
An Almost Feasible Sequential Linear Programming Algorithm

David Kiessling1, Charlie Vanaret3, Alejandro Astudillo1, Wilm Decré1, Jan Swevers1

Abstract— This paper proposes an almost feasible Sequential
Linear Programming (afSLP) algorithm. In the first part, the
practical limitations of previously proposed Feasible Sequential
Linear Programming (FSLP) methods are discussed along with
illustrative examples. Then, we present a generalization of
FSLP based on a tolerance-tube method that addresses the
shortcomings of FSLP. The proposed algorithm afSLP consists
of two phases. Phase I starts from random infeasible points
and iterates towards a relaxation of the feasible set. Once the
tolerance-tube around the feasible set is reached, phase II is
started and all future iterates are kept within the tolerance-
tube. The novel method includes enhancements to the originally
proposed tolerance-tube method that are necessary for global
convergence. afSLP is shown to outperform FSLP and the
state-of-the-art solver IPOPT on a SCARA robot optimization
problem.

I. INTRODUCTION

In nonlinear model predictive control, the solution of a
nonlinear optimization problem must be computed in every
sampling period so that the system is given an optimized
control signal. Issues arise when no solution is available at
the end of the sampling period. One option to overcome this
difficulty is feasible algorithms that guarantee the feasibility
of every iterate during the solution process and allow the
algorithm to return a suboptimal, but feasible solution.

A successful feasible algorithm is FSQP [14], a line-
search Sequential Quadratic Programming (SQP) algorithm
that solves three subproblems in every iteration to keep the
iterates feasible. First, a standard Quadratic Problem (QP)
and a modified QP are solved to obtain a feasible descent
direction that is close to the standard QP direction, then a
second-order correction is performed. An arc search along
the combination of both directions yields a feasible direction
with a sufficient decrease in the objective function. Notably,
the algorithm cannot treat nonlinear equality constraints
directly and has to rely on ℓ1 relaxed constraints instead
[11]. Additionally, if no feasible initial guess is provided,
the algorithm starts with a feasibility phase that attempts to
find a feasible point.
A recent development is the SEQUOIA solver [8] that
reformulates the general nonlinear optimization problem
as a bilevel optimization problem, based on a residual
optimization problem. This algorithm also first solves a

1MECO Research Team, Dept. of Mechanical Engineering, KU Leuven
and Flanders Make@KU Leuven, 3001 Leuven, Belgium.
{david.kiessling, alejandro.astudillovigoya,
jan.swevers}@kuleuven.be

3Mathematical Algorithmic Intelligence Division, Zuse-Institut Berlin,
Berlin, Germany. vanaret@zib.de

This work has been carried out within the framework of the Flanders
Make SBO project DIRAC: Deterministic and Inexpensive Realizations of
Advanced Control.

feasibility problem, which determines an upper bound on the
optimal solution. Then, an infeasible, non-tight lower bound
of the optimal solution is generated. A bisection search is
then performed until a given optimality gap is fulfilled.
In [13] the algorithmic framework FP-SQP was introduced:
it includes a trust-region QP step that is projected onto the
feasible set. No particular projection strategy is described,
however certain properties should hold at the feasible iterate
for the algorithm to globally converge. FP-SQP was success-
fully used for nonlinear Optimal Control Problems (OCP)
with linear constraints in [10], in which a stabilizing fea-
sibility procedure is based on the linear-quadratic regulator
gain. The proposed projection works well for the considered
OCPs but does not generalize to nonlinear constraints.
Another application of FP-SQP was proposed in [7]: a Feasi-
ble Sequential Linear Programming (FSLP) algorithm solves
trust-region Linear Problems (LPs) and achieves feasible
iterates with inner feasibility iterations that are based on
iterated second-order corrections. An Anderson acceleration
scheme improved the feasibility iteration algorithm in [6].
Several practical deficiencies of the FSLP algorithm were
determined during extensive testing. In particular, the re-
quirement to start the algorithm from a feasible point caused
difficulties for complex OCPs. Moreover, the LPs in the
feasibility iterations could be infeasible, which forces the
algorithm to decrease the trust-region radius. Overall, the
feasibility iterations mainly converge for small trust-region
radii, which produces small steps for the FSLP algorithm.
A. Contributions

The contributions of this paper are threefold. Firstly, the
practical deficiencies of the FSLP algorithm are demon-
strated using illustrative examples. Secondly, we introduce a
relaxation of the feasible algorithm based on the tolerance-
tube method [15], called afSLP. The iterates are not forced
to be feasible, but should stay in a tolerance-tube around
the feasible set. This allows for early termination of the
feasibility iterations, which reduces the overall computa-
tional load. Additionally, as in [8], [14], a feasibility phase
allows for initialization at infeasible points. The phase ter-
minates once an iterate inside of the tolerance-tube is found.
Thirdly, we extend the tolerance-tube method with two novel
features in order to guarantee global convergence. Finally,
the improved performance of the almost feasible algorithm
is demonstrated in practical examples. The tolerance-tube
algorithm was implemented in C++ within CasADi [1].

B. Outline
This paper is structured as follows. In Section II, the

original feasible sequential linear programming algorithm is

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2321



reviewed. Section III discusses the practical limitations of
FSLP. A relaxed feasibility algorithm based on a tolerance-
tube is presented in Section IV and simulation results are
presented in Section V. Section VI concludes this paper.

C. Notation

In order to simplify the presentation, we change the
problem formulation compared to [6], [7]. The general
Nonlinear Problem (NLP) is given by:

min
w∈Rnw

f(w) s.t. g(w) = 0, h(w) ≤ 0, (1)

where w ∈ Rnw , and f : Rnw → R, g : Rnw → Rng

and h : Rnw → Rnh are twice continuously differentiable.
The gradient of f at w is given by ∇f(w). The Jacobian
matrices of g and h are represented by Jg(w) ∈ Rng×nw

and Jh(w) ∈ Rnh×nw , respectively. The iteration indices are
denoted by superscripts, e.g., w(1) ∈ Rnw whereas vector
components are specified by subscripts, e.g., w1 ∈ R. For
a given iterate w(k), quantities evaluated at that iterate will
be denoted with the same superscript, e.g., f (k) or ∇f (k).

The measure of infeasibility is defined by
v(w) := ∥g(w)∥∞ + ∥[h(w)]+∥∞, where [h(w)]+ :=
[max{h(w)i, 0}]nh

i=1. The feasible set is denoted by
F := {w ∈ Rnw | g(w) = 0, h(w) ≤ 0}.

II. FEASIBLE SEQUENTIAL LINEAR PROGRAMMING

In this section, FSLP (Algorithm 1) is briefly introduced.
The feasibility iterations are described in Algorithm 4. For
a detailed discussion, see [7] and for an extension [6].

A. Outer Algorithm

At every iteration, (1) is linearized at the point w(k) ∈ F .
The resulting trust-region LP is:

min
w∈Rnw

m
(k)
f (w) := (∇f (k))⊤(w − w(k))

s.t. g(k) + J (k)
g (w − w(k)) = 0,

h(k) + J
(k)
h (w − w(k)) ≤ 0,

||P (w − w(k))||∞ ≤ ∆(k).

(2)

Here, P ∈ Rny×nw denotes a projection and (optionally)
scaling matrix that selects the variables involved in the trust
region. The identity matrix is usually used. The solution
of (2), w̄(k), is projected onto the feasible set using the
feasibility iterations described in Algorithm 4. The feasible
trial iterate is denoted by ŵ(k). If no feasible point can
be found, the trust-region radius is decreased in (2). The
termination criterion is m

(k)
f (w̄) = 0: if no decrease in

the model of the objective function mf at a feasible point
is possible, an optimal point was found and the algorithm
terminates.

The standard trust-region update strategy and the accep-
tance test are given in Algorithm 2. As usual in trust-region
algorithms, the quotient of actual and predicted reduction

ρ
(k)
II = ∆f (k)/∆m

(k)
f (3)

Algorithm 1: FSLP

Input: Initial point w(0) ∈ F , projection matrix P ,
initial trust-region radius ∆(0) ∈ (0, ∆̃],
feasibility tolerance τ , convergence tolerance
σouter ∈ (0, 10−5)

1 success← false
2 for k = 0, 1, 2, . . . do
3 w̄(k) ← solve (2)
4 if |m(k)

f (w̄(k))| ≤ σouter then
5 break

6 (ŵ(k), success)←
FeasIterations(w(k), w̄(k),∆(k), τ)

7 if success = true then
8 Compute ρ(k) according to (3)
9 ∆(k+1) ← ∆Update(ρ(k), w(k), w̄(k),∆(k))

10 (w(k+1),−)← Acceptance(ρ(k), w(k), ŵ(k))
11 else
12 ∆(k+1) ← α1||P (w̄(k) − w(k))||∞
13 w(k+1) ← w(k)

14 return w(k)

decides upon step acceptance, where

∆f (k) = f(w(k))− f(ŵ(k)), ∆m
(k)
f = −m(k)

f (w̄(k)). (4)

The objective serves as merit function since all iterates
remain feasible. Note that ρ has the subscript II for con-
sistency with the extension discussed in Section IV.

Algorithm 2: Trust-region radius update

Parameter: ∆̃ ≥ 1, α1 ∈ (0, 1), α2 ∈ (1,∞),
0 < η1 < η2 < 1

1 Procedure ∆Update(ρ, w, w̄,∆)
2 if ρ < η1 then
3 return α1||P (w̄ − w)||∞
4 else if ρ > η2 and ||P (w̄ − w)||∞ = ∆ then
5 return min(α2∆, ∆̃)
6 else
7 return ∆

B. Feasibility Iterations

The feasibility iterations solve a sequence of parametric
LPs. In order to distinguish between outer and inner iter-
ations, a second superscript is introduced: w(k,l) denotes
the iterate at the k-th outer iteration and at the l-th inner
iteration.

Given w̄(k) the solution of (2), the initial iterate w(k,0)

for the feasibility iterations is set to w̄(k) and the parametric

2322



Algorithm 3: Acceptance test of the trial iterate
Parameter: σ ∈ (0, 1/4)

1 Procedure Acceptance(ρ, w, ŵ)
2 if ρ > σ then
3 return (ŵ, true)
4 else
5 return (w, false)

linear problem PLP(w(k,l);w(k),∆(k)) is defined by:

min
w∈Rnw

(∇f (k))⊤w

s.t. g(w(k,l)) + J (k)
g (w − w(k,l)) = 0,

h(w(k,l)) + J
(k)
h (w − w(k,l)) ≤ 0,

||P (w − w(k))||∞ ≤ ∆(k).

(5)

Problem (5) is similar to (2), but it is centered at w(k,l)

and the constraints are evaluated at w(k,l). Consequently,
the feasibility iterations are relatively cheap since only
constraint evaluations (no derivatives) are required.

The optimal solution of (5) is w(k,l+1) :=
w∗

PLP(w
(k,l);w(k),∆). The algorithm continues until

an iterate is feasible and fulfills the projection ratio
condition, for details see [7]. A heuristic checks whether
such an iterate is likely to be found. If this is not the case,
the feasibility iterations failed, which results in a decrease
of the trust-region radius in Algorithm 1. Only a linear
convergence rate is expected from the algorithm.

Algorithm 4: Feasibility Iterations

1 Procedure FeasIterations(w(k), w̄(k),∆, τ)
2 w(k,0) ← w̄(k), success← false
3 for l = 0, 1, 2, . . . do
4 if v(w(k,l)) ≤ τ and

∥w̄(k) − w(k,l)∥/∥w̄(k) − w(k)∥ < 1/2 then
5 success← true, break
6 else if w(k,l) diverges according to [7] then
7 break

8 w(k,l+1) ← solve PLP(w(k,l), w(k),∆)

9 return (w(k,l), success)

III. PRACTICAL LIMITATIONS OF FSLP

Several practical deficiencies of FSLP, including the fea-
sibility iterations and the initialization at a feasible point,
were identified during extensive testing.

A. Feasibility Iterations

The limitations of the feasibility iterations are illustrated
with two examples. The first section addresses the issue of
infeasible subproblems due to incompatible constraints. The
second problem shows the convergence of the feasibility

iterations only for small trust-region radii. The consequence
of these drawbacks is that the FSLP algorithm often takes
small steps while guaranteeing the feasibility of every it-
erate, which causes many additional constraint evaluations
and the solution of many additional LPs.

1) Infeasible Subproblems: Even though the constraints
were linearized at a feasible point, the subproblems in
subsequent feasibility iterations may be infeasible. This is
illustrated by the test problem:

min
w∈R2

w2 s.t. w2 ≥ w2
1, w2 ≥ 0.1w1. (6)

Its solution is w∗ = (0, 0), as shown in Figure 1. Infeasible
areas are grayed out and the solution is shown as a diamond.

−3 −2 −1 0 1 2 3

w1

−1

0

1

2

3

w
2

w2 = w2
1

w2 = 0.1w1

w∗

Fig. 1: Visual representation of Example (6).

Since the objective and the second constraint are linear,
only the linearization of the first constraint varies over
the iterations. Similarly, the trust-region radius is fixed
throughout feasibility iterations. The FSLP algorithm is
started from a point w(0) = (1, 3) with an initial trust-region
radius ∆(0) = 4. The LP of the first outer iteration is:

min
w∈R2

w2 (7a)

s.t. w2 ≥ −1 + 2w1, (7b)
w2 ≥ 0.1w1, (7c)
− 3 ≤ w1 ≤ 5,−1 ≤ w2 ≤ 7. (7d)

Its solution is (−3,−0.3), as shown in Figure 2a. Infeasible
areas are grayed out and the solution is shown as a diamond.
The linearized constraint of the first feasibility iteration is:

w2 ≥ 15 + 2w1, (8)

which is a parallel displacement of (7b). Figure 2b illustrates
that (8) is shifted outside of the trust region, i.e., the LP
becomes infeasible.

We note that this also holds for Anderson Accelerated
FSLP since the infeasibility occurs within the first iteration
of the feasibility iterations, which is the first iteration for
the Anderson acceleration.

2) Convergence of Feasibility Iterations for Small Trust-
Region Radii: In this section, we analyze the maximum
trust-region radius such that the feasibility iterations con-
verge towards a feasible point, while maintaining feasible
subproblems and without reaching the maximum number of

2323



−6 −4 −2 0 2 4

w1

−2

0

2

4

6

8
w

2

w2 = 0.1w1

w2 = 2w1 − 1

||w − w(0)||∞ = 4

w(0)

w̄(0)

(a) First outer iteration.

−6 −4 −2 0 2 4

w1

−2

0

2

4

6

8

w
2

w2 = 0.1w1

w2 = 2w1 + 15

||w − w(0)||∞ = 4

w(0)

(b) First feasibility iteration.

Fig. 2: Illustration of Feasibility Iterations leading to an
infeasible subproblem. Grayed-out areas are infeasible.

feasibility iterations. For n ≥ 2, we are interested in the
following high-dimensional nonlinear problem:

min
w∈Rn

−w1 s.t.

n∑
i=1

w2
i − 1 = 0,

that is finding the maximum w1 on an n-dimensional
unit sphere. The feasible initial guess is chosen as
w(0) = (0.5,

√
1− 0.52, 0, . . . , 0), i.e., it lies on the two-

dimensional unit sphere. In our implementation, n ∈
{2, 3, 4, . . . , 5000}, the feasibility tolerance τ is set to 10−8

and the maximum number of feasibility iterations is set to
100. The experiment is started with a trust-region radius of
10 and it is always halved in case the feasibility iterations
do not converge. Figure 3 illustrates the decrease of the
maximum trust-region radius that guarantees convergence
with the dimension n.

1000 2000 3000 4000 5000

Number of variables

10−3

10−2

10−1

M
ax

im
u

m
tr

u
st

-r
eg

io
n

ra
d

iu
s

Fig. 3: Maximum trust-region radii for convergence of
feasibility iterations with respect to the number of variables.

This trend was also observed when solving time-optimal
control problems (TOCP) with FSLP. The dimensions of the
TOCPs typically range from 100 to several 1, 000.

B. Feasible Initialization

In the general case of (1), it is arduous to initialize the
problem at a feasible point. There are two straightforward
techniques to obtain a feasible initial guess: i) a feasibility
phase that minimizes constraint violation and (hopefully)
returns a feasible initial guess [8], [11]; or ii) an ℓ1 relax-
ation of the problem (dropping the equality constraints for
simplicity):

min
w∈Rnw

f(w) + µe⊤s s.t. g(w) ≤ s, s ≥ 0,

where e is a vector of ones of appropriate size and µ > 0.
For a given w, feasibility is achieved by setting the elastic
variables s to sufficiently large values. It is well known
that the ℓ1 relaxation is exact and that the relaxed problem
has the same solution as the original problem (1) provided
that the penalty parameter µ is large enough [9]. Moreover,
a dynamic penalty parameter update is required for fast
convergence.
In [6], [7], we decided to relax as few constraints as
possible to stay as close as possible to the original problem.
In particular, we were interested in solving time-optimal
point-to-point motion problems, i.e., initial and terminal
conditions are given for the state of the controlled system
and the goal is to transfer the system from the initial to the
terminal state in minimal time. The considered test problems
described obstacle avoidance for one obstacle using an
explicit Runge-Kutta 4 integrator for the dynamics. These
problems were highly nonlinear and challenging from a
mathematical programming perspective, but simple in terms
of the system’s environment that needed to be controlled. We
easily found initial guesses that were feasible with respect to
all nonlinear constraints, but not with respect to the initial
and terminal conditions. Consequently, the algorithm was
started at an almost feasible point. One question remains
open: is it worth using the feasibility iterations to keep the
problem feasible, even though the iterate is far from the
original feasible set?
Further testing of FSLP on TOCPs allowed us to identify
the following drawbacks with feasible initialization. In [7]
and [6], only one obstacle was introduced in the problem.
The situation gets more difficult when several obstacles
are introduced or if the point-to-point motion is performed
in corridors, or in a maze. If instead of an explicit in-
tegrator, we use an implicit integrator, like the implicit
Euler method, feasible states are solutions of a system
of nonlinear equations, which complicates the search for
a feasible initial guess. The situation becomes even more
challenging when a direct collocation approach is chosen,
introducing additional collocation points between states. In
this case, besides satisfying constraints at states and con-
trols, states are interpolated by a polynomial between two
consecutive states, and the dynamics constraints must be met
at the collocation point. This complicates the initialization
at a feasible point, leading to the necessity for additional
slack variables. In this case, the relaxed problem resembles
(III-B), signifying that the relaxed problem is feasible while
the original problem is not.

C. Conclusion of Practical Limitations

From the previous sections, we conclude the following:
First, the feasibility iterations converge towards a feasible
point but only for small trust-region radii, which yields small
steps and requires many additional constraint evaluations.
In the implementation of FSLP, feasibility is defined with
respect to a given tolerance τ typically set to 10−8. One
straightforward simplification is to relax this tolerance: the
iterates are allowed to stay within a tolerance-tube (neigh-

2324



borhood) around the feasible set. This has two advantages:
the overall algorithm requires fewer feasibility iterations
since feasibility can be achieved only loosely, and the
algorithm can take larger steps since it is expected that the
feasibility iterations will converge to the required accuracy
with a larger trust-region radius.
Second, for hard TOCPs, initialization at a feasible point
can become difficult and relaxing all the constraints does not
seem to be the solution. Additionally, the user experience
of FSLP is unfavorable since it is hard to initialize the
algorithm. In order to avoid this situation, we propose
to initialize the algorithm with a feasibility phase that
allows infeasible initial guesses and brings the iterate into a
neighborhood around the feasible set.

IV. AN ALMOST FEASIBLE SLP ALGORITHM

To overcome the issues mentioned in the previous section,
we introduce a more general two-phase SLP algorithm,
which we call almost feasible Sequential Linear Program-
ming (afSLP), inspired by the tolerance-tube method de-
scribed in [15]. A tolerance-tube (Figure 4) is a relaxation of
the feasible set F parameterized by its width τ (k) ∈ (0, 1)
and a parameter β ∈ (0, 1). β is used to guarantee that
the tolerance-tube can be reduced while all the iterates stay
inside the tolerance-tube.

F

v(k) ≤ τ (k)

v(k) ≤ βτ (k)

Fig. 4: Tolerance-tube around the feasible set F . Grayed-out
areas are infeasible.

Phase I improves feasibility until the tolerance-tube is
reached. Phase II iterates towards optimality while keeping
all iterates inside of the tolerance-tube. When a subproblem
is infeasible, a feasibility restoration phase is invoked.
Moreover, additional changes were made to the original
algorithm that improved the global convergence behavior.

A. Phase I: Feasibility Phase

Let w(k) be outside of the tolerance-tube, i.e., v(k) > βτ .
If the LP (2) is successfully solved, the linearized constraint
violation for the solution w̄(k) is zero. The actual and
predicted reductions in constraint violation at w̄(k) are

∆v(k) = v(k) − v(w̄(k)), ∆m(k)
v = v(k)

and the ratio of actual and predicted reduction is given by

ρ
(k)
I := ∆v(k)/∆m(k)

v .

The step is accepted or rejected and the trust-region radius is
adjusted as described in the FSLP algorithm. The algorithm

stays in Phase I until the iterates reach the tolerance-tube,
i.e., v(k) ≤ βτ , then switches to Phase II. If however (2) is
infeasible, the algorithm switches to a feasibility restoration
phase described in Section IV-C.

B. Phase II: Optimality Phase

Let w(k) be inside of the tolerance-tube, i.e., v(k) ≤ βτ .
If v(w̄(k)) > βτ , where w̄(k) is the solution of (2), the
feasibility iterations (Algorithm 4) are invoked to bring
the trial iterate back in the tolerance-tube. Here, we use
an unconstrained sufficient decrease condition (only the
objective is considered): the actual and predicted reductions
and their quotient are defined as in the FSLP algorithm.

In constrained optimization, the predicted reduction may
not be positive, since reducing infeasibility may increase
the objective. To address this and to avoid infinitely small
steps that converge towards an infeasible point, we use the
switching condition traditionally used in filter methods [3]:

∆m
(k)
f ≥ σv(k) (9)

with σ ∈ (0, 1). If the switching condition is satisfied,
the trust-region update strategy (Algorithm 2) is invoked.
Otherwise, sufficient decrease does not seem to be possible,
the step is rejected and the trust-region radius is decreased.
afSLP terminates if a KKT point is found. If the subprob-
lem is infeasible, the algorithm switches to the feasibility
restoration phase.

C. Feasibility Restoration Phase

The feasibility problem is defined as:

min
w∈Rnw

vR(w) := ∥g(w)∥1 + ∥[h(w)]+∥1. (10)

Due to the ℓ1 norm, the problem is non-smooth, but by
introduction of elastic variables, it can be reformulated as
a smooth constrained problem. Let t+, t− ∈ Rng , s ∈ Rnh ,
then (10) is equivalent to

min
w,s,t+,t−

ng∑
i=1

(t+i + t−i ) +
nh∑
i=1

si

s.t. g(w)− t+ + t− = 0

h(w)− s ≤ 0

s, t+, t− ≥ 0.

(11)

Applying sequential linear programming on (11), we obtain
the trust-region LP:

min
w,s,t+,t−

ng∑
i=1

(t+i + t−i ) +
nh∑
i=1

si

s.t. g(k) + J (k)
g (w − w(k))− t+ + t− = 0,

h(k) + J
(k)
h (w − w(k))− s ≤ 0,

s, t+, t− ≥ 0,

||P (w − w(k))||∞ ≤ ∆(k).

(12)

Note that elastic variables are excluded from the trust-region
constraint so that the LP is feasible. Let w

(k)
R be the w

2325



component of the solution of (12). We define the model of
the ℓ1 feasibility measure vR by

m
(k)
R (w) :=∥g(k) + J (k)

g (w − w(k))∥1
+ ∥[h(k) + J

(k)
h (w − w(k))]+∥1,

the actual and predicted reductions by

∆v
(k)
R = v

(k)
R − vR(w

(k)
R ),

∆m
(k)
R = v

(k)
R −m

(k)
R (w

(k)
R )

and their ratio by

ρ
(k)
R := ∆v

(k)
R /∆m

(k)
R .

Since (10) is unconstrained, the predicted reduction is al-
ways non-negative and no switching condition is necessary.

The acceptance test (Algorithm 3) decides upon accep-
tance or rejection of the trial iterate. The main difference
in our approach compared to [15] is that τ is adaptively
updated and denoted by τ (k) instead. If v(k) < βτ (k) and the
algorithm switches to feasibility restoration, then we require
that v(w̄(k)) < βτ (k). If the trial iterate is accepted, the
tolerance-tube width is reduced: τ (k+1) ← βτ (k) (line 27 in
Algorithm 5). This is a safeguard that prevents the algorithm
from cycling. The parameter β guarantees that the tolerance-
tube can be reduced while keeping the current iterate inside.

The algorithm terminates when a small step is encoun-
tered. If the current iterate is infeasible, this is an indication
that the problem might be infeasible.

D. The Complete Algorithm

The full afSLP method is described in Algorithm 5. Since
feasibility is not maintained at every iteration, we require for
termination that:{

v(w∗) ≤ εF (feasibility)
mf (w

∗, w̄∗) ≤ εO (stationarity)

for a given feasibility tolerance εF ∈ (0, 1) and optimality
tolerance εO ∈ (0, 1). If the trust-region radius is decreased
below a minimum value, the algorithm terminates with an
error message.

Global convergence could probably be proved in a similar
fashion to [3]. We note that unlike afSLP, the original algo-
rithm does not possess a switching condition (9), it does not
decrease the tolerance-tube when the feasibility restoration
is invoked in Phase II, and it performs a second-order
correction, i.e., only one iteration of feasibility iterations, if
the trial iterate after solving (2) is outside the tolerance-tube.
We now describe an example where the original tolerance-
tube algorithm [15] would cycle:

min
w∈R2

w2 s.t. w2 ≥ w2
1 + 0.0375, w1 ≥ w2. (13)

This example is similar to (6), except that the quadratic
constraint is shifted by 0.0375 so as to obtain nice iterates
in the cycle, and the inequality is flipped in the second
constraint while removing the factor 0.1. Without loss of
generality, we set the tolerance-tube width to τ = 1 (for

Algorithm 5: afSLP

Input: Initial point w(0), projection matrix P , initial
trust-region radius ∆(0) ∈ (0, ∆̃], initial
tolerance-tube τ (0), β, σ, εF, εO ∈ (0, 1)

1 for k = 0, 1, 2, . . . do
2 w̄(k) ← solve (2)
3 if (2) is feasible then
4 update radius← false
5 if v(k) > βτ (k) then // feasibility phase

6 update radius← true; ρ(k) ← ρ
(k)
I

7 else // optimality phase

8 if v(k) ≤ εF and m
(k)
f (w̄(k)) ≤ εO then

9 break

10 if v(w̄(k)) ≤ βτ (k) then
11 success← true; ŵ(k) ← w̄(k)

12 else
13 (ŵ(k), success)←

FeasIterations(w(k), w̄(k),∆(k), τ (k))

14 if success and ∆m
(k)
f ≥ σv(k) then

15 update radius← true; ρ(k) ← ρ
(k)
II

16 if update radius then
17 ∆(k+1) ←

∆Update(ρ(k), w(k), w̄(k),∆(k))
18 (w(k+1),−)←

Acceptance(ρ(k), w(k), ŵ(k))
19 else
20 ∆(k+1) ← α1||P (w̄(k) − w(k))||∞
21 w(k+1) ← w(k)

22 else // restoration phase

23 w̄(k) ← solve (12); ρ(k) ← ρ
(k)
R

24 ∆(k+1) ← ∆Update(ρ(k), w(k), w̄(k),∆(k))
25 (w(k+1), accept)←

Acceptance(ρ(k), w(k), w̄(k))
26 if v(k) ≤ βτ (k) and accept then
27 τ (k+1) ← βτ (k)

28 return w(k)

lower values of τ , an equivalent problem can be obtained
by scaling the constraints – therefore the constraint violation
– by τ ). The initial trust-region radius is set to ∆(0) = 1.

We start the original tolerance-tube method at w(0) =
(−0.25,−0.9). Since v(0) = 1, the initial point lies on the
tolerance-tube, therefore the algorithm starts in Phase II. The
feasible set of the initial LP is illustrated in Figure 5a and its
solution is w̄(0) = (0.75,−0.4). The trial iterate is accepted
and the trust-region radius is increased: (w(1),∆(1)) =
(w̄(0), 2). The solution of the next LP and the second-order
corrected iterate lie outside of the tolerance-tube. Therefore,
the trial iterate is rejected and the trust-region radius is
decreased: (w(2),∆(2)) = (w(1), 1). The feasible set of

2326



−1 0 1 2

w1

−2

−1

0

1
w

2

w2 = w1

w2 = −0.5w1 − 0.025

||w − w(0)||∞ = 1

w(0)

w̄(0)

(a) First iteration.

−1 0 1 2

w1

−2

−1

0

1

w
2

w2 = w1

w2 = 1.5w1 − 0.525

||w − w(2)||∞ = 1

w(2)

w̄(2)

(b) Second iteration.

Fig. 5: Cycling in the original tolerance-tube algorithm.

this LP is shown in Figure 5b and its solution is w̄(2) =
(−0.25,−0.9). The trial iterate is accepted and the trust-
region radius is again increased: (w(3),∆(3)) = (w̄(2), 2).
At this point, the original tolerance-tube algorithm starts
cycling.

The predicted reduction reveals that ∆m
(0)
f (x̄(0)) = −0.5

and ∆m
(2)
f (x̄(0)) = 0.5, but ρ(0) = ρ(2) = 1: even though

the algorithm does not predict a decrease of the objective in
the first LP, the trial iterate is accepted since ρ(k) is always
1. The switching condition (9) introduced in afSLP prevents
the algorithm from taking these steps.

V. SIMULATION RESULTS

This section presents simulation results that demonstrate
the effectiveness of afSLP on two problems: (i) the test
problem in (13), and (ii) the time-optimal point-to-point
motion (in the Euclidean space) of a parallel SCARA robot.

The OCPs considered in this simulation are implemented
using IMPACT [4], a framework for rapid prototyping of
nonlinear model predictive control built on top of CasADi
which inherits the solvers implemented therein. All simula-
tions were carried out using an Intel core i7-10810U CPU
and the LP solver CPLEX version 12.8 [5]. The algorithmic
parameters are chosen as in [6].

A. Test problem (13)

We demonstrate that, unlike the original tolerance-tube al-
gorithm [15], afSLP achieves convergence on Problem (13).
Since the original tolerance-tube algorithm only checks for
v(k) ≤ τ with τ = 1 in Problem (13), we choose τ (0) = 1.2
and β = 0.9 to have a similar maximum allowed constraint
violation in the initial iteration. The algorithm is started
from both cycling points (−0.25,−0.9) and (0.75,−0.4).
Figure 6 shows the convergence of afSLP towards the op-
timal solution w∗ ≈ (0.039, 0.039) for both initial guesses.
As in the analytical example, starting at (0.75,−0.4) brings
the next iterate to (−0.25,−0.9), then the iterations for both
starting points coincide.

B. Time-optimal motion of a parallel SCARA robot

To further demonstrate the effectiveness of afSLP, we
apply it to the TOCP for the SCARA motion example
originally introduced in our previous work [6]. For the

−0.5 0.0 0.5 1.0

w1

−1.0

−0.5

0.0

w
2

w2 = w2
1 + 0.0375

w2 = w1

Start (0.75,−0.4)

Start (−0.25,−0.9)

Fig. 6: Convergence of afSLP algorithm on Problem (13).
Grayed-out areas are infeasible.

sake of conciseness, only a brief description in the original
notation is given below.

The parallel SCARA robot consists of two 2-link arms
whose end effectors are attached to a revolute joint j5 (loop
closure constraint). It has two actuated joints (j1 and j3)
and three unactuated joints (j2, j4 and j5). Let us denote
the configuration of the i-th joint as qi ∈ S1, the independent
coordinates as q := [q1, q3]

⊤, the generalized coordinates as
q̄ := σ(q) = [q1, q2(q), q3, q4(q)]

⊤, the inertia matrix as M
and the vector of Coriolis and centrifugal effects as F . For
a state vector x := [q⊤, q̇⊤]⊤ and a control (torque) input
vector u := τS ∈ R2, the dynamics of the robot [2] are
described by

ẋ = fode(x, u) := [q̇⊤, (M−1(q̄)(τS − F (q̄, ˙̄q)))⊤]⊤.

It is discretized for a sampling time ht using a 4th-
order Runge-Kutta integrator, which results in a function
f(xk, uk, ht). The TOCP for the SCARA motion example
is formulated as

min
x0,...,xN

u0,...,uN−1

s0,sN ,T

T + µ⊤
0 s0 + µ⊤

NsN (14a)

s.t. − s0 ≤ x0 − x0 ≤ s0, (14b)
xk+1 = f(xk, uk, ht), 0 ≤ k ≤ N − 1, (14c)
uk ∈ U, 0 ≤ k ≤ N − 1, (14d)
xk ∈ X, 0 ≤ k ≤ N, (14e)
e(xk, uk) ≤ 0, 0 ≤ k ≤ N − 1, (14f)
− sN ≤ xN − xN ≤ sN , (14g)

where N ∈ N is the horizon length, T ∈ R>0 is the time
horizon, ht := T/N , xk ∈ Rnx , uk ∈ Rnu are the state
and control variables, x̄0, x̄N ∈ Rnx are the initial and
terminal states, µ0, µN ∈ Rns

>0 are penalty parameters for
the elastic variables s0, sN ∈ Rnx , and the sets U,X are
convex polytopes defined by lower and upper bounds on
τ , q and q̇. Finally, the function e(xk, uk) encloses task-
related stage constraints: (i) an upper bound Vmax on the
squared ℓ2 norm of the velocity of the end-effector ṗee
(∥ṗee∥2 ≤ V 2

max), and (ii) a collision avoidance constraint
based on separating hyperplanes:

n⊤
a pee + nb + rs ≤ 0, n⊤

a υ + nb ≥ 0, ∀υ ∈ Vobs, (15)

2327



where n := [n⊤
a ,nb]

⊤ ∈ {v ∈ R3 : ∥v∥∞ ≤ 1} defines the
hyperplane, rs ∈ R≥0 is a safety margin, and Vobs represents
the vertices of an obstacle.

We compare afSLP against the original FSLP algo-
rithm [6] and the state-of-the-art nonlinear optimization
solver IPOPT [12] for a variation of problem (14) in which
the initial and terminal constraints (14b) and (14g) are not
relaxed.

1) Comparison against FSLP: Table I shows how the
performance (number of constraint evaluations and average
wall time for 100 runs of the problem) of FSLP and
afSLP varies for different values of τ (0). The number of
constraint evaluations and the average wall time decrease
for increasing values of τ (0) until τ (0) = 10−4, above which
the performance decreases. Overall, afSLP reduces the wall
time by 50%.

TABLE I: Number of constraint evaluations and average
wall time and on the SCARA test problem.

FSLP afSLP
τ (0) 10−8 10−7 10−6 10−5 10−4 10−3

# g, h eval. 723 612 502 557 316 268
wall time (s) 0.576 0.447 0.361 0.423 0.283 0.287

2) Comparison against IPOPT without constraint relax-
ation: afSLP is compared against IPOPT on the SCARA
test problem for different time horizons N . We choose
τ (0) = 10−3, β = 0.9, εO = εF = 10−7. The optimality
and feasibility tolerances of IPOPT are set to 10−7. The
maximum iteration number for both solvers was set to
1, 000. For every N the experiment was run 100 times.
Figure 7 shows the average wall times for IPOPT and afSLP.
afSLP is significantly faster than IPOPT, which is also due
to the fact that expensive evaluations of the Hessian matrix
are not required.

10 20 30 40 50 60

Problem horizon N

10−1

100

101

102

103

W
a
ll

ti
m

e
(s

)

IPOPT

afSLP

Fig. 7: Comparison of average wall time of IPOPT and
afSLP for different problem horizons N .

VI. CONCLUSION

In this paper, we proposed illustrative examples that
exhibit the practical deficiencies of FSLP, a feasible se-
quential linear programming method for solving TOCPs.
We then introduced afSLP, an almost feasible SLP method

that alleviates the FSLP shortcomings: it allows infeasible
initial guesses, iterates first towards the feasible set until a
tolerance-tube is reached, then iterates towards optimality.
It is inspired by a tolerance-tube method introduced in [15].
We demonstrated in a simple example the lack of global
convergence of the original tolerance-tube method and pro-
posed two enhancements that overcome these limitations.
The performance of afSLP was assessed on a SCARA robot
optimization problem and compared against FSLP and the
state-of-the-art nonlinear optimization solver IPOPT.
Future work will focus on establishing a global convergence
proof, on improving the local convergence behavior and
on providing suboptimal feasibility guarantees even though
afSLP maintains a relaxed feasible set.

REFERENCES

[1] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl.
CasADi – a software framework for nonlinear optimization and
optimal control. Math. Program. Comput., 11(1):1–36, 2019.

[2] L. Cheng, Y. Lin, Z.-G. Hou, M. Tan, J. Huang, and W. J. Zhang.
Adaptive tracking control of hybrid machines: A closed-chain five-bar
mechanism case. IEEE/ASME Trans. Mechatron., 16(6):1155–1163,
dec 2011.

[3] R. Fletcher, S. Leyffer, and P. Toint. On the global convergence of an
SLP-filter algorithm. Numerical Analysis Report NA/183, University
of Dundee, UK, 12 1999.

[4] A. Florez, A. Astudillo, W. Decré, J. Swevers, and J. Gillis. IMPACT:
A toolchain for nonlinear model predictive control specification,
prototyping, and deployment. In Proceedings of the IFAC World
Congress, Yokohama, Japan, 2023.

[5] Cplex IBM ILOG. V12.8: User’s manual for CPLEX, 2017.
[6] D. Kiessling, P. Pas, A. Astudillo, P. Patrinos, and J. Swevers.

Anderson accelerated feasible sequential linear programming. In
Proceedings of the IFAC World Congress, Yokohama, Japan, 2023.

[7] D. Kiessling, A. Zanelli, A. Nurkanović, J. Gillis, M. Diehl,
M. Zeilinger, G. Pipeleers, and J. Swevers. A feasible sequential
linear programming algorithm with application to time-optimal path
planning problems. In Proceedings of 61st IEEE Conference on
Decision and Control, Cancun, Mexico, December 2022.

[8] L. Nita and E. Carrigan. SEQUOIA: A sequential algorithm providing
feasibility guarantees for constrained optimization. In Proceedings of
the IFAC World Congress, Yokohama, Japan, 2023.

[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer
Series in Operations Research and Financial Engineering. Springer,
2 edition, 2006.

[10] M. J. Tenny, S. J. Wright, and J.B. Rawlings. Nonlinear model
predictive control via feasibility-perturbed sequential quadratic pro-
gramming. Comput. Optim. Appl., 28:87–121, 2004.

[11] A. Tits and C. Lawrence. Nonlinear equality constraints in feasible
sequential quadratic programming. Optimization Methods and Soft-
ware, 6, 02 1997.

[12] A. Wächter and L. T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

[13] S. J. Wright and M. J. Tenny. A feasible trust-region sequential
quadratic programming algorithm. SIAM Journal on Optimization,
14:1074–1105, 1 2004.

[14] J. L. Zhou and A. Tits. User’s guide for FSQP version 3.0c:
A FORTRAN code for solving constrained nonlinear (minimax)
optimization problems, generating iterates satisfying all inequality and
linear constraints. 01 1992.

[15] C. Zoppke-Donaldson. A tolerance-tube approach to sequential
quadratic programming with applications. PhD thesis, University
of Dundee, 1995.

2328


