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M. Batu Özmeteler1,†, Deborah Bilgic2,†,∗, Guanru Pan1, Alexander Koch2, Timm Faulwasser1

Abstract— Stochastic predictive control schemes that account
for epistemic and aleatoric uncertainties, i.e. lack of model
knowledge and stochastic disturbances, are of major interest for
multi-energy systems. However, there exists a trade-off between
model complexity, computational effort, and accuracy of uncer-
tainty quantification. This paper attempts to assess this trade-
off by comparing a recently proposed approach combining
Willems’ fundamental lemma with polynomial chaos expansion
to a model-based scheme that first propagates uncertainty with
PCE and then considers chance constraints in the optimization.
The simulation results show that the data-driven scheme yields
similar performance and computational efficiency compared to
the model-based scheme, with the advantage of avoiding the
construction of explicit models.

Index Terms— Data-driven control, Willems’ fundamental
lemma, polynomial chaos, uncertainty quantification, uncer-
tainty propagation, multi-energy systems

I. INTRODUCTION

As energy demand continues to rise and environmental

regulations become more stringent, multi-energy systems,

integrating several subsystems for different energy carriers,

are gaining prominence. Data-driven control methods are

of interest for such systems [1], [2]. In particular, data-

driven predictive control based on the fundamental lemma by

Willems et al. [3] is considered for multi-energy systems [4]

and building control [5]. For recent reviews of applications

of data-driven control, we refer to [6], [7].

The relevance of the fundamental lemma stems from the

fact that it enables to represent the dynamics of Linear Time-

Invariant (LTI) systems via prerecorded input and output

data without the need for a parametric model. However, a

major challenge for the control of multi-energy systems is

to ensure reliable performance as the systems in question

are subject to uncertainties. The recent paper [8] extends

the fundamental lemma to stochastic systems using Poly-

nomial Chaos Expansion (PCE), which enables efficient

uncertainty quantification. In the literature, uncertainty is

usually classified as either aleatoric—i.e., stemming from

inherent randomness such as unpredictability of stochas-

tic disturbances, eg., renewable generation throug wind of

solar—or as epistemic—i.e., arising from incomplete model

knowledge, e.g., parametric uncertainty. Several papers have
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used PCE, particularly for aleatoric uncertainty in the steady

optimization of power systems [9].

The focus of the present paper is on the combination

of data-driven control concepts with stochastic uncertainty

descriptions of the energy demand. That is, we consider

a setting with epistemic and aleatoric uncertainties. For

this purpose, we adapt the stochastic data-driven predictive

control framework from [8] for a sector-coupled energy

system. Our contribution is the evaluation of the performance

for the data-driven scheme through an extensive comparison

to a model-based counterpart.

The remainder of the paper is structured as follows: in Sec-

tion II, we recall the stochastic extension of the fundamental

lemma. Section III presents the considered multi-energy

system and introduces the considered stochastic model-based

and data-driven predictive control approaches. Section IV

compares both schemes. The paper concludes with summary

and outlook in Section V.

Notation: Let Z : I[0,T−1] → L2(Ω,F , µ;Rnx) be a

random vector-valued sequence with variables of dimen-

sion nx, where the sample space is Ω, σ-algebra is F ,

and the probability measure is µ. We denote the mean,

variance and realization of Z as E[Z], V[Z], and z
.
=

Z(ω) : I[0,T−1] → R
nx . The vectorization of z is given

by z[0,T−1]
.
= [z⊤0 , z⊤1 , ..., z⊤T−1]

⊤.

II. PRELIMINARIES

We consider discrete-time systems of the form

Xk+1 = AXk +BUk + EWk, X0 = xini, (1a)

Yk = CXk +DUk + FWk, (1b)

with state Xk ∈ L2(Ω,Fk, µ;R
nx), input Uk ∈

L2(Ω,Fk, µ;R
nu), output Yk ∈ L2(Ω,Fk, µ;R

ny ), and

process disturbance Wk ∈ L2(Ω,Fk, µ;R
nw). The σ-

algebra F in the underlying filtered probability space

(Ω,F , (Fk)k∈N, µ) contains all available historical informa-

tion. For the sake of simplicity and throughout the paper,

the initial state xini ∈ R
nx is assumed to be exactly known

and the process disturbances Wk, k ∈ N are assumed to be

independently distributed (non-i.i.d.) random variables, see

also Remark 1 for details.

A. Basics of Polynomial Chaos Expansion

The main idea of PCE is that any random variable of finite

variance is an element of an L2(Ω,F , µ;R) probability space

which is spanned by an appropriate basis [10]. Specifically,
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an orthogonal polynomial basis {ϕj}∞j=0 is considered, which

implies the orthogonality relation

⟨ϕi, ϕj⟩ =
∫

Ω
ϕi(ω)ϕj(ω)dµ(ω) = δij⟨ϕj⟩2, (2)

where δij is the Kronecker delta and ⟨ϕj⟩2 = ⟨ϕj, ϕj⟩. The

PCE of a real-valued random variable Z ∈ L2(Ω,F , µ;R)
with respect to the basis {ϕj}∞j=0 is

Z =
∑∞

i=0 zjϕj with zj =
〈

Z, ϕj
〉

/
〈

ϕj
〉2

(3)

with zj ∈ R as the j-th order PCE coefficient. The expectation

and variance of Z can be determined by the PCE coefficients

E[Z] = z0, V[Z] =
∑L−1

j=1 (zj)2⟨ϕj⟩2, (4)

where (zj)2 = zj ◦ zj denotes the Hadamard product and

L is the number of considered terms in the series. The

L2(Ω,Fk, µ;R
nz ) nature of the random variables in (1)

enables the expression of its trajectories in terms of the

corresponding PCE coefficients. By replacing all random

variables with their PCE representations in {ϕj}L−1
j=0 and

performing Galerkin projection onto the basis functions ϕj

[11], one obtains the dynamics of the PCE coefficients. With

given w
j

k, k ∈ N, this yields

x
j

k+1 = Axjk +Bu
j

k + Ew
j

k, x
j
0 = δ0jxini, (5a)

y
j

k = Cx
j

k +Du
j

k + Fu
j

k. (5b)

B. Stochastic Extension of the Fundamental Lemma

To construct a data-driven system representation based

on Willems’ fundamental lemma, we rely on the use of a

persistently exciting input trajectory.

Definition 1 (Persistency of excitation [3]): A signal se-

quence s[0,T−1] ∈ R
nsT is said to be persistently exciting

of order t where t, T ∈ N
+ with T ≥ t(ns + 1) − 1, if

the Hankel matrix Ht(s[0,T−1])
.
=

[ s0 ... sT−t

...
. . .

...
st−1 ... sT−1

]

is of full

row rank.

Furthermore, the stochastic system (1) admits the following

path-wise realization dynamics for a fixed disturbance se-

quence wk, k ∈ N

xk+1 = Axk +Buk + Ewk, x0 = xini, (6a)

yk = Cxk +Duk + Fwk. (6b)

Assumption 1 (System assumptions and measurements):

In (1) and (6), the pair (A, [B,E]) is controllable but the

matrices A, B and E are unknown. Moreover, uk, yk, and

wk−1 are considered to be measurable at instant k. □

The stochastic variant [8] of the fundamental lemma [3]

demonstrates how the data of realization trajectories satis-

fying (6) can be used to represent (1).

Lemma 1 (Stochastic fundamental lemma [8]): Consider

system (1), its random variable trajectories (Y, U,W )[0,T−1]

and the corresponding realization trajectories (y, u, w)[0,T−1]

from (5). Suppose (u,w)[0,T−1] is persistently exciting

of order nx + N and let Assumption 1 hold. Then,

(Y, U,W )[0,N−1] is an N -length trajectory of (1) if and only

if there exists a random vector G ∈ L2(Ω,F , µ;RT−N+1)
such that

HN (z[0,T−1])G = Z[0,N−1], (7)

holds for all (z, Z) ∈ {(y, Y ), (u, U), (w,W )}. □

The structural similarity in between (1), (5), and (6) allows

to utilize a Hankel matrix of realizations to compute PCE

coefficient trajectories.

Corollary 1 (PCE coefficients via realizations [8]): Let

the conditions of Lemma 1 hold. Then, (y, u,w)j[0,N−1] is a

trajectory of the dynamics of PCE coefficients from (5) if

and only if there exists a gj ∈ R
T−N+1 such that

Ht(z[0,T−1])g
j = z

j

[0,N−1], j ∈ I[0,t−1], (8)

holds for all (z, z) ∈ {(y, y), (u, u), (w,w)}. □

III. STOCHASTIC OPTIMAL CONTROL OF A

MULTI-ENERGY DISTRIBUTION SYSTEM

A. Problem Statement

The main object of our investigations are multi-energy

systems motivated by [12] with modifications sketched in [4].

The considered system comprises three components, namely,

a Combined Heat and Power (CHP) engine, a boiler, and a

Thermal Energy Storage (TES) that are connected through

electrical and thermal grids. For the sake of simplicity, we

refer to any specific component with the subscript i ∈
I, I = {CHP,BO,TES} and to the underlying grids with

the subscript s ∈ S, S = {TG,EG}. In addition, we denote

heat and power flow with Q,P [kW] and use E [kWh] to

represent the amount of stored energy. Figure 1 illustrates the

energy flows and the modelling of the multi-energy system

along with its states, control inputs, and outputs, cf. the

summary in Table I. For the outputs of the components y,

we consider Gaussian distributed measurement noise.

The working principle of the system is as follows:

The energy supplies gas (Qin
CHP,Q

in
BO) and electricity

(P in
EG,P

OB
PV ,PEF

PV) from the corresponding grids and Photo-

voltaic (PV) units. The CHP engine generates heat (Qout
CHP)

and electricity (Pout
CHP) simultaneously while the boiler pro-

duces only heat (Qout
BO) from the gas supply. The thermal

and electrical grids distribute energy according to the in-

stantaneous demands (Qdem,Pdem). Excess heat is initially

stored in TES. If the amount of excess heat surpasses the

TES capacity or if the generated heat is insufficient, this

imbalance is compensated for by the thermal grid (QTG).

The excess power (Pout
EG) is sold back to the electricity grid,

while in case of lack of power (P in
EG) is purchased.

In the following, we only outline crucial aspects of

modelling the system components. We refer to [4], [12]

for further details. The dynamics of CHP and boiler are

determined by thermal efficiency curves ηheat
i which depend

nonlinearly on the associated load fractions

d

dt
λi =

1

τi

(

ηheat
i (λi)

Qin
i

Qnom
i

− λi

)

, ∀i ∈ {CHP,BO}, (9)

where Qnom
i is set to 496.3 kW and 530 kW for CHP and

boiler units, respectively. As the thermal efficiencies are
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Fig. 1. The considered multi-energy system [12]

discontinuous with a dead band for low load fractions, boiler

and CHP models utilize adapted smooth efficiencies [4], [12].

The outputs for both components are

Qout
CHP = Qnom

CHPλCHP, Pout
CHP = ηel

CHP(λCHP)Q
in
CHP, (10)

Qout
BO = Qnom

BO λBO (11)

where ηel
CHP is the smoothened power efficiency of CHP

engine. The simple TES model is given by

d

dt
ETES = QTES −

1

τloss

ETES (12)

with τloss = 200 the time constant for heat loss. The thermal

and electrical power balances read

QTES = Qout
CHP +Qout

BO −Qdem −QTG, (13a)

Pout
EG = PEF

PV + POB
PV + P in

EG + Pout
CHP − Pdem. (13b)

Due to the coupling expressed by (13) , the operation of

the system is influenced by disturbances, i.e., by the thermal

demand and the power demand Qdem,Pdem as well as by

the renewable generations POB
PV ,PEF

PV. In this work, we are

specifically interested in accounting for the variability of

Qdem and tthe associated risks for the operation of the TES.

Hence, we assume that all other disturbances except for the

thermal demand follow a fixed sequence of realizations (i.e.

a scenario). Specifically, due to (13a), the uncertainty of

future predictions of Qdem propagates to QTES and thereby

renders the underlying dynamics of stored thermal energy

ETES stochastic. To account for this, we design two stochastic

predictive control schemes in the next section.

Remark 1 (Forecasting by Gaussian Processes): To fore-

cast future thermal demand Qdem and its statistical prop-

erties, we utilize Gaussian Processes (GPs). Specifically,

with a prior mean function mprior(t) trained on historical

data and a squared exponential kernel k(l, θ) determined by

hyperparameters of length scale l and signal variance θ, we

denote a trained GP by GP(mprior(t), k(l, θ)). Within each

instant of our numerical simulations, the last nobs observed

instances of Qdem are used to retrain the hyperparameters by

TABLE I

System variables for components and grids

Element States x Inputs u Outputs y Disturbances w

CHP λCHP Qin
CHP [Qout

CHP
,Pout

CHP
]⊤ -

BO λBO Qin
BO Qout

BO
-

TES ETES QTES ETES -

TG - - QTG Qdem

EG - - [P in
EG,P

out
EG

]⊤ [Pdem,P
OB
PV ,PEF

PV]
⊤

maximizing the log-marginal likelihood of the GP. The prior

mean function mprior(t) is refitted by taking into account

the respective deviations of the sampled realizations of Qdem

from the initial prior mean to obtain the posterior mean

mpost(t). Moreover with the resulting standard deviations

σ(t), we consider the forecasting of Qdem,k at t = kδt as

Qdem,k = mpost(kδt) + σ(kδt)ξk (14)

with ξk ∼ N (0, 1) as independent standard Gaussian dis-

tributions. Note that due to the time-varying nature of the

mean and standard deviation (the latter implies a shift in

variance), we have a non-i.i.d. setting for the disturbance.

The technical specifications for the considered GPs are

detailed in Section IV-A. □

Remark 2 (Construction of PCE basis): If suitable poly-

nomial bases are chosen [8] stochastic uncertainty that

adheres to frequently used distributions allows for exact

PCE representations with finitely many terms. Since Qdem,k,

k ∈ I[0,N−1], are independent Gaussians (14), we construct

the finite-dimensional basis

{ϕj}Nj=0 = {1, ξ0, ..., ξN−1} . (15)

which collects all stochastic uncertainties and allows exact

PCE representations involved in (1) [8]. □

Remark 3 (Separation of prediction horizons): A limita-

tion of PCE regarding aleatoric uncertainties is its linear

growth in the number of basis functions over the prediction

horizon. To address this, we propagate the uncertainty for an

initial segment of the horizon and subsequently we consider

only the mean information. Specifically, we separate the pre-

diction horizon [0, 1, ..., N − 1] into two parts [0, ..., N1− 1]
and [N1, ..., N−1] whereby the latter considers N2 = N−N1

time steps. During the first phase [0, ..., N1−1], the uncertain

thermal demands Qdem admit the parametrization (14) which

allows the propagation of means and standard deviations for

system variables. During the second phase [0, ..., N−1] only

the mean-value forecast of Qdem is considered. □

B. Model-based and Data-driven Predictive Control

In this section, we formulate model-based and data-driven

OCPs with the control objective of meeting energy demands

while minimizing the total operational cost of our sector-

coupled energy system. We address the problem described in

Section III-A by quantifying the uncertainty affiliated with

yTES to a sufficient degree and accounting for its influence by
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TABLE II

Comparison of algorithms

Scheme
Uncertainty

Propagation
Convexity

Comments on

Application

Model-based
via forward propagation,

prior to OCP
non-

convex
only for Gaussian RVs

and LTI systems

Data-driven
implicitly via PCE

coefficients within the OCP
convex

applicable to
non-Gaussian RVs

employing chance constraints. To facilitate comparison, Ta-

ble II summarizes main aspects of the proposed algorithms.

1) Model-based OCP: We implement uncertainty propa-

gation only for the TES as a step external to the optimization

which then allows to formulate chance constraints in the

OCP. Specifically, we leverage PCE to propagate the un-

certainty arising due to Qdem through the dynamics of TES

prior to the solution of our OCP. We consider the following

OCP at instance k ∈ N with horizon N ∈ N
+

min
ui,yi
xi,sTG

∑

i∈I

N−1
∑

k=0

ℓi(ui,k, yi,k, yEG,k) + λs∥sTG∥
2
2 (16a)

s.t. for all i ∈ I, k ∈ I[0,N−1] :

xi,k+1 = fi(xi,k, ui,k), xi,0 = xini
i (16b)

yi,k = hi(xi,k, ui,k) (16c)

uTES,k = yCHP,k + yBO,k − w̄TG,k − sTG,k (16d)

0 = c⊤1 yEG,k + c⊤2 w̄EG,k (16e)

ui,k ∈ Ui, (16f)

yTES + β(ϵ) σ̂yTES,k
≤ yTES,k ≤ yTES − β(ϵ) σ̂yTES,k

(16g)

where (16b) and (16c) collect all state and output equations

of the system components, which are described by the

equations (9)-(12). Note that the component dynamics do

not include any disturbance, cf. Table I. The stage cost in

(16a) reads ℓ(ui,k, yi,k, yEG,k) = ℓcost + ℓreg with

ℓcost = pbuy
gas (uCHP,k + uBO,k) + [pbuy

el ,−psell
el ]yEG, (17a)

ℓreg = γCHPuCHP,k
2 + γBOuBO,k

2 + γTESuTES,k
2, (17b)

where pbuy
gas is the buying price of gas, pbuy

el , psell
el are the buying

and selling prices of electricity respectively. Equation (17a)

penalizes the control inputs weighted by the relevant prices

and (17b) includes a squared term for the control inputs

multiplied with regularization weighting factors γCHP, γBO

and γTES.

For all time steps k ∈ I[0,N−1], the power balance equa-

tions (13a) and (13b) are considered in (16d), (16e) where

sTG,k refers to QTG, which, from the optimization point of

view, is a slack variable introduced to compensate for the

violation of the thermal power balance due to inaccurate pre-

diction of thermal demand. This is similar to the concept of a

slack bus in power systems [9] and hence this slack variable

is penalized in the objective. Furthermore, w̄TG,k contains the

forecasted mean of the thermal demand Qdem and w̄EG,k is a

vector of forecasted means of power demand and renewable

generations with c1 = [1,−1]⊤, c2 = [−1, 1, 1]⊤. The input

constraints (16f) reflect operational limits.

In the following, we explain how the uncertainty propaga-

tion is performed in the model-based scheme. PCE proves to

be a suitable tool for this purpose as the linearity of the TES

model can be exploited. In view of the remarks from Section

II, it is possible to replace the dynamics of any stochastic

LTI system of the form (1) with equivalent PCE coefficient

dynamics (5), and thus acheive exact forward propagation.

To this end, we first rewrite the TES model (12) to fit the

generic notation from (1). We substitute (13a) into (12), and

we discretize the resulting ODE with δt to obtain

XTES,k+1 = AdXTES,k +BdũTES,k + EdWTES,k,

YTES,k = CdXTES,k

where Ad = 1 − (δt/τloss), Bd = δt, Cd = 1, Ed = −δt.
Accordingly, we split the model input QTES into two parts.

We have (Qout
CHP +Qout

BO −QTG) as the new input ũTES,k and

Qdem as the exogenous disturbance wTES,k. Particularly, we

assume ũTES,k to be deterministic within this context. Next,

we express Qdem in its PCE representation (14) as explained

in Remark 1, and adjust its parametrization according to the

separation of our prediction horizon [0, 1, ..., N − 1] into

phases [0, 1, ..., N1 − 1] and [N1, ..., N − 1], cf. Remark 3.

Relying on (5), we compute the PCE coefficients of yTES

at every instant on the initial phase and we determine the

corresponding standard deviations via (4). Throughout the

second phase, the predicted standard deviations stay constant

until the end of the horizon. Subsequently in (16g), chance

constraints are formulated by means of the corresponding

Chebyshev-Cantelli inequality where yTES, yTES are the

lower and upper bounds of yTES, σ̂yTES,k
is the estimated stan-

dard deviation of yTES at instance k, and β(ϵ) =
√

(1− ϵ)/ϵ
with ϵ ∈ [0, 1) as the confidence value [13].

2) Data-driven OCP: The considered data-driven predic-

tive control approach assumes a stochastic disposition for the

complete system and reshapes the dynamics in (16b), (16c)

into a PCE-based, data-driven representation. Exploiting

Lemma 1 and Corollary 1 we utilize recorded input-output

realization data to predict the corresponding PCE coefficient

trajectories. To this end, we represent all disturbances in

the respective PCE basis (14) and we consider the basis

(15) from Remark 2 for the system inputs and outputs

to achieve exact PCE representations. The stochastic data-

driven reformulation of (16) reads

min
g,u,y
σ,sTG

∑

i∈I

(

N−1
∑

k=0

ℓi(u
0
i,k, y

0
i,k, y

0
EG,k) + ri(g

j
i, σ

j
i, s

j
TG)

)

(18a)

s.t. for all i ∈ I, j ∈ I[0,L−1], k ∈ I[0,N−1],
[

HN+T ini
i
(ui[0,Ti−1])

HN+T ini
i
(yi[0,Ti−1])

]

g
j
i =

[

u
j
i[−T ini

i
,N−1]

y
j
i[−T ini

i
,N−1]

]

, (18b)

u
j

TES,k = y
j

CHP,k + y
j

BO,k − w
j

TG,k − s
j

TG,k (18c)

0 = c⊤1 y
j

EG,k + c⊤2 w̄
j

EG,k (18d)
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yTES ≤ y0TES,k ±

√

√

√

√θ(ϵ)

L−1
∑

j=1

(yjTES,k)
2⟨ϕj⟩2 ≤ yTES, (18e)

u
j
′

i,k = 0, ∀j
′

∈ I[(k+1)(Lw−1)+1, L−1], (18f)

u
j

[−T ini
i
,−1]

= ũ
j

[−T ini
i
,−1]

,

y
j

[−T ini
i
,−1]

= ỹ
j

[−T ini
i
,−1]

+ σj
i,

(18g)

where the PCE coefficient dynamics of each system com-

ponent are described by (18b) with T ini
i being the length

of past system measurements. Ti stands for the length of

recorded realization trajectories of inputs and outputs where

inputs are persistently exciting of order nxi
+N+T ini

i . OCP

(18) above and its model-based counterpart (16) share several

commonalities. To avoid redundant explanations, we only

elaborate on the aspects where (18) differs from (16).

In (18), PCE coefficients of inputs u
j
i[−T ini

i
,N−1] ∈ R

Nnui ,

outputs y
j
i[−T ini

i
,N−1] ∈ R

Nnyi , electrical grid inputs uj

EG,k ∈

R
NnuEG , outputs yjEG,k ∈ R

NnyEG , column space selectors

g
j
i ∈ R

Ti−N−T ini
i +1 and slack variables σj

i ∈ R
Nnyi ,

s
j
TG ∈ R

N are the decision variables. The initial condition

specified with ỹ
j

[−T ini
i
,−1]

in (18g) is measured and ũ
j

[−T ini
i
,−1]

is assumed to be known through measurements.

The cost function (18a) relies on the linear (economic)

stage cost (17a) with first-order PCE coefficients (i.e. mean

values) of system inputs and outputs as its arguments. Put

differently, it is the expected operation cost. Moreover, it

entails the regularization term

ri(g
j
i, σ

j
i, s

j
TG) =

L−1
∑

j=0

λg∥g
j
i∥1 + λσ∥σ

j
i∥1 + λs∥s

j
TG∥

2
2,

where λgj , λσ, λs are user-defined penalties for g
j
i, σi. The

slack variables gj and σj compensate for plant-model mis-

match and measurement noise via (18g). We refer to [14]

for similar regularization. The slack variable s
j
TG renders the

power balance (18c) feasible. With the addition of the slack

variables, the risk of infeasibility occurring in closed-loop is

alleviated.

With constraint (18e), we restate (16g) in terms of PCE

coefficients and to preserve the convexity of the OCP, we

reformulate the arising second-order cone constraints ac-

cording to [15]. Additionally, (18f) is imposed on the PCE

coefficients of the inputs to ensure causality properties of the

computed solution. This constraint can also be understood

as parameterizing the stochastic inputs Ui as an affine

causal (disturbance) policy similar to [16], in which the

current input depends on the knowledge of current and past

disturbance realizations. Therefore, the applied control input

in closed loop has the following form

ui,0 = u
0,⋆
i,0 + u

1,⋆
i,0 ξ0(ω) (19)

with ξ0(ω) = (Qdem,0(ω)− µQdem,0
)/σQdem,0

.

TABLE III

Specifications of Gaussian processes

Gaussian Process
Length Scale l
Initial; Min/Max

Signal Variance θ
Initial; Min/Max

α

GP1 10; [10, 10] 502; [502, 502] 10−10

GP2 10; [1, 200] 502; [102, 1002] 10

IV. RESULTS AND DISCUSSION

A. Simulation Setup

The simulation studies are performed using Intel(R)

Xeon(R) E-2144G CPU @ 3.60GHz. The OCPs of both

control schemes are implemented in Python using CasADi

3.5.5 [17] and IPOPT 3.12.3 [18].

For the case studies, we perform simulation scenarios of

48 h (2 days), we set the prediction horizon to N = 48 and

for the standard deviation prediction to N1 = 16. The step

size is set to δt = 0.25 h.

To sample realizations of Qdem and to forecast the resulting

disturbances, we employ a separate GP for each. For the

different scenarios, we sample 30 Qdem realizations from

GP1. The prior mean function is obtained by linearly in-

terpolated, historical hourly data of seven days from [12].

For the subsequent forecasting of Qdem, cf. Remark 1, we

utilize GP2, with the same prior mean and train it within each

time step for the last nobs = 96 observation points. The GPs

are numerically implemented using the scikit-learn library

[19] in Python. We choose squared exponential kernels,

each consisting of a Radial Basis Function (RBF) kernel

and a constant kernel. The initial values, training ranges of

the hyperparameters and the value for α which defines the

noise level in the targets, can be found in Table III. The

forecasts of the prices which enter the stage cost in (17a),

the power demand Pdem, and PV supply are assumed to be

exactly known. For that, we use the same realizations as

those illustrated in the case studies in [4].

Table IV provides the parameters configured for the

model- and data-driven OCPs and Table V gives an overview

of the initial values and constraints for the operation of

the simulation studies. To obtain the input-output pair of

initial values for the data-driven predictive control and to

ensure that both control schemes have the same starting

conditions, we apply the initial control for one time step

δt. Afterwards, the respective control scheme is started. For

the first computation of the OCP, all initial values are set to

zero. Afterwards, a warm start is performed at each control

instant by initializing with computed trajectories from the

previous iteration.

We construct the Hankel matrices for the data-driven

system representation by sampled input trajectories from a

uniform random distribution and the corresponding outputs.

The considered output data is subject to noise with a signal-

to-noise ratio of 26.99 dB. Table V provides the operation

ranges of the sampled inputs. In order to enhance the

prediction accuracy of the CHP dynamics, we set a minimum

value for the sampled CHP inputs to 700 kW.
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TABLE IV

Parameters

Parameter Value Parameter Value Parameter Value

γCHP 1 · 10−5 ϵ 0.05 λg 10

γBO 3 · 10−5 λs 1 · 105 λµ 1 · 105

γTES 9 · 10−5

TABLE V

Initial values and constraints

Variable Initial Value Min/Max Variable Initial Value Min/Max

Qin
CHP 700 [0, 1000] λBO 0.3 −

λCHP 0.8 − QTES 50 [−100, 100]

Qout
CHP

− [235,−] ETES 50 [10, 140]

Qin
BO 200 [0, 300] P in

EG/Pout
EG

− [0, 1000]

B. Numerical Case Studies

In order to compare the proposed schemes with respect to

performance and computation time, we perform 30 simula-

tion studies for both schemes. For the following illustrations,

we plot one scenario opaque to emphasize a coherent, overall

operation while we visualize other scenarios in transparent

colors. For the sake of visualization, various realizations of

Qdem are illustrated in Figure 2.

Figure 3 compares the model-based operation with the

data-driven predictive control by depicting the inputs, states

and outputs of CHP, boiler and TES. Accordingly to various

Qdem realizations in Figure 2, the respective operations

profiles are shown for the inputs and stored thermal energy.

Corresponding to the daily energy demand, we obtain a

smooth and similarly oscillating behavior for all components

over the two days. Predominantly in daily intervals, the

operation of TES alternates between states of charging and

discharging. Most of the energy is supplied by the CHP,

which allows selling the surplus energy back to the grid.

During demand peaks, the CHP is operated in full load and

in between it decreases to part load. The operation behavior

of the stochastic data-driven predictive control is similar to

the model-based scheme, however, some differences can be

recognized. Compared to the model-based operation, it is

notable that the overall operation of the data-driven predictive

control is characterized by small fluctuations. In addition,

the CHP is operated less intensively, whereas the boiler is

utilized slightly more.

Table VI provides a comparison of the simulation studies,
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Fig. 3. Simulation results for stochastic model-based (left) and data-driven
predictive control (right)
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including the number of decision variables #d, the computa-

tion time of OCPs, and operation costs of both schemes. We

calculate the mean and standard deviation of the computation

time from 5760 OCPs, resulting from the performed scenar-

ios. Since the model-based uncertainty propagation scheme

occurs outside the OCP, we take for the model-based scheme

also the mean computation time and the standard deviation

for the forward propagation into account. Hence, we can

observe that the OCP solution of the data-driven scheme

requires in total a 5.23 times higher computation time than

the OCP solution and forward propagation of the model-

based scheme, which can be explained by the larger number

of decision variables. Nevertheless, with a step size of δt =
0.25 h, the data-driven scheme is still real-time capable and

of interest for industrial applications. Evaluating the averaged

total costs of the control schemes, we can observe that the

operation of the data-driven scheme is approximately 1.76%

more expensive than the model-based one.

C. Discussion

Data-driven uncertainty propagation stands out to be a

promising method to quantify uncertainties within multi-
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TABLE VI
Comparison of simulations

mean and SD of model-based forward propagation:

mean = 1.491 · 10−3s and SD = 4.493 · 10−3s

Scheme #d

Computation Time Closed-loop Cost

Mean [s] SD [s] Mean [C] SD [C]

Model-based 627 0.502 0.247 2600.77 97.16

Data-driven 6162 2.632 1.044 2646.42 101.67

energy systems without the requirement for extensive mod-

elling burden. Analyzing the operation costs of the various

operation scenarios, our simulation studies demonstrate that

the stochastic data-driven predictive control performs simi-

lary as the model-based scheme. In contrast to the model-

based uncertainty propagation with PCE, the data-driven

scheme allows us to describe the nonlinear components with

PCE coefficients and thus to account for uncertainties within

the overall system. Due to the higher number of decision

variables in the data-driven scheme, the computation time

increases, but it still remains reasonable.

V. CONCLUSION

Uncertainties pose significant challenges for predictive

control of multi-energy systems. The complexity of the aris-

ing models and the associated lack of system knowledge ren-

ders the quantification and propagation of uncertainties diffi-

cult. This paper has compared two different predictive control

approaches in terms of operation performance and compu-

tation time. We considered a recently proposed stochastic

data-driven approach that combines Willems’ fundamental

lemma with PCE to a simplified model-based predictive

control scheme which also applies PCE in a pre-processing

step. In contrast to the model-based scheme, the data-driven

method considers uncertainties for the complete system and

includes uncertainty propagation in the optimization problem

without any further implementation effort. We demonstrated

that the operational performance of the data-driven scheme

is comparable with the model-based scheme. Although the

computation time of the data-driven system is larger due to

the increased problem size within the optimization, it is still

real-time capable, which is interesting for the considered

industrial applications. While modeling of complex real-

world multi-energy systems poses a significant challenge for

the application of model-based predictive control, the data-

driven approach alleviates this bottleneck. Nonetheless in

data-driven control, it is crucial to clarify the appropriate type

and placement of sensors to obtain high-quality measurement

data which in turn represents the system dynamics. The

scalability of both methods heavily relies on the deployment

of suitable hardware and software tools to foster implemen-

tation.

Future research should focus on tailoring numerical meth-

ods for fast computation of the data-driven predictive control

and on creating forecasting methods which work with non-

Gaussian distributions. In particular, the use of GPs entails

the difficulty that the learned prediction model provides

Gaussian random variables with unbounded support. In turn

these are not truly realistic predictors for renewable energy

sources which have limited operating ranges and thus implies

compact support in random variable representations.
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