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Abstract— In this work we provide a data-based controller
design method for uncertain input-saturated linear systems,
where conditions based on linear matrix inequalities (LMIs)
are exploited to guarantee robust global and regional closed-
loop stability. The method is tested in simulation on a realistic
case-study: the trade-off between performances and the region
of validity of the established stability conditions is analysed.

Index Terms— Linear matrix inequalities, virtual reference
feedback tuning, regional stability.

I. INTRODUCTION

Control design methods based on linear matrix inequalities
(LMIs) have been extensively investigated [1]. They are
particularly suited for providing optimality and robustness
with respect to model uncertainties, as well as controllers
appropriate for the decentralized/distributed framework [2].
Even model-free methods, e.g., virtual reference feedback
tuning (VRFT) [3], lead to data-based LMI control design
procedures [4]. All these methods, when applied to lin-
ear plants, are capable of guaranteeing closed-loop global
asymptotic stability properties. However, in presence of
nonlinearities such as input saturations, the latter cannot
always be conferred, e.g., if the controlled system is unstable
[5]. For this reason, LMI methods with regional validity have
been proposed, particularly suited in case of static sector-
bound nonlinearities, as the ones induced by saturations [6].
These methods have been also investigated for controllers
with integrators and anti-windup actions, however without
considering systems with uncertain parameters [5].
In this work we provide a data-based controller design
method for uncertain input-saturated linear systems. Global
and regional LMI-based stability conditions are provided,
showing how the latter can be combined with two alternative
control design strategies, namely H2 control and VRFT, both
formulated as LMI problems.
Regarding H2 control, a wide literature is available, es-
pecially for the continuous-time case, e.g., [7]–[9] where
in [7] and [8] model uncertainties are considered, whereas [9]
accounts for actuator saturations.
An alternative approach, combining the VRFT algorithm
discussed in [4] and a novel LMI-based formulation for dis-
turbance rejection (named virtual disturbance feedback tun-
ing, VDFT) is also proposed. The latter guarantees response
speed and disturbance rejection capabilities at the same time.
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A similar idea is discussed in [10], where the controller
transfer function is identified with standard tools and closed-
loop stability is not addressed.The proposed control methods
are tested on a realistic simulation case-study. A detailed
analysis of the trade-off between the achieved performances
and the corresponding region of validity is carried out.

A. Notation

The symmetric matrix
[
A B⊤

B C

]
is abbreviated as[

A ⋆
B C

]
. 0n,m (or 0) denotes a zero matrix with n rows and

m columns (or with a suitable number of rows and columns),
whereas In (or I) is the identity matrix of dimension n
(or with suitable dimensions). |a| is the absolute value of
a real number a, ∥v∥ =

√
v⊤v denotes the 2-norm of a

vector v. Also, k denotes the discrete-time index and q the
forward shift operator (i.e., u(k + 1) = qu(k), for a signal
u(k)). Given a signal u(k), the variable uF (k) indicates
the signal obtained by filtering u(k) through a transfer
function F (q), i.e., uF (k) = F (q)u(k) (when applied to a
vector, F (q) is intended element-wise). Finally, ∥F (q)∥H2 =√

1
2π

∫ π

−π
|F (ejω)|2 dω denotes the H2-norm of F (q).

II. PROBLEM STATEMENT

A. The system and the uncertain model
Consider the following discrete-time system S of order n

S :

{
z(k + 1) = θo⊤ϕ(k) + δ(k)

ym(k) = z(k) + w(k)
, (1)

where ϕ ∈ R2n is the regressor vector, defined as

ϕ(k)=[z(k), ..., z(k − n+1), u(k), ..., u(k − n+1)]⊤, (2)

u ∈ R is the system input, z ∈ R is the noise-free
output, δ ∈ R is the process disturbance, w ∈ R is the
measurement noise, ym ∈ R is the measured output, and
θo =

[
θo1, ..., θ

o
2n

]⊤ ∈ R2n is the vector of unknown system
parameters. The following assumption is stated.

Assumption 1: The system (1) is asymptotically stable and
its order n is known. Also, w in (1) is bounded and its
upper bound is known, i.e., there exists a known w̄ > 0
such that |w(k)| ≤ w̄ for all k ≥ −n + 1. Moreover, δ in
(1) is bounded, i.e., ∃ δ̄ > 0, possibly not known, such that
|δ(k)| ≤ δ̄ for all k ≥ 0. □

Given the previous assumption, following the same lines
of [4], the system (1) can be described by the uncertain model{

x(k + 1) = A(θ)x(k) +B(θ)u(k) +Bξξ(k)

ym(k) = Cx(k)
, (3)
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Fig. 1: Control scheme with symmetric saturation, explicit
integral action with anti-windup, and static state feedback.

where the measurable state x(k) ∈ R2n−1 is

x(k)=[ym(k), ..., ym(k−n+1), u(k−1), ..., u(k−n+1)]⊤, (4)

whereas ξ(k), acting as a bounded exogenous disturbance,
derives from the effect of δ(k) and w(k) on the state
evolution. The system matrices have the following form,
consistent with the state definition:

A(θ) =

 θ1 . . . θn θn+2 . . . θ2n
In−1 0n−1,1 0n−1,n−1

01,n 01,n−1

0n−2,n In−2 0n−2,1

,
B(θ)=

[
θn+1 01,n−1 1 01,n−2

]⊤, B⊤
ξ =C =

[
1 01,2n−2

]
.

The vector θ ∈ Θ identifies the uncertain model pa-
rameters, where Θ is a convex and compact polytope with
known vertices θVi , i = 1, . . . , nv , possibly defined by using
collected input/output data (cf. [4]). In view of this, although
A(θ) and B(θ) are uncertain, they can be defined as

[
A(θ) B(θ)

]
=

nv∑
i=1

βi

[
A(θVi) B(θVi)

]
, (5)

where A(θVi) and B(θVi) are defined as reported above,
whereas β1 ≥ 0, . . . , βnv ≥ 0 are unknown scalars, defined
such that

∑nv

i=1 βi = 1.

B. The control scheme

Consider the control scheme in Figure 1 where r is the
reference. The control input uc is limited by a symmetric
saturation with known level ū > 0, i.e.,

u(k) = sat(uc(k)) =


ū if uc(k) > ū

uc(k) if −ū ≤ uc(k) ≤ ū

−ū if uc(k) < −ū

. (6)

The block “
∫
AW ” denotes a anti-windup integrator, with

equation v(k) = v(k−1)+e(k−1)−ρdz(uc(k−1)), where
dz(uc(k)) = uc(k) − sat(uc(k)) is the deadzone function,
and uc(k) = Kx(k) + gv(k). Note that, in the integrator
expression, the term −ρdz(uc(k − 1)) is introduced to
provide an anti-windup action, contrasting the integrator
windup when dz(uc) ̸= 0, i.e., when the input saturates.
The tuning parameters are the static state-feedback gain K,
the static integrator gain g, and the anti-windup static gain
ρ. The objective of this work is to design a controller which
allows us to provide robust exponential stability guarantees
and, at the same time, suitable performances.

III. CONTROL DESIGN

A. Robust stability guarantees

By considering (3) and the control scheme depicted in
Figure 1, the closed-loop system equations read as{

χ(k + 1) = Aχ(θ)χ(k) +Bχ(θ) dz(Jχ(k)) + η(k)

ym(k) = Cχχ(k)
, (7)

where
χ(k) =

[
x(k)
v(k)

]
, Aχ(θ) = Ã(θ) + B̃(θ)J , Ã(θ) =

[
A(θ) 0
−C 1

]
,

B̃(θ) =

[
B(θ)
0

]
, J =

[
K g

]
, Bχ(θ) = D̃(θ) + Ẽρ,

D̃(θ)=

[
−B(θ)

0

]
, Ẽ=

[
0
−1

]
, Cχ =

[
C 0

]
, and η(k)=

[
Bξξ(k)
r(k)

]
.

The following result provides conditions for the local
and global robust exponential stability of the origin, i.e.,
(η̄, χ̄, ȳm) = (0, 0, 0), for all the models (7) with θ lying in
the uncertainty set Θ.

Proposition 3.1: Assume that r = w = δ = 0. The origin
is a locally exponentially stable equilibrium for system (7)
for all θ ∈ Θ, where E(Q) = {χ ∈ R2n : χ⊤Q−1χ ≤ 1} is
a forward invariant set contained in the basin of attraction
of the origin, if there exist Q = Q⊤ ∈ R2n×2n, L ∈ R1×2n,
Y ∈ R1×2n, τ ∈ R, µ ∈ R such that Q ⋆ ⋆

−L− Y 2τ ⋆

Ã(θVi)Q+ B̃(θVi)L D̃(θVi)τ + Ẽµ Q

 ≻ 0 (8)

for all i = 1, . . . , nv , and[
Q Y ⊤

Y ū2

]
⪰ 0 . (9)

Moreover, the origin is a globally exponentially stable equi-
librium for (7) for all θ ∈ Θ, if (8) holds with Y = 0 and
for all i = 1, . . . , nv . In both cases, the stabilizing control
gains are given by

[
K g

]
= LQ−1, ρ = µτ−1. □

The proof of this proposition follows straightforwardly from
[5], with the difference that the proposed conditions hold
robustly on a set of possible models in view of (5).

B. Performances

In this section, two alternative design approaches are
discussed, where the previous stability constraints can be
naturally included. The first method relies on a novel re-
formulation of the VRFT problem for disturbance rejection,
as initially proposed in [10]. The second one is based on the
H2 control formulation adopted in [11]. While stability prop-
erties are guaranteed by Proposition 3.1 in a defined region
E(Q) even in presence of input saturations, performances are
guaranteed under the following assumption.

Assumption 2: The input is not saturated, i.e., uc = u. □
Two important remarks are due. First, while stability guar-
antees are provided by Proposition 3.1 under the assumption
that δ = r = 0, the performances are enforced possibly for
any reference r and disturbance δ; this is, from the theoretical
standpoint, in contradiction with the assumptions of Propo-
sition 3.1. However, the stability result in Proposition 3.1
still holds, e.g., also when piecewise-constant reference and

3484



disturbance variations are such that the current state lies in
a positively invariant set centred in the new steady state (de-
fined based on the non-zero output reference and disturbance)
and verifying the sector condition imposed by the input
saturation (see [5]) or when disturbances are impulsive and
are accounted to as state perturbations driving state jumps,
as long as x(k) ∈ E(Q). A more comprehensive extension to
non-zero disturbances and references will be subject of future
work. Secondly note, from Figure 1, that when Assumption
2 holds dz(uc) = 0, meaning that parameter ρ does not
influence the dynamics of the control system. For this reason,
ρ (or, more specifically, µ and τ ) is not used as optimization
variable in purely performance-oriented LMI problems, but
only in the stability one.

1) VRFT/VDFT combined approach: Considering sys-
tem (1) and the separation principle, we can denote with
y(k) and d(k) the components of z(k) depending upon u(k)
and δ(k), respectively, i.e.,

y(k + 1) = θo⊤ϕ̂(k) , (10a)

d(k + 1) = θo⊤ζ ζ(k) + δ(k) (10b)

where ϕ̂(k) = [y(k), ..., y(k−n+1), u(k), ..., u(k−n+1)]⊤,
ζ(k) = [d(k), ..., d(k − n + 1)]⊤, and θo⊤ζ = [θo1, ..., θ

o
n]

⊤.
Note that z(k) = y(k) + d(k) and that ym(k) = y(k) +
d(k)+w(k). With reference to (10) and Figure 1, to enforce
a predefined closed-loop response speed, in [4] a VRFT-
based method was proposed to design the control gains that
allow the transfer function between the reference r and the
output variable ym (denoted MK,g(q)) to be as close as
possible to a reference one (denoted M(q)). In this section a
similar but alternative novel LMI-based formulation (named
virtual disturbance feedback tuning, VDFT) is proposed for
disturbance rejection, where the control gains are identified
such that the sensitivity function SK,g(q) (i.e., the one
between disturbance d and ym in closed loop) is as similar
as possible to a given reference one S(q), i.e., it is a solution
to

minimize
K,g

JMR(K, g) :=∥(S(q)−SK,g(q))W (q)∥2H2
, (11)

where W (q) is a suitable weighting function. To do so,
we need two datasets of input and output data collected
with the same inputs uc(k) = u(k) but with different
noise realizations, i.e., (u(k), y1m(k)) and (u(k), y2m(k)), for
k = −n+ 1, . . . , N , under the next assumption.

Assumption 3: a) The output signals y1m(k) and y2m(k)
are collected in absence of process disturbance, i.e.,
δ(k) = 0, for all k = −n + 1, . . . , N , implying that
yim(k) = y(k) + wi(k), i = 1, 2.
b) The signals u(k), w1(k), and w2(k) are uncorrelated, with
w1(k) and w2(k) being stationary zero-mean processes. □

Note that, to fulfill Assumption 3a), data may be collected
in a test environment, e.g., in a laboratory, where the process
disturbance can be absent, or, if it is not possible, by
simulating an identified model, where the noise w can be
generated from an estimated probability distribution (cf. [4]).

As done in [10], a virtual disturbance signal d̃i is intro-
duced for the two collected datasets, and, consequently, a
virtual measured output signal ỹim, is defined as

ỹim(k)=y(k)+wi(k)+d̃i(k)=yim(k)+d̃i(k)=S(q)d̃i(k),

for i = 1, 2. It follows that the virtual disturbance and the
virtual measured output can be computed from the collected
output data for each i-th experiment as

d̃i(k) =
yim(k)

S(q)− 1
, ỹim(k) =

S(q) yim(k)

S(q)− 1
. (12)

Let r = 0 in Figure 1, the following steps are carried out
to obtain a VDFT-based cost function for each collected
experiment, i.e., i = 1, 2,

1) Compute the virtual measured output sequences ỹim(k)
according to (12).

2) Compute the virtual error sequences ẽi(k) = −ỹim(k).
3) Compute the integrated virtual error

sequences according to the recursive equation
ṽi(k) = ṽi(k − 1) + ẽi(k − 1), with initial condition
ṽi(−n+ 1) = 0.

4) Compute virtual state sequences x̃i(k) according to (4)
by using ỹim in place of ym.

5) Compute the filtered sequences x̃i
F (k) = F (q)x̃i(k),

uF (k) = F (q)u(k), ṽiF (k) = F (q)ṽi(k), where the
filter F (q) will be defined later.

6) Define u :=
[
uF (0) . . . uF (N − 1)

]⊤
and

Xi :=

 x̃i
F (0)

⊤ ṽiF (0)
...

...
x̃i
F (N − 1)⊤ ṽiF (N − 1)

 ,

uN :=
1

2N

(
(X1 +X2)⊤u

)
, (13)

XN :=
1

2N

(
(X1)⊤X2 + (X2)⊤X1

)
. (14)

We require the following assumption, verified under struc-
tural identifiability conditions and persistency of excitation.

Assumption 4: XN ≻ 0. □

To minimize (11), in such a way that the stability condi-
tions can be also included in the optimization problem, we
rely on the following result.

Theorem 3.2: Let Assumptions 1, 2, 3, and 4 hold. The
following optimization problem is, for N → +∞,

minimize
L,σ

σ (15a)

subject to
[
σ + 2LX−1

N uN − u⊤
NX−1

N QX−1
N uN L

L⊤ Q

]
≽ 0 ,

(15b)

equivalent to (11) if, for any γx > 0, it holds that

|F (ejω)|2 =
|SK,g(e

jω)|2|S(ejω)− 1|2|W (ejω)|2

|1− CK(ejω)|2Φu(ω)
, (16)

Q = γxXN , (17)

where Φu is the spectral density of u, whereas

CK(q) = kn+1q
−1 + · · ·+ k2n−1q

−n+1 , (18)
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and [
K g

]
= LQ−1 . (19)

Moreover, for N → +∞, under (16), (19), and for any Q =
Q⊤ ≻ 0, the optimization problems (15) and (11) have the
same minimum point, i.e.,

[
K g

]
= u⊤

NX−1
N . □

Proof: See the Appendix.
The filter F (q) in (16) cannot be defined since it depends on
the system and controller transfer functions. Therefore, the
following approximation is proposed:

F (q) =S(q)(S(q)− 1)W (q)/U(q) , (20)

where U(q) is such that |U(ejω)|2 = Φu(ω), which may be
known or estimated from input data (cf. [12]). A possible
way to achieve a more accurate approximation of the filter
(16) is to preliminarily solve (15) using (20), and then to use
the obtained parameters K to get an estimate of 1−CK(q)
to be included in (20) before solving (15) for a second time.
Finally, condition (17) can be either neglected or relaxed by
defining the matrix Q and the scalar γx as free optimization
variables, replacing (17) with a couple of constraints (cf. [4,
Eq. (34)]). Importantly, the VRFT and VDFT approaches
can also be combined together. Indeed, given two datasets
(u(k), y1(k)) and (u(k), y2(k)), for k = −n + 1, . . . , N ,
collected from the open-loop system under Assumption 3,
the overall algorithm with robust local stability guarantees
consists of the following steps.

1) Solve the LMI optimization problem

minimize
L,Y,Q=Q⊤,σ,σr,τ,µ

cdσ + crσr (21)

subject to (8) for i = 1, . . . , nv , (9), (15b), [4, Eq. (29)] 1,
where cd and cr are user-defined weights.
2) If feasible, set

[
K g

]
= LQ−1, and ρ = µτ−1.

3) Replace L =
[
K g

]
Q and µ = ρτ in (8), since[

K g
]

and ρ are now known, and, to obtain the maximum
guaranteed region of attraction E(Q), solve the LMI problem

maximize
Y,Q=Q⊤,τ,γq

γq (22)

subject to (8) for i = 1, . . . , nv, (9), Q ⪰ γqI .

Note that, given the inclusion of (8) and (9) in the optimiza-
tion problem (21), the procedure ensures not only desired
performances, but also robust local exponential stability of
the origin. Note that, in (21) and later in (27), global ex-
ponential stability guarantees can be achieved by neglecting
(9) and by setting Y = 0 in (8), for i = 1, . . . , nv .

H2 regulation
In this section we derive a cost function based on the H2

formulation considered in [11]. Under Assumption 2, the
state equation of the feedback system (7) reduces to

χ(k + 1) = (Ã(θ) + B̃(θ)J)χ(k) + η(k) , (23)

1In [4, Eq. (29)] σr is place of σ and Q in place of G. Also, since the
integrator is here strictly proper, differently from the one in [4], the result
in [4, Th. 2] still holds with the difference that E = I and D(q) = q− 1.
The filter in [4, Eq. (23)] can still be used as approximation.

where u(k) = Jχ(k) and J =
[
K g

]
. We consider the

performance output y∗(k) defined as

y∗(k) := C∗χ(k) +D∗u(k) = (C∗ +D∗J)χ(k) (24)

where C∗, D∗ are fixed user-defined matrices. The transfer
matrix from the exogenous input η to y∗ is denoted by
G∗

K,g,θ(q) := (C∗+D∗J)(qI−(Ã(θ)+B̃(θ)J))−1. Our ob-
jective is to minimize the maximal H2-norm ∥G∗

K,g,θ(q)∥H2

for any possible model parameterization, i.e., to solve

minimize
K,g,γ

γ (25a)

subject to ∥G∗
K,g,θ(q)∥H2

< γ for all θ ∈ Θ . (25b)

The following result shows that the previous problem can be
reformulated as an LMI problem.

Proposition 3.3: Let Assumptions 1 and 2 hold. The op-
timization problem (25) is equivalent to

minimize
L,Q=Q⊤,Z=Z⊤,γ̃

γ̃ (26a)

subject to
[
Z I
I Q

]
⪰ 0 , tr(Z) < γ̃ , (26b) Q ⋆ ⋆

Ã(θVi)Q+B̃(θVi)L Q ⋆
C∗Q+D∗L 0 I

≻0 for i=1, ..., nv, (26c)

where γ =
√

γ̃ and
[
K g

]
= LQ−1. □

Proof: See the Appendix.
The overall control design algorithm with robust local sta-
bility guarantees consists of the following.

1) Solve

minimize
L,Y,Q=Q⊤,Z=Z⊤,γ̃,τ,µ

γ̃ (27)

subject to (8) and (26c) for i = 1, . . . , nv , (9), (26b).
Then, Steps 2) and 3) reported after (21) are also applied.

IV. SIMULATION RESULTS

The algorithms are tested on a simulation example derived
from [13]. More details on the benchmark parameters are
available in [14, Chapter 4]. The case study is a water
tank heated by a thermal plate, with ingoing and outgoing
water flows. The system is discretized using a sample time
Ts = 100 s, and is rewritten in form (1), where n = 2,
θo =

[
1.3306 −0.3698 1.0481 0.7536

]⊤
and δ(k) =

0.06717dTi
(k)−0.02795dTi

(k−1). Two datasets composed
of N = 1000 samples are collected using a PRBS in [−1, 1]
as input u (i.e., the thermal power).The set Θ, resulting
from set membership identification [4], has 30 vertices.
Regarding VRFT/VDFT, we use M(q) = (1−a)q−1

q(1−aq−1) and
S(q) = 1−M(q) where a spans from 0.2 to 0.79 to analyse
the sensitivity with respect to the convergence speed of the
reference models. We also select W (q) = 1. In (21), we
set cd = cr = 1. In Table I, for different values of the
spectral radius a of the reference model, we display the
spectral radii ρLCL and ρGCL of the closed-loop system state
matrix Aχ(θ

o) in (7) in case either the local or the global
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TABLE I: VRFT/VDFT performances

a 0.2 0.38 0.5 0.6 0.7 0.74 0.79

ρLCL 0.42 0.42 0.49 0.62 0.71 0.75 0.8

ρGCL 0.42 0.42 0.49 0.62 0.71 0.75 0.8

TABLE II: H2 performances

100c∗ 1 3 5 7 9 11 13 15

ρLCL 0.58 0.53 0.48 0.44 0.42 0.39 0.37 0.36

ρGCL 0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.61

0

20

40

60

80

(a)

-200 0 200
-500

0

500

(b)

Fig. 2: (a) Trade-off between performance and size of E(Q)
for H2 (with c∗ ≥ 0.05). (b) Projections of E(Q) onto R2

for H2 with c∗ = 0.05, 0.06, . . . , 0.15.

condition in Proposition 3.1 is used, respectively. However,
for the considered case study and the considered control
configuration, we observe that with VRFT/VDFT both the
stability conditions are always feasible and provide the same
value of spectral radius. Also, in case the local condition is
used, the sets E(Q) are numerically unbounded, witnessing
the fact that the obtained controllers have a global validity.

A different behaviour is obtained regarding H2. For its
application, we define

C∗ =

c∗ 0 0 0
0 0 0 c∗

0 0 0 0

 , D∗ =

 0
0
d∗

 ,

where d∗ = 0.01, whereas c∗ spans from 0.01 to 0.15.
In Table II we show how the spectral radii ρLCL and ρGCL

vary with c∗ by considering the local and global conditions,
respectively, which are both always feasible. However, even
when increasing c∗, the global condition does not allow
for improvements in the convergence speed of the closed-
loop system, differently from the local condition. In Fig-
ure 2(a), the comparison between 1/ρLCL and the radius rb
of the maximum hypersphere in E(Q) is shown, displaying
a significant trade-off. Note also that, in Figure 2(a), the
radius of the maximum hypersphere in E(Q) is computed
based both on the matrix Q obtained in the design phase
by solving (27) (red dashed line) and on the matrix Q
calculated in a subsequent analysis phase by solving (22),
i.e., after the control gains are available (blue solid line). In
the latter case, the size of E(Q) is significantly larger than
in the former case. The projections of E(Q), obtained by
solving (22), onto R2 are displayed in Figure 2(b) in case
c∗ = 0.05, 0.06, . . . , 0.15, where the states related to the
output are depicted, i.e., x1(k) = y(k) and x2(k) = y(k−1).
In the case study considered here, H2 allows us to obtain
better performances, at the price of reducing the dimension
of the guaranteed domain of attractions. This may be due
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Fig. 3: Top panel: input trajectories. Bottom panel: output
trajectories. Red lines: H2; green lines: H2 without anti-
windup (ρ = 0); blue lines: VRFT/VDFT; magenta lines:
VRFT/VDFT without anti-windup (ρ = 0). Black dashed
lines: saturation limits (top panel), reference (bottom panel).

to different reasons. On the one hand, the reduction of the
dimension of the guaranteed region of attraction may be due
to the fact we are enforcing high performances robustly over
a polytopic uncertainty set, differently from VRFT/VDFT,
whose cost function is model-free. On the other hand, the
reduced domain of attraction and lower spectral radii of H2

may be also due to the fact that H2 allows one to enhance
the performances even beyond the zone of linear regime,
differently from VRFT/VDFT, where the performances are
strongly related to the region in which the data are col-
lected. For a final comparison, in Figure 3 we show the
simulation plots obtained by testing the controllers designed
with VRFT/VDFT, with a = 0.2, and H2, with c∗ = 0.15.
The reference output varies as shown in the bottom panel of
Figure 3, while a piecewise constant disturbance is applied,
i.e., taking nonzero value dTi = −15 K only from t = 8000
s to t = 16000 s. The control input u is shown in the
top panel of Figure 3. The simulations show that both the
methods display similar results, but VRFT/VDFT provides
better performances, in particular when the input saturates.

V. CONCLUSIONS

In this paper we propose suitable LMI problems to design
a regulator enforcing regional robust stability properties and
prescribed performances to a control system when the plant is
affected by uncertainties and input saturations. Performances
are enforced with two alternative control design strategies,
i.e., H2 control and VRFT/VDFT. Future work will be de-
voted to the extension to plants described by neural networks.

APPENDIX

Proof of Theorem 3.2. First we show that minimizing (15)
is equivalent to minimize the following function under (17)

JN
V R(K, g)=

1

N
(u−X1 [K g

]⊤
)⊤(u−X2 [K g

]⊤
)

= cst +
[
K g

]
XN

[
K g

]⊤ − 2
[
K g

]
uN , (28)
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where cst = 1
N u⊤u is constant with respect to the optimiza-

tion variables K and g, whereas XN and uN can be defined
under Assumption 1. Under Assumption 4, JN

VR(K, g) has a
global minimum in

[
K g

]
= u⊤

NX−1
N . Now, let us consider

J̃N
V R(K, g)=(

[
K g

]⊤−X−1
N uN )⊤Q(

[
K g

]⊤−X−1
N uN ).

By assumption, Q = Q⊤ ≻ 0, so the previous cost function
J̃N
VR(K, g) has a global minimum in

[
K g

]
= u⊤

NX−1
N .

Moreover, if we set Q as in (17), under Assumption 4, then
minimizing JN

VR(K, g) is equivalent to minimize J̃N
VR(K, g)

since the two cost functions differ only for constant additive
and strictly positive scaling terms. By defining

[
K g

]
according to (19), then minimizing J̃N

VR(K, g) is equiv-
alent to minimizing, in the free variable L, J̃N

VR(L) =
(Q−1L⊤ −X−1

N uN )⊤Q(Q−1L⊤ −X−1
N uN ) = LQ−1L⊤ −

2LX−1
N uN + u⊤

NX−1
N QX−1

N uN , which is equivalent to

minimize
L,σ

σ (29)

subject to σ≥LQ−1L⊤ − 2LX−1
N uN + u⊤

NX−1
N QX−1

N uN .

By resorting to the Schur complement, (29) can be recast
as (15). Note that also if Q = Q⊤ ≻ 0 is a free variable,
then the optimization problem (15) has global minima for
σ = 0, which implies LQ−1 =

[
K g

]
= u⊤

NX−1
N .

As a second step we show that, under the setting
(16) and for N → +∞, minimizing the cost function
JN
VR(K, g) in (28) is equivalent to minimizing

JMR(K, g) in (11). Note that JN
VR(K, g) =

1
N

∑N−1
k=0

(
F (q)(u(k)− u1

K,g(k))
) (

F (q)(u(k)− u2
K,g(k))

)
,

where ui
K,g(k) =

[
K g

] [x̃i(k)
ṽi(k)

]
= BK(q)ỹim(k) +

CK(q)u(k) − gI(q)ỹim(k), BK(q) = k1 + k2q
−1 + ... +

knq
−n+1, CK(q) as in (18), and I(q) = (q − 1)−1. As

discussed in [3], if N → +∞, JN
VR(K, g) → J̄V R(K, g),

J̄V R(K, g) = E[
(
F (q)(u(k)− u1

K,g(k))
)(

F (q)(u(k)− u2
K,g(k))

)
] . (30)

Also, y(k) = G(q)u(k), where G(q) is the unknown
transfer function between u and y in (10a). Recalling
(12) and Assumption 3a), we also have that
ỹim(k) = S(q)

S(q)−1 (G(q)u(k) + wi(k)), and we can write
J̄V R(K, g) = E[

(
F (q)DK,g(q)u(k) + F (q)EK,g(q)w

1(k)
)(

F (q)DK,g(q)u(k) + F (q)EK,g(q)w
2(k)

)
], where

DK,g(q) = 1 − CK(q) − S(q)(S(q) − 1)−1(BK(q) −
gI(q))G(q) and EK,g(q) = −S(q)(S(q) − 1)−1(BK(q) −
gI(q)). In view of Assumption 3b), we can write that
J̄V R(K, g) = E

[
(F (q)DK,g(q)u(k))

2
]
. According to

Figure 1, under Assumption 2, we can compute SK,g(q),
i.e., the real closed-loop transfer function between d and ym:
SK,g(q) =

1
1−RK,g(q)

, where RK,g(q) =
(BK(q)−gI(q))G(q)

1−CK(q) .

We can rewrite DK,g(q) =
(1−CK(q))(S(q)−SK,g(q))

(S(q)−1)SK,g(q)
. Using

the Parseval theorem, we obtain that

J̄V R(K, g)=
1

2π

∫ π

−π

|1−CK |2 |S − SK,g|2

|S − 1|2|SK,g|2
|F |2Φu dω. (31)

Using the H2-norm of a discrete-time transfer function, it is
possible to write JMR(K, g) in (11) as

JMR(K, g) =
1

2π

∫ π

−π

|S − SK,g|2|W |2 dω. (32)

Note that (32) is equivalent to (31) if (16) is used. □
Proof of Proposition 3.3 Under Assumption 2, for γ > 0,
it is well known [11] that Ã(θ) + B̃(θ)J is stable and
∥G∗

K,g,θ(q)∥H2
< γ if and only if there exists a matrix

P = P⊤ ≻ 0 such that

P − (Ã(θ) + B̃(θ)J)⊤P (Ã(θ) + B̃(θ)J)

− (C∗ +D∗J)⊤(C∗ +D∗J) ≻ 0 , (33a)

tr(P ) < γ2 = γ̃ . (33b)

By means of the Schur complement and by pre/post-
multiplying an invertible matrix, we obtain Q ⋆ ⋆

Ã(θ)Q+ B̃(θ)L Q ⋆
C∗Q+D∗L 0 I

 ≻ 0 , (34)

where Q = P−1 and L = JQ. In view of (5) and under
Assumption 1, (34) holds for all θ ∈ Θ if and only if (26c)
holds for all i = 1, . . . , nv . Moreover, (33b) is equivalent to
(26b) in view of the Schur complement. □
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