some game satisfies this
condition, the Nash equilibrium is unique [21]. It can be seen
that, due to the inequality ⟨M(a∗),a − a∗⟩ ≥ 0 holding
for any a ∈ A, the Nash equilibrium in a game with a
restricted strongly monotone pseudo-gradient is necessarily
strongly variationally stable. However, as Example 2 below
demonstrates, existence of a strongly variationally stable
Nash equilibrium does not imply that the pseudo-gradient
is restricted strongly monotone. Thus, games with restricted
strongly monotone pseudo-gradients are a subclass of games
with strongly variationally stable Nash equilibria considered
in this paper.

Example 2: Consider a 2-player game, where each
player’s action set is [0, 1] ⊂ R. The cost of each player i,
for i ∈ {1, 2}, is J i(a1, a2) = 1

4 ((a
1)2 + (a2)2)− 1

4a
1a2 +

2
√
1 + a1 + 2

√
1 + a2. The unique minimizer of the equal

cost functions and, thus, the unique Nash equilibrium of the
game, is a∗ = (0, 0). The game pseudo-gradient is given by
M(a) = (12a

1− 1
4a

2+ 1√
1+a1

, 1
2a

2− 1
4a

1+ 1√
1+a2

)⊤. It can
be verified that ⟨M(a),a−a∗⟩ ≥ ν∥a−a∗∥2 with ν = 1

4 .
Thus, the game possesses the unique globally strongly VS
Nash equilibrium. However, the pseudo-gradient of the game
is not restricted strongly monotone, as ⟨M(a)−M(a∗),a−
a∗⟩ < 0 for a = (1, 1) ∈ A.

III. PAYOFF-BASED LEARNING ALGORITHM

The steps of the procedure run by each player are summa-
rized in Algorithm 1. In particular, the one-point approach
has already been proposed in [17], [19]. However, its con-
vergence properties established in the above works was only
for the case of strongly monotone games.

1) Algorithm iterates: Let us denote by mi
j , j ∈ {1, 2},

some estimate of M i in the pseudo-gradient of the game (see
Definition 2). Here, j = 1 denotes the one-point and j = 2
denotes the two-point procedure estimate, respectively, and

Algorithm 1 One-point and two-point zeroth-order algorithm
for learning Nash equilibria
Require: Action set Ai ⊂ Rd, the sequences {σt}, {γt},

initial state µi(0).
for t = 0, 1, . . . do

Sample a query point ξi(t) according to probability
density (2).
/* Simultaneously and similarly, other players

sample their query points ξ−i(t). /*

One-point scheme: Perform the one-point gradient
estimate according to (3).

Two-point scheme: Observe additional J i0(t) =
J i(µ1(t), . . . ,µN (t)) and perform the two-point gradi-
ent estimate according to (4).

Update the state according to (1). /*

Simultaneously and similarly, other players

update their states µ−i(t+ 1). /*

will be detailed in the next subsection. The proposed method
to update player i’s so-called state µi is as follows:

µi(t+ 1) = ProjAi [µi(t)− γtm
i
j(t)], (1)

where µi(0) ∈ RNd is an arbitrary finite value and γt is the
step size or the learning rate. The step size γt needs to be
chosen based on the bias and variance of the pseudo-gradient
estimates mi

j . The term mi
j(t), j ∈ {1, 2}, is obtained using

the payoff-based feedback as described below.
Remark 2: While our algorithm is similar to [2], [17],

the reason for being able to establish the stronger result
compared to these past works is our new analysis technique.
In particular, due to the lack of strong monotonicity, we
develop a new approach to estimate the distance between the
algorithm iterates and the Nash equilibrium. This approach is
based on proving that the Nash equilibrium a∗ stays “almost”
strongly variationally stable with respect to the pseudo-
gradient in the mixed strategies, a property we establish in
Proposition 1.

2) Gradient estimation in one and two-point settings:
We estimate the unknown gradients using the randomizing
sampling technique. In particular, we use the Gaussian
distribution for sampling inspired by [23], [14]. Since this
distribution has an unbounded support, we need the following
assumption on the cost functions’ behavior at infinity.

Assumption 4: Each function J i(x) = O(exp{∥x∥α}) as
∥x∥ → ∞, where α < 2.

Given µi(t), let player i sample the random vector
ξi(t) according to the multidimensional normal distribution
N(µi(t) = (µi,1(t), . . . , µi,d(t))⊤, σt) with the following
density function:

pi(xi;µi(t), σt) =
1

(
√
2πσt)d

e
−

∑d
k=1

(xi,k−µi,k(t))2

2σ2
t . (2)

According to the algorithm’s setting, the cost value at the
query point ξ(t) = (ξ1(t), . . . , ξN (t)) ∈ RNd, denoted
by J i(t) := J i(ξ(t)), is revealed to each player i. In the
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one-point setting, player i then estimates her local gradi-
ent ∂Ji

∂µi evaluated at the point of the joint state µ(t) =

(µ1(t), . . . ,µN (t)) as follows:

mi
1(t) = J i(t)

ξi(t)− µi(t)

σ2
t

. (3)

In the two-point setting at each iteration t, each player
i makes two queries: a query corresponding to playing
randomly chosen ξi(t), i ∈ [N ]; and another query of
the cost function at µi(t), i ∈ [N ]. Hence, there is an
extra piece of information available to each player, namely
the cost function value at the mean (state) vector µ(t):
J i0(t) := J i(µ(t)). Then each player uses the following
estimation of the local gradient ∂Ji

∂µi at the point µ(t):

mi
2(t) = (J i(t)− J i0(t))

ξi(t)− µi(t)

σ2
t

. (4)

Remark 3: Observe that the both estimations mi
j(t), j =

1, 2, above can be performed on the feasible set A. One
can set mi

1(t) = J i(ProjAξ(t))ξ
i(t)−µi(t)

σ2
t

mi
2(t) =

(J i(ProjAξ(t))− J i(µ(t))ξ
i(t)−µi(t)

σ2
t

, using, thus, cost val-
ues at feasible actions, namely at the points ProjAξ(t)
and µ(t) ∈ A. However, to guarantee convergence of the
algorithm to the Nash equilibrium, an adjustment of the
updates in (1) is required. An extra parameter needs to be
introduced to project the µ(t)’s on a shrunk set and this
parameter has to be balanced with both the step size γt and
the variance σt, see [19] for details of this analysis in the
case of monotone games, and [6] for similar consideration
in zeroth-order online optimization.

3) Properties of the gradient estimators: We provide
insight into the procedure defined by Equation (1) by
deriving an analogy to a stochastic gradient algorithm.
Denote p(x;µ, σ) =

∏N
i=1 p

i(xi,1, . . . , xi,d;µi, σ) as the
density function of the joint distribution of players’ query
points ξ, given some state µ = (µ1, . . . ,µN ). For any
σ > 0 and i ∈ [N ] define J̃i : RNd → R as
J̃i(µ, σ) =

∫
RNd J

i(x)p(x;µ, σ)dx. Thus, J̃i, i ∈ [N ], is
the ith player’s cost function in the mixed strategies, where
the strategies are sampled from the Gaussian distribution
with the density function p(x;µ, σ). For i ∈ [N ] define
M̃ i,σ(·) = (M̃ i,1,σ(·), . . . , M̃ i,d,σ(·))⊤ as the d-dimensional
mapping with the following elements:

M̃ i,k,σ(µ) =
∂J̃ i(µ, σ)

∂µi,k
, for k ∈ [d]. (5)

Furthermore, let Ri
j , j = 1, 2, denote:

Ri
j(ξ(t),µ(t), σt) = mi

j(t)− M̃ i,(t)(µ(t), σt), where

mi
j(t) =

 J i(ξ(t))ξ
i(t)−µi(t)

σ2
t

, if j = 1,

(J i(ξ(t))− J i(µ(t)))ξ
i(t)−µi(t)

σ2
t

, if j = 2,
(6)

where, to simplify notations, we used M̃ (t) = M̃σt . With
the above definitions, the update rule (1) is equivalent to:

µi(t+ 1) = ProjAi [µi(t)− γt
(
M̃ i,(t)(µ(t))

+Ri
j(ξ(t),µ(t), σt)

)
]. (7)

Recall that the cases j = 1 and j = 2 above correspond to
the one-point and two-point gradient estimators, respectively.

We now show that M̃ i,(t) is equal to M i in expectation
and the term Ri

j has a zero-mean. Thus, we can interpret (1)
as a stochastic gradient descent procedure.

Let Ft be the σ-algebra generated by the random variables
{µ(k), ξ(k)}k≤t. First, we demonstrate in the next lemma
that the mapping M̃ (t) = (M̃1,(t), . . . ,M̃N,(t)) evaluated at
µ(t) is equivalent to the pseudo-gradient in mixed strategies,
that is,

M̃ i,(t)(µ(t)) =

∫
RNd

M i(x)p(x;µ(t), σt)dx. (8)

Moreover, this lemma proves that the conditional expectation
of the terms defined in (3) and (4), namely, mi(t) =
(mi,1

j (t), . . . ,mi,d
j (t)) ∈ Rd, j = 1, 2, is equal to M̃i.

Lemma 1: Given Assumptions 1 and 4, M̃ i,k,(t)(µ(t)) =
E{M i,k(ξ1, . . . , ξN )|ξi,k ∼ N(µi,k(t), σt), i ∈ [N ], k ∈
[d]} = E{mi,k

j (t)|Ft}.
The proof of this result is very similar to that of Lemma
1 in [18] for the one-point feedback, and its extension to
[19] for two-point feasible feedback. For the sake of notation
simplicity, let us use R(t) = R(ξ(t),µ(t), σt). Our second
lemma below characterizes the variance of the term R(t).

Lemma 2: Under Assumptions 1 and 4, as σt →
0, E{∥Ri

j(t)∥2|Ft} = O
(

d
σ2
t

)
, if j = 1, and

E{∥Ri
j(t)∥2|Ft} = O(Nd2), if j = 2.

The proof of this result is similar to one of Lemma 1 in [18].

IV. CONVERGENCE RATE OF THE ALGORITHM

We will provide the analysis of Algorithm 1 in the cases
j = 1, 2 (one-point and two-point feedback) under the
following smoothness assumption.

Assumption 5: We use one of the following assumptions
on pseudo-gradient M : RNd → RNd (see Definition 2),
depending on the one-point or two-point feedback model.

1) The pseudo-gradient M : RNd → RNd is twice
differentiable over RNd.

2) The pseudo-gradient M : RNd → RNd is Lipschitz
continuous over RNd.

Note that in the case of one-point feedback (j = 1), twice
differentiability implies that the Jacobian of the pseudo-
gradient is Lipschitz continuous over a compact set. This
latter condition was employed in [3] for deriving the con-
vergence rate under the strong monotonicity assumption.
While do not assume strong monotonicity, we require twice
differentiability for the one-point feedback case.

Theorem 1: Let the states µi(t), i ∈ [N ], evolve ac-
cording to Algorithm 1 with the gradient estimators mi

j(t),
j = 1, 2. Let Assumptions 1–4 hold. Let Assumption 5.1)
hold for j = 1 and Assumption 5.2) hold for j = 2.
Let the step size parameter in the procedure be chosen as
follows: γt = c

t with c ≥ 1
ν , where ν is the constant from

Assumption 3. Moreover, let σt =
a

t
1
4

, if j = 1, and σt =
a
ts ,

if j = 2, where a > 0 and s ≥ 1. Then, the joint state
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µ(t) converges almost surely to the unique Nash equilibrium
µ∗ = a∗ of the game Γ, whereas the joint query point ξ(t)
converges in probability to a∗. Moreover,

E∥µ(t)− a∗∥2 =

{
O
(

Nd
t1/2

)
, if j = 1,

O
(

N2d2

t

)
, if j = 2.

We will base our analysis on the algorithm’s representation
in (7). Thus, in this subsection we exploit the properties
of the term M̃ i,(t)(µ(t)) therein. Let us now focus on the
mapping M̃ (t)(·) = (M̃1,(t)(·), . . . ,M̃N,(t)(·)), where, as
before, for any µ ∈ RNd, M̃ i,(σt)(µ) = M̃ i,(t)(µ) =
∇µiJ i(µ, σt) =

∫
RNd M

i(x)p(x;µ, σt)dx for some given
σt (see definition in (5) and also the property (8)). We
emphasize that such mapping is the pseudo-gradient in the
mixed strategies, given that the joint action is generated by
the normal distribution with the density p(x;µ, σ).

A technical novelty in deriving the convergence in the
absence of strong monotonicity is Proposition 1 below. It
states that under the made assumption the Nash equilibrium
a∗ stays “almost” strongly variationally stable with respect
to the pseudo-gradient in the mixed strategies.

Proposition 1: Let Assumptions 2, 3, 4, and 5 hold. Then
⟨M̃ (t)(µ),µ − a∗⟩ ≥ −O(Ndσ2

t ) + ν∥µ − a∗∥2 for any
µ ∈ A.

Proof: We focus on each term in the following sum
representation of the dot-product ⟨M̃ (t)(µ),µ− a∗⟩:

⟨M̃ (t)(µ),µ− a∗⟩ =
N∑
i=1

d∑
k=1

M̃ i,k,(t)(µ)(µi,k − a∗,i,k).

(9)

Due to Assumption 5, we can use the following Taylor
approximation for the elements M i,k, i ∈ [N ], k ∈ [d], of the
mapping M around some point µ ∈ A (see Definition 2):

M i,k(x) =M i,k(µ) + ⟨∇M i,k(µ),x− µ⟩
+ ⟨∇2M i,k(x̃)(x− µ),x− µ⟩, (10)

where x̃ = µ + θ(x − µ) for some θ ∈ [0, 1].
Taking into account the fact that M̃ i,k,(t)(µ) =∫
RNd M

i,k(x)p(x;µ, σt)dx, we obtain

M̃ i,k,(t)(µ)(µi,k − a∗,i,k)

=

[∫
RNd

(M i,k(x)−M i,k(µ))p(x;µ, σt)dx

]
(µi,k − a∗,i,k)

+M i,k(µ)(µi,k − a∗,i,k)

=

[∫
RNd

⟨∇2M i,k(x̃)(x− µ),x− µ⟩p(x;µ, σt)dx

]
× (µi,k − a∗,i,k) +M i,k(µ)(µi,k − a∗,i,k),(11)

where in the last equality we used (10) and the fact
that

∫
RNd⟨∇M i,k(µ),x − µ⟩p(x;µ, σt)dx = 0. We note

that
∫
RNd⟨∇2M i,k(x̃)(x − µ),x − µ⟩p(x;µ, σt)dx =

E{⟨∇2M i,k(ξ̃)(ξ−µ), ξ−µ⟩}, given that ξ has the Gaussian
distribution with the density function p(x;µ, σt) and ξ̃ =
µ+ θ(ξ − µ). Next,

E{⟨∇2M i,k(ξ̃)(ξ − µ), ξ − µ⟩}

≥ −E{∥∇2M i,k(ξ̃)∥∥ξ − µ∥2}
≥ −E{∥∇2M i,k(ξ̃)∥}E{∥ξ − µ∥2} = −O(Ndσ2

t ),(12)

where the first and the second inequalities are due to the
Cauchy-Schwarz and the Hölder’s ones respectively, and
in the equality we use Lemma 5 in [19] stating finiteness
of E{∥∇2M i,k(ξ̃)∥ given Assumption (4). Combining (9)-
(12), we conclude that ⟨M̃ (t)(µ),µ− a∗⟩ ≥ −O(Ndσ2

t ) +
ν∥µ − a∗∥2, where we used µ,a∗ ∈ A and compactness
of A (Assumption 2) and ⟨M(µ),µ − a∗⟩ ≥ ν∥µ − a∗∥2
(Assumption 3).

We are now equipped to provide the proof of Theorem 1.
Proof: (of Theorem 1) Let us notice that due to the

theorem’s conditions and the particular choice σt → 0, as
t → ∞, Proposition1 hold.

We consider ∥µ(t+1)−a∗∥2. We aim to bound the growth
of ∥µ(t+ 1)− a∗∥2 in terms of ∥µ(t)− a∗∥2 and, thus, to
obtain the convergence rate of the sequence ∥µ(t+1)−a∗∥2.
By analyzing each term in the following sum ∥µ(t + 1) −
a∗∥2 =

∑N
i=1 ∥µi(t + 1) − ai∗∥2 and applying Lemmas 1

and 2, we obtain3

E{∥µi(t+ 1)− ai∗∥2|Ft} ≤ ∥µi(t)− ai∗∥2

− 2γt⟨M̃ i,(t)(µ(t)),µi(t)− ai∗⟩+ h0(t), (13)

where h0(t) = O
(

dγ2
t

σ2
t

)
, if j = 1 and h0(t) = O(Nd2γ2

t ),
if j = 2. Thus, applying Proposition 1 in the case j = 1, and
using the relation ∥M̃ i,(t)(µ(t))−M i(µ(t))∥ = O(Ndσt)
(see (20) in [18] for the proof) in the case j = 2, we conclude
from (13) by summing up the inequalities over i = 1, . . . , N ,

E{∥µ(t+ 1)− a∗∥2|Ft} ≤ (1− νγt)∥µ(t)− a∗∥2 + h1(t),

where h1(t) = O
(

Ndγ2
t

σ2
t

+Ndγtσ
2
t

)
, if j = 1, and

h1(t) = O(N2d2γ2
t + Ndγtσt), if j = 2. Thus, given the

settings for the parameters γt = c
t with c ≥ 1

ν and σt,
we conclude that µ(t) converges to a∗ almost surely (see
Lemma 10 in Chapter 2.2 [16]). Taking into account that
ξ(t) ∼ N(µ(t), σt) and σt → 0 as t → ∞, we conclude that
ξ(t) converges weakly to a Nash equilibrium a∗. Moreover,
according to the Portmanteau Lemma [11], this convergence
is also in probability. Next, by taking the full expectation of
the both sides and applying the Chung’s lemma (see Lemma
4 in Chapter 2.2 [16]) to the resulting inequality, we obtain
the result.

V. NUMERICAL EXAMPLE

We consider Example 1 in Section II. Notice that the
game satisfies Assumptions 1–5. In the plots below, we
show the convergence of the algorithm using the one-point
and two-point feedback. The first plot considers the strategy
set [−1, 2], whereas the second plot considers the strategy
set [0, 1]. The parameters were set to c = 1, a = 1 in
both one-point and two-point settings, and s = 1 for the
case of the two-point setting. The initial state µ(0) was
chosen from standard normal distribution. As predicted by

3The full proof can be found in [20].
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Fig. 1. Convergence of the algorithm for the game of Example 1 with
strategy sets as [−1, 2].

the theory, in both one-point and two-point settings, the
proposed algorithms converge to the unique SVS equilibrium
of the game, despite lack of monotonicity. The two-point
feedback results in much faster convergence rate, as also
predicted.

VI. CONCLUSION

We established the convergence rate of the zeroth-order
gradient play to the globally strongly VS Nash equilibrium
of a convex game. In both the one-point and two-point
setting, our rates of O

(
Nd
t1/2

)
and O

(
N2d2

t

)
are (as functions

on t) as they match the best rates established for the
subclass of strongly monotone games. An open question
is the lower bound for the convergence rate of zeroth-
order learning in convex games with respect to the problem
dimension. Moreover, it will be interesting to further relax
the assumptions so as to establish the convergence and derive
the convergence rate of a zeroth-order gradient play to a
merely VS equilibrium or to equilibria in non-convex games.
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