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Abstract— In the field of autonomous legged robotics, accu-
rate state estimation is crucial for control and planning. While
traditional methods suffice for fully-actuated platforms, under-
actuated systems face challenges due to sensory limitations and
uncertainties. This paper presents a novel methodology for state
estimation and phase prediction, integrating a torque-actuated
spring-mass model with limited sensors using a multiple-
hypotheses extended Kalman filter. Within this estimation
framework, the optimal estimate is determined at each iteration
by evaluating the likelihood functions associated with two
distinct phase hypotheses, either stance or flight. We evaluate
different sensor and motion model combinations, showing that
our method achieves precise state and phase estimation even
without advanced sensors for compliant and under-actuated
platforms.

I. INTRODUCTION

In terrestrial environments, legged robots offer advantages
over wheeled or tracked ones, particularly in unstructured
surroundings [1]. The effectiveness of locomotion in such
robots critically depends on accurate phase and state estima-
tion.

While numerous studies have addressed state estimation
in the context of legged robotics, the primary focus of these
investigations has typically centered on fully actuated and
comprehensively sensed systems. In such setups, where rich
kinematic models and abundant measurement data are at their
disposal, successful implementations of state estimation have
been achieved [2]–[4].

However, for legged platforms that incorporate elastic and
soft materials in their linkages to achieve energy efficiency
and robustness [5]–[7], such approaches are not always
viable. The use of elastic materials introduces additional
uncertainties and complexities in control and estimation
tasks, rendering the system not entirely observable through
kinematic information alone. In such cases, traditional kine-
matic models often fail to effectively capture the system’s
dynamics.

One potential solution involves enhancing sensory sub-
systems with exteroceptive sensors like depth, vision, GPS,
inertial measurement units (IMUs), force sensors, or range
sensors [8]–[10]. These sensors can indirectly mitigate the
kinematic unobservability problem. However, this approach
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Fig. 1. Enhanced Torque-Actuated Dissipative Spring-Loaded Inverted
Pendulum (TD-SLIP) model [11] with added toe mass and DC motor at
the hip joint. Also, this figure illustrates the progression of a single step in
the TD-SLIP model, highlighting the different locomotion phases and key
transition events.

comes with trade-offs, including increased cost and hardware
complexity. Moreover, these sensors are often susceptible to
environmental conditions that can hamper their effectiveness,
such as light intensity variations, reflective surfaces, or
temperature fluctuations.

Furthermore, the conventional approach to the estima-
tion problem in legged robots typically involves segregating
ground contact estimation from state estimation, leading to
the development of multi-step strategies. These strategies em-
ploy separate estimation blocks to tackle these two problems
individually [3], [12], [13]. Attempting to decouple these
problems and merging the individual blocks often introduces
compatibility issues, including initialization and calibration
challenges.

This paper aims to tackle the challenge of accurately
estimating the phase (ground contact) and system states
for under-actuated and compliant legged robots, even when
equipped with minimal sensory information.

Our approach relies on mathematical modeling of the
system, allowing us to develop a state estimation frame-
work that uses minimal proprioceptive sensors, even when
the robot incorporates compliant structures. Proprioceptive
sensor readings include primary DC motor encoders and
current measurements inherent to the system. This strategy
circumvents the challenges of integrating exteroceptive sen-
sors or other proprioceptive sensors. Similar to the approach
in [12], this work emphasizes a model-based state estimation
framework without requiring an extensive array of sensors.

Additionally, we propose a methodology that enables us
to estimate ground contact detection and state within a single
framework. We design and implement dynamic observers
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tailored to different phases of the system and combine this
information using probabilistic techniques to determine the
system’s current mode and acquire state information.

Our work is centered around a locomotion model (see
Fig. 1) based on the torque-actuated spring-loaded inverted
pendulum (TD-SLIP) model with damping [11]. This model
represents an elaborate and physically realistic extension of
the spring-loaded inverted pendulum (SLIP) model [14]–
[16], addressing the complexities of real legged robotic
platforms. Using this proposed model, we compare various
sensor inputs and motion models and evaluate estimation
performance.

In the subsequent sections, we detail the model dynamics
and the proposed estimation framework in Section II. We
present the results obtained from our simulations in Sec-
tion III. Finally, we conclude our paper in Section IV.

II. STATE ESTIMATION WITH THE TD-SLIP
MODEL

A. TD-SLIP Model and Dynamics

The Spring-Loaded Inverted Pendulum (SLIP) model
serves as a fundamental bridge connecting the fields of
biology and engineering. It is a widely studied dynamic
model used to explain the running behavior of animals and
also serves as a foundational design reference and control
objective for robotic systems [14], [17], [18]. The appeal
of the SLIP model lies in its simplicity, but its highly
abstract structure can create challenges when translated into
model-based controllers for physical robotic platforms. These
inaccuracies can pose significant challenges for model-based
controllers and estimators [13].

To overcome these limitations, researchers have proposed
various extensions to the SLIP model, enhancing its appli-
cability to robotic platforms. These extensions address body
dynamics [19], [20] and dissipative and actuator components
[21], [22], enabling its adaptation to complex models with
multiple legs and bodies. In this study, we extend a variant
of the SLIP model known as the TD-SLIP model, originally
introduced in [11]. This model strikes a balance between
simplicity and extensibility, making it well-suited for funda-
mental analyses and more complex representations involving
multiple legs and bodies.

Unlike the conventional SLIP model, the TD-SLIP model
comprises a planar rigid body with a fixed orientation (two
degrees of freedom) linked to a toe by an entirely passive
leg. This leg incorporates a linear spring k and linear viscous
damping d, with a rest length (r0), as shown in Fig. 1. This
model’s only actuated degree of freedom is the revolute joint
located at the hip position.

In this work, we introduce two minor extensions to the
TD-SLIP model proposed in [11]. First, we incorporate a toe
mass mt positioned at the ground-tip of the TD-SLIP, which
is relatively smaller than the body mass. Additionally, unlike
the prevalent assumption in the legged robotics community,
we do not presume the existence of an infinitely fast actu-
ator capable of reactively regulating the hip-torque. Instead,
we integrate an armature voltage-controlled DC motor that

TABLE I
NOTATION USED THROUGHOUT THE PAPER

System Parameters
r, θ, ṙ, θ̇ Leg length, angle and respective velocities
x, y, ẋ, ẏ Body COM cartesian positions and velocities
k, d, r0 Leg stiffness, leg damping and rest leg length
m,mt, g Body mass, toe mass, gravitational acceleration

Motor Parameters
Vm, i Armature voltage and current
Kt,Ke Torque and back electromotive force constant
Ra, La Armature resistance and inductance

b Motor damping
Estimation Procedure Parameters

Ts Sampling period
As,f

k ,Co,m,Gs,f
k System, output and process noise matrices

ws,f
k ,vo,m

k Process and measurement noise
Qs,f ,Ro,m Process and measurement noise covariances
q̂α|β ,Pα|β Estimate and covariance of the states

at time α given observations up to β

generates the hip-torque based on voltage commands and
internal electrical dynamics.

Table I provides an overview of the system, motor, and
estimation procedure parameters, with the parameter values
selected based on the platform developed by Uyanik et al.
[23], including values such as m = 3.21 kg, mt = 0.19 kg,
k = 3570 N/m, r0 = 0.22 m, and d = 9.9 kg/s.
Gravitational acceleration g is set at 9.8 m/s2.

We approach the TD-SLIP model by examining two
distinct phases: stance and flight (Fig. 1). Following a similar
methodology to locomotion models used for the analysis
of compliant legged robotic systems [18], [24], during the
flight phase, we assume that compliant leg forces do not
influence body dynamics but instead govern the dynamics
of the toe mass, capitalizing on the substantial difference
in mass between the body and leg. Consequently, in this
context, the body exhibits ballistic flight dynamics, and we
can formulate the equations of motion as follows:

r̈ = rθ̇2 +
k(r − ro)

mt
− dṙ

mt
,

θ̈ = −2ṙθ̇

r
+

Kti

mtr2
− bθ̇

mtr2
,

ẍ = 0, ÿ = −g.

(1)

In this context, the flight phase states pertaining to the
main body, represented by [x, ẋ, y, ẏ], become both
uncontrollable and unobservable.

In the stance phase, we assume that the toe mass dynamics
are inactive and the touchdown point behaves as a pin
joint without slippage. Therefore, we solely consider the
body dynamics during the stance phase, as articulated in the
following stance dynamics:

r̈ = rθ̇2 +
k(ro − r)

m
− g cos θ − dṙ

m

θ̈ =
g sin θ

r
− 2ṙθ̇

r
+

Kti

mr2
− bθ̇

mr2
.

(2)
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Furthermore, we incorporate the governing equation for
the motor as

i̇ = −Keθ̇

La
− Rai

La
+

Vm

La
, (3)

where Vm serves as the control input to our system, along
with the touchdown angle, regulated by a proportional-
derivative (PD) controller. This controller aims to track a
time-based reference trajectory defined for the toe mass as
in [25], ensuring the system’s running behavior is sustained
through open-loop clock-driven voltage commands.

With these dynamic equations in place, we can define
the observable states regardless of the phase as q :=[
r, θ, i, ṙ, θ̇

]T
. To describe the complete system trajectory, we

introduce qd :=
[
qT , x, y, ẋ, ẏ

]T
and define the nonlinear

continuous-time differential equation of motion as follows:

q̇d(t) = hs,f (qd(t), u(t),w
s,f (t)), (4)

This equation incorporates the dynamics presented in (1),
(2), and (3). The superscripts s and f denote stance and flight
phases, while u(t) represents the controller input.

B. Estimation Framework

We employ an Extended Kalman Filter (EKF) to fuse
available sensory readings and perform hybrid state estima-
tion. To create a more realistic experimental environment,
we assume that filters and sensors operate at the sampling
period Ts, ensuring that all readings are synchronous.

Between two sampling instants, we can define the discrete
motion model and observation equations as follows:

qk+1 = gs,fk (qk, uk,w
s,f
k ) (5)

zk = Co,mqk + vo,m
k . (6)

Here, the superscript o,m denotes different selections of
sensor models, which will be further explained in Section II-
D. gs,fk represents the nonlinear discrete-time state transition
function, which depends on the motion model. Noises ws,f

k

and vo,m
k are assumed to be zero-mean multivariate Gaussian

noises with covariances Qs,f and Ro,m, respectively. While
the vector ws,f

k influences the leg force and leg torque, vo,m
k

represents additive noise present in the measurement.
The estimation procedure begins with both filters having

the same foreknown initial condition. As shown in Fig. 2,
both filters adopt the same noisy sensor model Co,m and
utilize the same motion model with different phases, which
are denoted as As,f

k , [Gs,f
k , and gs,fk , to estimate the same

states q̂s,f
k|k:= [r, θ, i, ṙ, θ̇]T . For each time step, there are two

hypotheses regarding the best state estimate, either q̂s
k|k or

q̂f
k|k, which the likelihood-based phase identification block

will later determine.
Using the measurement innovation and innovation covari-

ances, defined as:

z̃s,f
k := zs,f

k −Co,mq̂s,f
k|k−1,

Ss,f
k := Co,mPk|k−1C

o,mT

+Ro,m

Fig. 2. Flowchart of the estimation routine. Two Extended Kalman Filters
are utilized simultaneously, employing a common motion model featuring
one stance and one flight phase dynamics. Both filters share the same sensor
model. The phase identification block determines the most appropriate phase
and estimation outcome by integrating the results based on the likelihood
presented in Section II-B.

the likelihood of each estimate Λs,f
k is computed as:

Λs,f
k =

1√
|2πSs,f

k |
e(z̃

s,f
k )

T
Ss,f

k z̃s,f
k . (7)

These likelihood values are then used to calculate the
likelihood ratio (LRk) for each time step:

LRk =
Λf
k

Λs
k

. (8)

The phase identification block in Figure 2 decides the best-
suited phase and estimation result by fusing the influences on
a likelihood basis. The identification block initially evaluates
LRk. If LRk > 1, it implies that, based on the current
measurement and EKF predictions, the phase is more likely
to be in the flight phase. Conversely, if LRk < 1, it indicates
that the model is likely to be in the stance mode. Depending
on the value of LRk, the estimation routine determines the
phase ϕ̂k, and uses the final state estimation value of the
most likely phase as q̂k|k for the next step.

However, a challenge arises when LRk becomes almost
equal to one in the close proximity of the liftoff event due
to smooth transitions between the stance and flight phases,
making it harder to identify the phase solely based on LRk.
To better capture the liftoff instant, the estimation routine
also computes the ground reaction force (GRF) simultane-
ously using the selected q̂k|k and fuses this information
with likelihood while deciding on the phase. Naturally, GRF
cannot be negative in the stance phase; thus, a negative GRF
estimate suggests that it is an unlikely prediction based on
the hypothesis that the current mode is stance. In this context,
we simply set:

Λs
k = 0 → LRk → ∞. (9)

which automatically triggers the liftoff event.

C. Motion Models for TD-SLIP
In this paper, we employ two fundamental motion models

for state estimation. Firstly, we utilize the constant accelera-
tion model (CAM) as a simple baseline, a model frequently
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used in estimation problems due to its simplicity [26], [27].
Additionally, we compare the results with the model-based
linearized model (LM) derived from first principles. This
section provides a detailed explanation of the motion models
used throughout our study.

1) Constant Acceleration Motion Model (CAM): The
CAM is a widely used motion model based on the assump-
tion that the system’s acceleration remains approximately
constant until the next sampling instant. We compute the
corresponding acceleration values using (1), (2), and (3)
with the most recent state estimation. The resulting state
evaluation equation is as follows:

qk+1 =


1 0 0 T 0
0 1 0 0 T
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

As,f
k

qk +


(r̈kT

2)/2

(θ̈kT
2)/2

i̇kT
r̈kT

θ̈kT

 , (10)

This equation is used in the prediction step of the EKF. It
is important to note that the input Vm is implicitly included
in the equation through i̇k. For the update steps, we compute
the related Gs,f

k matrices as follows:

Gf
k =

[
0 0 0 m−1

t 0
0 0 0 0 (mtr

2)−1

]T
,

Gs
k =

[
0 0 0 m−1 0
0 0 0 0 (mr2)−1

]T
.

(11)

2) Linearized Motion Model (LM): (1) and (2) are non-
linear and nonintegrable, which means they do not admit
analytical solutions. To perform the prediction step of the
EKF algorithm, we solve (5) using a variable fourth-order
Runge-Kutta differential equation solver using (4). For the
update and correction steps of the EKF, we first linearize the
continuous dynamics, i.e., (4), around the current estimated
state, and then discretize the dynamics under zero-hold
operation to be consistent with the digital control framework.

In the stance phase, the linearization of the dynamics with
respect to qk and wk yields:

Ds
qg =


0 0 0 1 0
0 0 0 1 0
0 0 −Ra

La
0 −Ke

La

θ̈2 − k
m g sin θ 0 − d

m 2rθ̇

M g cos θ
r

Kt

mr2 − 2θ̇
r N

 ,

Ds
wg =

[
0 0 0 m−1 0
0 0 0 0 (mr2)−1

]T
,

(12)

where

M = −g sin θ

r2
+

2θ̇ṙ

r2
− 2Kti

mr3
+

2bθ̇

mr3
,

N = −2ṙ

r
− b

mr2
,

(13)

and D is the Jacobian operator.
In the flight phase, these matrices become more complex

and take the form of:

Df
qg =


0 0 0 1 0
0 0 0 0 1
0 0 −Ra

La
0 −Ke

La

P 0 0 −d
mt

2rθ̇

S 0 U V W

 ,

Df
wg =

[
0 0 0 m−1

t 0
0 0 0 0 (mtr

2)−1

]T
,

(14)

where

P = θ̇2 − k

mt
, S =

2ṙθ̇

r2
− 2(Kti− bθ̇)

mtr3
,

U =
Kt

mtr2
, V = −2θ̇

r
, W = −2ṙ

r
− b

mtr2
.

We then discretize (12) and (14) with a sampling period
Ts and compute As,f

k and Gs,f
k to use in covariance estimate

prediction and update steps of the EKF, as shown in Fig. 2.

D. Sensor Models

In this section, we introduce the alternative sensor models
utilized in this research.

1) Optimistic Sensor Model (OSM): The OSM assumes
that motor armature current, leg length, leg angle, and
their respective derivatives in both stance and flight phases
are all measured, essentially representing a full observable
state space. We define the associated observation vector and
observation model as follows:

zo := [r, θ, i, ṙ, θ̇]T , Co := I5x5. (15)

This model is considered optimistic because it assumes
that states associated with the compliant leg are directly
measurable. However, obtaining such measurements poses
significant challenges in practice, as mentioned earlier. Theo-
retically, we expect the best estimation performance from this
sensor model. We will compare its prediction performance
with a limited sensor model that captures state information
obtained only through the hip joint.

2) Minimal Proprioceptive Sensor Model (mPSM): This
paper aims to demonstrate that we can still achieve accu-
rate state estimation using minimal proprioceptive sensor
readings obtained from existing primary DC motor encoder
and current measurements without additional sensor suites.
This model assumes that only the leg angle, the leg angle
rate, and the armature current are measured. The associated
observation vector and observation model are defined as:

zm := [θ, i, θ̇]T , Cm :=

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 . (16)

When we use this sensor model along with the CAM,
the system becomes unobservable and undetectable for r
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and ṙ states. Since the states are decoupled, measurement
information does not enter these modes, while the process
noise is still directly present on ṙ and indirectly on r. As a re-
sult, Kalman filter matrices updated estimate covariance Pk|k
and predicted estimate covariance Pk|k−1 grow indefinitely,
leading to unstable and failed estimation. However, with
the LM, where the states are coupled, the system remains
observable, and we do not encounter this problem.

III. ESTIMATION PERFORMANCE

A. Simulation Environment

We evaluate the estimation performance of our proposed
framework by analyzing various trajectories generated from
the same initial conditions. We assess their performance
using metrics defined in Section III-B. We create these
trajectories by integrating the dynamics described in (4)
using MATLAB’s ode45 solver.

Our simulations implement a digital control system topol-
ogy with a synchronous clock frequency of 500 Hz. We con-
sider the input u(t) and process noise ws,f (t) as piece-wise
constant over intervals of length Ts. Throughout the simula-
tions, we set the process and measurement noise covariances
as follows: Qs = diag[5, 10], Qf = diag[1, 1], Ro =
diag[r0/100, 5, 1, r0/10, 20], and Rm = diag[5, 1, 20].

B. Performance Metrics and Comparision

In this section, we evaluate state estimation performance
using different sensors and motion models. We employ
several performance metrics to assess the accuracy of our
estimations.

We start by using the mean absolute percentage error
(MAPE) metric, which measures the prediction performance
of state estimation. It is calculated as follows:

MAPE :=
100

n

n∑
k=1

| ek
qk

|, (17)

where n is the number of samples, ek represents the state
error defined as ek = qk−q̂k, where q̂ is the estimated state.
MAPE provides a percentage error rate for overall estimation
performance.

To assess the phase estimation performance, we define
the timing error for transition events and the overall phase
estimation error, denoted as ϕ̂k Err. (%):

ϕ̂k Err (%) : =
Erroneous Phase Est. Duration(s)

Total Run Time (s)
× 100,

ei(s) : =
|t̂i − ti|

total number of i
,

where ei(s) represents the timing error for touchdown, td,
and liftoff, lo, events.

In Table II, we present the performance metrics for differ-
ent motion and sensor models. The simulations are conducted
for an initial apex state with ẋ0 = 1.6m/s and y0 = 0.24m.
We perform 1000 simulations, each consisting of 5 successful

TABLE II
PERFORMANCE FOR DIFFERENT MOTION AND SENSOR MODEL PAIRS

LM CAM
OSM mPSM OSM mPSM

MAPE [%] 2.44 % 2.62 % 3.87 % -
ϕ̂k Err [%] 3.1% 3.3 % 36.56 % -
etd [ms] 4.0 4.4 - -
elo [ms] 5.2 5.6 - -

strides, for each motion-sensor model pair. This approach
allows us to qualitatively assess estimation performance, as
the trajectories differ due to process noise.

Notably, the CAM model with OSM yields relatively high
MAPE and phase estimation errors, indicating its limitations
in accurately predicting the true phase information. On
the other hand, LM outperforms CAM in all performance
metrics, including when paired with mPSM. This result
highlights LM’s superiority in capturing the system’s second-
order dynamics, which CAM cannot fully represent. How-
ever, it is worth noting that LM increases computational costs
by approximately fourfold.

Furthermore, LM demonstrates exceptional event detection
performance, with timing errors for touchdown and liftoff
events remaining low (around 4ms and 5.4ms, respectively)
for both sensor models. Consequently, the overall phase
estimation error (ϕ̂k Err.) is only around 3%, demonstrating
accurate phase estimation, particularly for liftoff detection.
In contrast, the CAM model shows frequent faulty event
detection, leading to poorly defined timing errors and a high
phase estimation error (ϕ̂k Err. = 36.56%).

Regarding sensor models, Table II shows that OSM gener-
ally yields better performance metrics, as expected. However,
the most significant observation is that when using LM,
the performance difference between OSM and mPSM is not
substantial. Our estimation framework exhibits close estima-
tion performance for fully sensed and under-sensed sensor
models, indicating that over-instrumentation is unnecessary.

Fig. 3 illustrates an example from the simulation results for
the LM-mPSM pair. The estimation remains accurate for all
states, regardless of whether the measurement is available.
Notably, even though the toe mass dynamics resemble an
under-damped system in the flight phase, the estimation
framework adequately tracks the true state of the system.

IV. CONCLUSIONS AND FUTURE WORK
This study addresses the state and phase estimation chal-

lenges of a torque-actuated spring-mass runner. Our proposed
estimation framework leverages a multiple hypotheses EKF
approach. We have demonstrated each model’s effectiveness
and concluded that a combination of model-based motion
modeling and minimal proprioceptive sensor readings pro-
vides satisfactory state and phase estimation results in com-
pliant, under-actuated, and under-sensed-legged platforms.

One of our primary motivations for future work is to vali-
date our results on a two-dimensional monopod platform and
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Fig. 3. An example from the simulation batch involving the LM-mPSM pair
is illustrated. In the figure, blue and white regions represent the true stance
and flight phases, respectively. Dashed lines indicate estimated transition
events corresponding to touchdown or liftoff. The blue solid line represents
the actual state, while the dashed orange line represents the estimation, and
the dotted black line represents the measurement.

expand to three-dimensional models. This framework can be
adapted for multi-legged systems for planar gaits without
requiring substantial modifications. Additionally, enhancing
the likelihood approach by incorporating the Interacting
Multiple Model filter can improve performance.
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