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Abstract— In this study, we deal with quantum networked
systems consisting of N quantum subsystems having D states.
In previous studies, it was proved that a symmetric-state
consensus (SSC) can be attained by an algorithm composed
of local measurements and a local feedback control in cases of
D = 2 and 3. However, a proof for general D remained an
open problem. In this study, we rigorously prove that an SSC
can be attained by the same algorithm in the case of general
D.

I. INTRODUCTION

In recent years, quantum information systems such as
quantum computers, quantum cryptography, and quantum
communications have attracted much attention from re-
searchers and engineers. While quantum information theory
has been developing, the realization of such systems has also
proceeded, and quantum computers and other devices are
now used in specific tasks.

In order to utilize the properties of such quantum in-
formation systems efficiently, it is necessary to generate
and operate entangled quantum states composed of large
numbers of qubits. However, the generation and operation
of such quantum states through the use of conventional
methods require large and complex equipment, so realization
is difficult.

As an idea to get past this issue, [7] introduced a quantum
network system composed of multiple quantum systems
corresponding to qubits, which are connected via a network,
and proposed an algorithm that locally exchanges states
between neighboring quantum systems. This algorithm can
construct long-bit consensus states, each called a symmetric-
state consensus (SSC), by a simple device. However, [4]
pointed out that in this algorithm, the purity of the quan-
tum system decreases and the uncertainty increases during
operations. In order to solve this problem, [4] introduced
a modified algorithm that repeats local observation and
feedback control, and showed via numerical simulation that
SSC can be constructed without decreasing the purity.

These studies [7] and [4] are theoretically interesting
in comparison with the consensus problem for classical
systems [8] because in quantum systems, local operations
and controls may change the quantum state of the whole
system and it is difficult to show that the proposed algorithm
can generate the consensus states.

Furthermore, [9], [10], [6] provided theoretical proof of
convergence of the algorithm [4] to the target state SSC,
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which was not given in [4]. However, the proof is restricted
to the case that the number of quantum states D is D = 2
or 3, and the proof of convergence in the case of general
D was left as an open problem. From both practical and
theoretical viewpoints, a proof for the case of general D has
been urgently needed.

With this background, this paper addresses the problem
of realizing SSC by a consensus algorithm [4], [9], [10],
[6] for the case of general D and gives a rigorous proof of
convergence to an SSC. In the proof, we utilize the PBH rank
test to determine the observability of a hypothetical control
system.

This paper consists of five sections. Section II describes
the fundamentals of stochastic systems and quantum theory.
Section III introduces quantum network systems and the
consensus algorithm. Section IV gives a main result in which
a rigorous proof of the convergence to an SSC for a general
D with the consensus algorithm is provided. Section V is
the conclusion of this paper and describes future work.

Notation

R, C, Z, N: sets of real numbers, complex numbers,
integers, and natural numbers, respectively; P[•]: probability
of •; E[•]: expectation of •; ⊗: Kronecker product; •⊤, •†:
transpose and complex conjugate of •, respectively; tr(•):
trace of •; diag(•), blkdiag(•): diagonal matrix of • and
block diagonal matrix of •, respectively; • � 0: • is positive
semi-definite.

II. PRELIMINARIES

In this section, we introduce the fundamentals on the
stability of stochastic systems and quantum theory that will
be used in the subsequent sections. The contents of this
section are based on [5], [1], [2], [9], [6].

A. Stability of stochastic system

Let {Xt}t∈Z and Xt ∈ Cn be a Markov process and the
state of a stochastic system, respectively. Define a stability
of a stochastic system as follows.

Definition 2.1: For an arbitrary positive number ϵ, if

lim
t→∞

P[min
x∈XI

‖Xt − x‖ ≥ ϵ] = 0 (1)

is satisfied, then Xt is said to converge to the set XI ⊂ Cn

in probability.
Definition 2.2: A set C is called an invariant set of a

system if the following condition is satisfied:

{xt, t = 1, 2, . . . |∀x0 ∈ C} ⊆ C. (2)
The following proposition is convenient for proving con-

vergence in probability.
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Proposition 2.1: [5] Let {Xt}t∈Z, Xt ∈ Cn be a Markov
process and assume that there exist bounded non-negative
functions V (x) and k(x) satisfying

E{V (Xt)|Xt−1} − V (Xt−1) = −k(Xt−1). (3)

Then, limt→∞ k(Xt) = 0 for almost all paths. Moreover, let
M = {x ∈ Cn|k(x) = 0} and M̃ represent the maximum
invariant set in M. Then, Xt converges to M̃ in probability.

B. Quantum theory

Let Do(n) be the set of quantum states ψ in Cn:

Do(n) = {ψ ∈ Cn|ψ†ψ = 1}. (4)

Similarly, the density operator ρ is represented as an element
of the following set:

D(n) = {ρ ∈ Cn×n|ρ = ρ† � 0, tr(ρ) = 1}. (5)

The density operator corresponds to the probability distri-
bution of a quantum system and is also called the state of
the system. Suppose that the state of a quantum system is
represented by a density operator on the Hilbert space CD,
D ∈ N, D ≥ 2. Denoting the D orthonormal basis of
the Hilbert space as |1〉 , |2〉 , . . . , |D〉, the state of the total
system composed of N quantum systems is represented by
the following density operator on the Hilbert space:

CDN

= CD ⊗ CD ⊗ · · · ⊗ CD︸ ︷︷ ︸
N set

. (6)

This is called an N -dimensional quantum system. Its basis
is given by

{|d1〉 ⊗ |d2〉 ⊗ · · · ⊗ |dN 〉} , |di〉 ∈ {|1〉 , |2〉 , . . . , |D〉}
(7)

and the elements can be also simply represented as

|d1〉 ⊗ |d2〉 ⊗ · · · ⊗ |dN 〉 =: |d1d2 · · · dN 〉 . (8)

Physical quantities are represented by Hermite operators
σ called observables. Let sn and Πn be the eigenvalue of σ
and its projection operator, respectively. Then, σ is uniquely
decomposed as

σ =
∑
n

snΠn, (9)

where ∑
n

Πn = I. (10)

The above is called spectral decomposition. In general, for
an observable σ, if the state before the measurement is ρ,
the probability pn of obtaining the measurement value sn is
given by

pn = tr(ρΠn), (11)

and the state after the measurement changes to

ρ 7→ ΠnρΠn

tr(ρΠn)
. (12)

The state operation of an N -dimensional quantum system
is performed by unitary operator U ∈ U(DN ), where U(DN )
represents the set of all unitary operators on DN -dimensional
quantum states, and a quantum state is transformed as

ρ 7→ UρU†. (13)

C. Non-negative matrix, probability matrix, and graph

A matrix whose elements are non-negative is called a non-
negative matrix. Then, a nonnegative matrix whose each row
sums to 1 is called a stochastic matrix, and a stochastic
matrix whose each column sums to 1 is called a doubly
stochastic matrix. We define B(n) as the set of all n-
dimensional square matrices and S(n) as the set of all n-
dimensional doubly stochastic matrices.

We next define the irreducibility and the period of a matrix
as follows.

Definition 2.3: For A ∈ B(n), A is said to be reducible
if H⊤AH can be decomposed into two or more block
triangular matrices using permutation matrix H . A square
matrix that is not reducible is said to be irreducible. Note
that when A ∈ B(1), A is reducible if A = 0 and irreducible
if A 6= 0.

Definition 2.4: For A ∈ B(n) an irreducible matrix, let
G = (VA, EA) be a directed graph associated with A, where
VA represents the set of vertices and EA the set of edges.
Then, the greatest common divisor of the number of edges
of all directed closed paths in the graph G is called the cycle
of the matrix A. A matrix with cycle 1 is called aperiodic.

It is known that application of the Perron-Frobenius the-
orem leads to the following proposition.

Proposition 2.2: If A ∈ S(n) is irreducible and aperiodic,
the following holds:

lim
m→∞

Am =
1

n
ones(n), (14)

ones(n) :=


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ∈ B(n). (15)

III. QUANTUM NETWORK SYSTEMS AND CONSENSUS
ALGORITHM

The contents of this section are from [9], [10], [6]. In this
study, we regard a symmetric quantum state as a consensus
state. This notion comes from the property of the consensus
state in a classical multi-agent system that the state of a
whole system remains unchanged even if the agents exchange
their state variables with each other.

Definition 3.1 ([7]): Let P(n) be the set of all permuta-
tion matrices in B(n), π be a permutation of N integers, and
Uπ ∈ P(n) be a permutation matrix such that

Uπ(x1 ⊗ x2 ⊗ · · · ⊗ xN )

= xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(N), xk ∈ CD. (16)

Then, if ρ ∈ D(DN ) satisfies UπρU
†
π = ρ for an arbitrary

π, ρ is called in a symmetric state consensus (SSC).
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In the following, “SSC” is also used to represent the set
of states in anSSC, such as writing ρ ∈ SSC to mean ρ is in
an SSC.

In the algorithm given in [4], it is assumed that local
measurement/feedback control is applied in order on paired
quantum subsystems among an N -dimensional quantum sys-
tem. Let VN be the set of vertices and EN be the set of edges,
where each vertex represents a quantum subsystem in an
N -dimensional system and each edge between two vertices
represents a paired relation of two quantum subsystems.
Then, a graph GN = (VN , EN ) represents the relations of
paired quantum subsystems for the N -dimensional quantum
system. We assume the following in this paper.

Assumption 3.1: Graph GN is connected.
Next, permutation matrix Sij ∈ P(DN ) that permutes the

states of the i-th quantum subsystem and the j-th quantum
subsystem is defined as follows:

Sij(x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xj ⊗ · · · ⊗ xN )

= x1 ⊗ · · · ⊗ xj ⊗ · · · ⊗ xi ⊗ · · · ⊗ xN , xk ∈ CD. (17)

Note that Sij satisfies the following:

S†
ij = Sij , S

2
ij = IDN . (18)

Using Sij , we define observable σij as a local measure-
ment for the edge (i, j).

Definition 3.2: The observable σij for the pair comprising
the i-th and j-th subsystems is given as follows:

σij = pPij + qQij , p 6= q ∈ R (19)

Pij =
1

2
(I + Sij), Qij =

1

2
(I − Sij) (20)

When value p is obtained by the measurement, the quan-
tum state is projected onto the eigenspace with eigenvalue 1
of Pij , and the quantum system is invariant to the permu-
tation between the i-th subsystem and the j-th subsystem.
Therefore, if we obtain the measurement value p for every
pair, the whole system is symmetric and an SSC is achieved.
On the other hand, when value q is obtained by a measure-
ment, the quantum state is projected onto the eigenspace
with eigenvalue 1 of Qij , and the quantum system is anti-
symmetric with respect to the permutation between the i-th
and j-th subsystems. In this case, we consider applying a
local control action by the following unitary operator.

Definition 3.3: Define a unitary operator Uij ∈ U(DN )
on N -dimensional quantum network systems such that it
applies the operator uij ∈ B(D2) defined below to the pair
comprising the i-th and j-th subsystems and the identity to
the rest of the subsystems.

uij = blkdiagD
k=1(u

′
ij(k)) (21)

u′ij(k) = diag(−1,−1, . . . ,−1︸ ︷︷ ︸
k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
D−k+1

) (22)

Note that this Uij satisfies

QijUijQij = O. (23)

After this control operation Uij , the probability to obtain
the measurement value p with σij becomes 1. This implies

that the pair comprising the i-th and j-th subsystems is
symmetrized.

With the above measurement and control operation, in the
previous study [4], the consensus algorithm defined below
was proposed and a numerical simulation demonstrated the
convergence of the quantum state to an SSC for arbitrary
initial states. Note that the time evolution of ρ or ψ is indexed
as ρt or ψt, t = 0, 1, . . . , in the following algorithm.

Algorithm 3.1 (Consensus algorithm [4]):

1. For graph GN , select an edge (i, j) from EN in order
or at random such that all the edges are selected in a
cycle period.

2. Measure the quantum system in the quantum state ρt
or ψt with the observable σij .

3. When a measurement value p is obtained, do nothing
and return to 1. Otherwise, when a measurement value
q is observed, apply control operation Uij to the i-th
subsystem and the j-th subsystem and return to 1. In
both cases, time is incremented as t = t+ 1.

Remark 3.1: The algorithm is composed of local measure-
ments and local control operations, so it is regarded as a
decentralized feedback control.

The proof of the convergence of Algorithm 3.1 to an SSC
was not given in [4]. This is because the repeated measure-
ment is a complex stochastic process and it is difficult to
follow the state transitions of the quantum system. A strict
proof of convergence when D = 2 or 3 was given in [9],
[10], [6] by application of the Lyapunov stability theorem of
Proposition 2.1.

IV. MAIN RESULTS

In this section, we extend the results in [9], [10], [6] on
the convergence to an SSC of Algorithm 3.1 to the case of
general D, which is the main result of the present paper.

A. Main theorem and lemmas for the proof

Theorem 4.1: For Algorithm 3.1, the states ρt, t = 0, 1,
. . . , of the N -dimensional quantum system converge to an
SSC with probability 1 for any initial states.

In the remainder of this section, we show several lemmas,
and give the proof of the above theorem in Section IV-C.

First, we rearrange the basis of the quantum state for
the later proofs. Let {|d1d2 . . . dN 〉} be the DN basis and
assign its elements to equivalence classes such that each
permutation of states between subsystems is a binary rela-
tion. That is, each element in an equivalence class can be
transformed to the other elements in the same equivalence
class by permutations. Let ki be the numbers of values i, i =
1, 2, . . . , D, in an equivalence class; then, each equivalence
class can be identified by the set of ki: (k1, k2, . . . , kD) =: k.
Give an index m to identify each equivalence class k as km

and let Fkm be the set of the elements in equivalence class
km. If we let K be the set of all the equivalence classes
{km}, then it is known that the number of elements of K is
(D+N−1)!
(D−1)!N ! =:M .
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Next, define lk by

lk(i) := |{|d1d2 · · · dN−1 i〉 | |d1d2 · · · dN−1 i〉 ∈ Fk}| .
(24)

Similarly, define lk(i, j) by

lk(i, j) := |{|d1d2 · · · j i〉 | |d1d2 · · · j i〉 ∈ Fk}| . (25)

These satisfy the following:

lk =
N !∏N

i=1(ki!)
, (26)

lk(i) =
(N − 1)!

(ki − 1)!
∏N

i′=1,i′ ̸=i(ki′ !)
=
ki
N
lk, (27)

lk(i, j) =
(N − 2)!

(ki − 1)!(kj − 1)!
∏N

i′=1,i′ ̸=i,j(ki′ !)

=
kikj

N(N − 1)
lk =

kj
N − 1

lk(i), i 6= j, (28)

lk(i, i) =
(N − 2)!

(ki − 2)!
∏N

i′=1,i′ ̸=i(ki′ !)

=
ki(ki − 1)

N(N − 1)
lk =

ki − 1

N − 1
lk(i). (29)

Next consider arranging the basis elements of Fk in
ascending order with respect to dN , similarly rearrange the
basis elements having the same dN in ascending order of
dN−1, and continue this rearrangement up to d1,

Example 4.1: Take the case of D = 3 and N = 3. Then,
the DN = 33 = 27 basis elements can be divided into the
following 10 equivalence classes:

{|111〉} , {|222〉} , {|333〉} ,
{|112〉 , |121〉 , |211〉} , {|122〉 , |212〉 , |221〉} ,
{|113〉 , |131〉 , |311〉} , {|133〉 , |313〉 , |331〉} ,
{|223〉 , |232〉 , |322〉} , {|233〉 , |323〉 , |332〉} ,
{|123〉 , |132〉 , |213〉 , |231〉 , |312〉 , |321〉} . (30)

For example, the rearrangement of the basis elements of the
equivalence class {|123〉 , |132〉 , . . . } is given by

|321〉 , |231〉 , |312〉 , |132〉 , |213〉 , |123〉 . (31)
Next, constitute permutation matrix T ∈ P(DN ) with the

bases of Fk1
, Fk2

, . . . , FkM
such that

T =
[
T1 · · · Tlk1

Tlk1
+1 · · · Tlk1

+lk2
· · ·

]
(32)

where {T1, . . . , Tlk1
}, {Tlk1+1

, . . . , Tlk1
+lk2

}, . . . , are the
bases of Fk1 , Fk2 , . . . , respectively. By using T , the
permutation matrix Sij can be decomposed as follows:

T⊤SijT = blkdiagMm=1(Sij(m)), Sij(m) ∈ P(lkm
). (33)

Similarly, matrices Pij , Qij , and unitary operator Uij can be
decomposed as follows:

T⊤PijT = blkdiagMm=1(Pij(m)), Pij(m) ∈ B(lkm
)

T⊤QijT = blkdiagMm=1(Qij(m)), Qij(m) ∈ B(lkm)

T⊤UijT = blkdiagMm=1(Uij(m)), Uij(m) ∈ B(lkm
) (34)

Corresponding to this decomposition, a quantum state ψ
can be also represented as

T⊤ψ =
[
ψ⊤(1) · · · ψ⊤(m) . . . ψ⊤(M)

]⊤
ψ(m) ∈ Clkm . (35)

Then, the observable σij and the unitary operator Uij on
ψ are considered to be the composition of the independent
observable σij(m) := pPij(m) + qQij(m) and the unitary
operator Uij(m) on ψ(m), m = 1, 2, · · · , M , respectively.
We call ψ(m) the m-th mode in the dynamics.

In [9], [10], [6], it was shown that the following Lem-
mas 4.1–4.7 hold for general D and Lemmas 4.8 and 4.9
hold for D = 2 and 3.

Lemma 4.1: The equation

lim
n→∞

 ∏
i̸=j∈VN

Pij

 ∏
i ̸=j∈VN

Pij

 · · ·

 ∏
i ̸=j∈VN

Pij


︸ ︷︷ ︸

n

= P̃N (36)

holds for any order of multiplication in each
∏

i̸=j∈VN
Pij

in (36), where

P̃N :=T
(

blkdiagM
m=1P̃N (m)

)
T⊤, (37)

P̃N (m) :=
1

lkm

ones(lkm). (38)

Note that in the proof of Lemma 4.1, it is shown that ma-
trix

∏
i ̸=j∈VN

Pij satisfies the conditions in Proposition 2.2
and (14) is employed.

The matrix P̃N satisfies the following two lemmas.
Lemma 4.2: For arbitrary i 6= j ∈ VN , the following hold:

P̃NPij = PijP̃N = P̃N , P̃NQij = QijP̃N = O,

P̃ 2
N = P̃N , tr(ρPij) = 0 ⇒ tr

(
ρP̃N

)
= 0.

Lemma 4.3: For ρ ∈ D(DN ), if tr
(
ρP̃N

)
= 1, then ρ ∈

SSC.
Related to P̃N , we also define a graph GN−1 =

(VN−1, EN−1) such that GN−1 is a subgraph of GN obtained
by deleting a vertex vn and the edges which are connected
to vn from GN , where vn is selected such that GN−1 is
connected. Without loss of generality, assume that vn is
the N -th component of the N -dimensional quantum system,
vn = vN , and also that one of the vertices connected to vN
is the (N − 1)-th component, vN−1. With this graph GN−1,
matrices P̃N−1 and P̃N−1(m) are defined similarly and (36)
also holds if N is replaced by N −1. The above implies the
following:

P̃N−1 =T
(

blkdiagM
m=1(P̃N−1(m))

)
T⊤,

P̃N−1(m) ∈ B(lkm
). (39)

Hereafter, we use the following Lyapunov function:

V (ρ) = 1− tr
(
ρP̃N

)
. (40)
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Let ρ and ρ′ represent the quantum states before and after
the measurement of σij , respectively, and

∆V := E{V (ρ′)|ρ} − V (ρ) (41)

represent the conditional expectation of the increment of
V (ρ). Then, we get the following lemma.

Lemma 4.4:

∆V ≤ 0 (42)

∆V = 0.⇔ tr
(
UijQijρQijU

†
ijP̃N

)
= 0 (43)

This lemma suggests finding the largest invariant set M̃
satisfying ∆V = 0 for the proof of Theorem 4.1. For this
purpose, we define the following sets:

M1 :=
{
ρ ∈ D(DN )| tr

(
ρP̃N

)
= 1

}
, (44)

M2 :=
{
ρ ∈ D(DN )|0 < tr

(
ρP̃N

)
< 1

}
, (45)

M3 :=
{
ρ ∈ D(DN )| tr

(
ρP̃N

)
= 0

}
. (46)

These sets are mutually exclusive and such that M1∪M2∪
M3 = D(DN ). From Lemma 4.3, it is known that M1 ⊆
M̃. Then, from Proposition 2.1, it is enough to prove M̃ ∩
(M2 ∪M3) = ∅ in order to show M1 = M̃ for the proof
of Theorem 4.1, and the remainder of this section will show
this fact.

The following lemma also holds.
Lemma 4.5: For the sequence of quantum states

{ρt}t∈N∪{0} ⊂ D(DN ), ρ0 ∈ D(DN ) generated by
Algorithm 3.1, the following hold:

ρ0 ∈ M1 ∩ M̃ ⇒ ρt ∈ M1 ∩ M̃, ∀t ∈ N ∪ {0}, (47)

ρ0 ∈ M3 ∩ M̃ ⇒ ρt ∈ M3 ∩ M̃, ∀t ∈ N ∪ {0}. (48)
This lemma implies the following lemma.
Lemma 4.6:

M2 ∩ M̃ = ∅. (49)
Thus, we next consider how to show M3 ∩ M̃ = ∅. The

following lemma also holds.
Lemma 4.7: Let M̃v be the set of state vectors ψ such

that ψψ† ∈ M̃. Similarly, define

Mv
3 =

{
ψ ∈ Do(D

N )|
∥∥∥P̃Nψ

∥∥∥ = 0
}
. (50)

Then the following holds:

M3 ∩ M̃ 6= ∅ ⇔ Mv
3 ∩ M̃v 6= ∅. (51)

From the previous lemma, it is sufficient to show Mv
3 ∩

M̃v = ∅. For this purpose, we will use the following lemma.
Lemma 4.8: Let ψ0 ∈ Do(D

N ) be an initial state. Then,
if

P̃N−1ψ0 6= 0, (52)

P̃N P̃N−1ψ0 = 0, (53)

there exists 0 ≤ d < D such that

P̃N (UN−1,NQN−1,N P̃N−1)
dψ0 6= 0. (54)

The previous lemma is the key to proving the final lemma
and the main theorem. Lemma 4.8 was proved for cases D =

2 and 3 in [9], [10], [6]; however, the proof for the case of
general D was left as an open problem. We give the proof
for the general case in Section IV-B.

Using Lemma 4.8, we get the following last lemma.
Lemma 4.9: Let ψ0 ∈ Do(D

N ) be an initial state. Then,
if

P̃N−1ψ0 6= 0, P̃Nψ0 = 0, (55)

there exists 0 < τ such that

P̃Nψτ 6= 0. (56)
The proof of this lemma for the case of the general D can

be easily obtained using the same derivation as in [6] for the
cases D = 2 and 3, so we omit the proof here.

B. Proof of Lemma 4.8

Without loss of generality, we assume that the m-th mode
ψ0(m) satisfying P̃N−1(m)ψ0(m) 6= 0 includes D different
values, similar to as in [6]. Then, the poof of this lemma
is completed by showing that there does not exist ψ0(m),
P̃N−1(m)ψ0(m) 6= 0 satisfying the following equations
simultaneously:

P̃N (m)P̃N−1(m)ψ0(m) = 0,

P̃N (m)UN−1,N (m)QN−1,N (m)P̃N−1(m)ψ0(m) = 0,

P̃N (m)(UN−1,N (m)QN−1,N (m)P̃N−1(m))2ψ0(m) = 0,

...

P̃N (m)(UN−1,N (m)QN−1,N (m)P̃N−1(m))D−1ψ0(m) = 0.
(57)

From (P̃N−1)
2ψ0 = P̃N−1ψ0 and (53), P̃N−1(k)ψ0(k)

can be represented as

P̃N−1(m)ψ0(m)

= [a1 a1 · · · a1︸ ︷︷ ︸
lk(1)

a2 a2 · · · a2︸ ︷︷ ︸
lk(2)

· · · aD aD · · · aD︸ ︷︷ ︸
lk(D)

]⊤. (58)

Note that the basis corresponding to the element ai in (58)
is |∗ ∗ · · · ∗ i〉. Hereafter, we represent the value ai in
ψt(m) as a(t)i . Then, the process that Algorithm 3.1 generates
ψt(m), t = 0, 1, . . . , D − 2, is as follows.

1) Apply QN−1,N (m) and UN−1,N (m) to

P̃N−1(m)ψt(m)

= [a
(t)
1 . . . a

(t)
1︸ ︷︷ ︸

lk(1)

a
(t)
2 . . . a

(t)
2︸ ︷︷ ︸

lk(2)

. . . a
(t)
D . . . a

(t)
D︸ ︷︷ ︸

lk(D)

]⊤ (59)
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to get

ψt+1(m)

=UN−1,N (m)QN−1,N (m)P̃N−1(m)ψt(m)

= [b
(t)
11 · · · b(t)11︸ ︷︷ ︸

lk(1,1)

b
(t)
12 · · · b(t)12︸ ︷︷ ︸

lk(1,2)

· · · b(t)1D · · · b(t)1D︸ ︷︷ ︸
lk(1,D)

· · · b(t)21 · · · b(t)21︸ ︷︷ ︸
lk(2,1)

b
(t)
22 · · · b(t)22︸ ︷︷ ︸

lk(2,2)

· · · b(t)2D · · · b(t)2D︸ ︷︷ ︸
lk(2,D)

...

· · · b(t)D1 · · · b(t)D1︸ ︷︷ ︸
lk(D,1)

b
(t)
D2 · · · b(t)D2︸ ︷︷ ︸

lk(D,2)

· · · b(t)DD · · · b(t)DD︸ ︷︷ ︸
lk(D,D)

]⊤,

(60)

where

b
(t)
ij =


a
(t)
j −a

(t)
i

2 , i < j,

0, i = j,
a
(t)
i −a

(t)
j

2 , i > j.

(61)

Recall that lk(i, j) defined by (28) or (29) represents
the number of basis elements |∗ ∗ · · · ∗ i j〉.

2) Apply P̃N (m) to ψt+1(m) to get

P̃N (m)ψt+1(m) = 1

lk

D∑
i=1

D∑
j=1

lk(i, j)b
(t)
ij . . .

1

lk

D∑
i=1

D∑
j=1

lk(i, j)b
(t)
ij︸ ︷︷ ︸

lk

⊤

.

(62)

3) From (62), P̃N (m)ψt+1(m) = 0 implies

1

lk

D∑
i=1

D∑
j=1

lk(i, j)b
(t)
ij = 0. (63)

On the other hand,

P̃N−1(m)ψt+1(m)

= [ã
(t)
1 . . . ã

(t)
1︸ ︷︷ ︸

lk(1)

ã
(t)
2 . . . ã

(t)
2︸ ︷︷ ︸

lk(2)

. . . ã
(t)
D . . . ã

(t)
D︸ ︷︷ ︸

lk(D)

]⊤,

(64)

ã
(t)
i :=

1

lk

D∑
j=1

lk(i, j)b
(t)
ij , (65)

and so

P̃N (m)P̃N−1(m)ψt+1(m)

=

[
1

lk

D∑
i=1

lk(i)ã
(t)
i · · · 1

lk

D∑
i=1

lk(i)ã
(t)
i

]⊤

=

 1

lk

D∑
i=1

D∑
j=1

lk(i, j)b
(t)
ij · · · 1

lk

D∑
i=1

D∑
j=1

lk(i, j)b
(t)
ij

⊤

.

(66)

Therefore, we get P̃N (m)ψt+1(m) = 0 ⇔
P̃N (m)P̃N−1(m)ψt+1(m) = 0. From the definition
of a(t+1)

i , a(t+1)
i = ã

(t)
i and we have the following

recursive formula on a(t)i , t = 1, 2, . . . :

a
(t+1)
i =

1

lk(i)

D∑
j=1

lk(i, j)b
(t)
ij

=
1

N − 1

−
∑

j>i

kj −
∑
j<i

kj

 a
(t)
i

+

∑
j>i

kja
(t)
j −

∑
j<i

kja
(t)
j

 . (67)

Then, the equations in (57) are equivalent to the following:{
1
N

∑D
i=1 kia

(0)
i = 0

1
lk

∑D
i=1

∑D
j=1 lk(i, j)b

(t)
ij = 0, t = 0, 1, . . . , D − 2

⇔


∑D

i=1 kia
(0)
i = 0∑D

i=1

(∑
j>i kj −

∑
j<i kj

)
kia

(t)
i = 0,

t = 0, 1, . . . , D − 2

⇔A


k1a

(0)
1

k2a
(0)
2

...
kDa

(0)
D

 = A


k1a1
k2a2

...
kDaD

 = O, (68)

where A is a coefficient matrix.
Next consider deriving matrix A in (68) and showing

detA 6= 0 in order to prove Lemma 4.8. First, from (67),
represent a(t)i as a linear function of ah, h = 1, 2, . . . , D,
as

a
(t)
i =

D∑
h=1

a
(t)
ih ah, (69)

and then,

D∑
i=1

∑
j>i

kj −
∑
j<i

kj

 kia
(t)
i

=

D∑
h=1

∑D
i=1

(∑
j>i kj −

∑
j<i kj

)
kia

(t)
ih

kh
khah. (70)

Therefore, matrix A can be represented as

A =


1 1 . . . 1
A01 A02 . . . A0D

A11 A12 . . . A1D

...
...

. . .
...

AD−2,1 AD−2,2 . . . AD−2,D

 , (71)

where

Ath =

∑D
i=1

(∑
j>i kj −

∑
j<i kj

)
kia

(t)
ih

kh
,

0 ≤ t ≤ D − 2, 1 ≤ h ≤ D. (72)
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By using (69), (67) can be represented as

(N − 1)a
(t+1)
i

=

D∑
h=1

−
∑

j>i

kj −
∑
j<i

kj

 a
(t)
ih

+
∑
j>i

kja
(t)
jh −

∑
j<i

kja
(t)
jh

 ah
=

D∑
h=1

∑
j>i

kj

(
a
(t)
jh − a

(t)
ih

)
−
∑
j<i

kj

(
a
(t)
jh − a

(t)
ih

) ah.
(73)

Then, we get the following:

a
(0)
ih = δih

a
(t+1)
ih

=
1

N − 1

∑
j>i

kj

(
a
(t)
jh − a

(t)
ih

)
−
∑
j<i

kj

(
a
(t)
jh − a

(t)
ih

) .

(74)

Equation (74) can be represented by the following recurrence
relation by using matrix A(t),

(
A(t)

)
ih

:= a
(t)
ih :

A(t+1) =
1

N − 1
KA(t), A(0) = ID,

K :=


−
∑

j>1 kj k2 . . . kD
−k1

∑
j<2 kj −

∑
j>2 kj . . . kD

−k1 −k2 . . . kD
...

...
. . .

...
−k1 −k2 . . .

∑
j<D kj

 ,
(75)

and we get

A(t) = (N − 1)−tKt. (76)

On the other hand, nonsingularity of A is identical to
nonsingularity of the following A′, which is obtained by
multiplying the i-th column of A by ki, first row by 1

2 , and
j-th row by (N − 1)−(j−2):

A′ =


k1

2
k2

2 · · · kD

2
A′

01 A′
02 · · · A′

0D

A′
11 A′

12 · · · A′
1D

...
...

. . .
...

A′
D−2,1 A′

D−2,2 · · · A′
D−2,D

 ,

A′
th =(N − 1)−t

D∑
i=1

∑
j>i

kj −
∑
j<i

kj

 kia
(t)
ih ,

0 ≤ t ≤ D − 2, 1 ≤ l ≤ D. (77)

From (76), A′ can be represented as

A′ =


g

−gK
−gK2

...
−gKD−1

 , g :=
[
k1

2
k2

2 · · · kD

2

]
. (78)

Note that A′ can be regarded as the observability matrix
of the pair K and g. Then, by applying the PBH rank test,
we get the following equivalent conditions:

A′ is nonsingular ⇔ rank

[
2g

λID −K

]
= D, ∀λ ∈ C (79)

We can show that the PBH rank test in (79) is true from
the further calculation, however, we omit it from the page
limitation. From the above, Lemma 4.8 holds.

C. Proof of Theorem 4.1
We can see that Lemma 4.9 holds by replacing N by

N − 1, N − 2, . . . , and the condition P̃N−1ψ0 6= 0 is true
at N − 1 = 2, that is, P̃2ψ0 6= 0, by the feedback law.
Therefore, even if the initial ψ0 is in Mv

3 , ψt leaves Mv
3

at some finite time, which implies M̃v ∩ Mv
3 = ∅, that

is, M̃ ∩ M3 = ∅ from Lemma 4.7. From the above and
Lemma 4.6, M̃ ⊆ M1, but on the other hand, M̃ ⊇ M1

from Lemma 4.3, so we conclude M̃ = M1. Finally, from
Lemma 4.3 and Proposition 2.1, the system converges to an
SSC in probability for arbitrary initial states. Also, from [9],
[10], if the quantum state converges to an SSC in probability,
it is an almost convergence, in other words, the quantum state
converges to an SSC with probability 1. This completes the
proof of Theorem 4.1.

V. CONCLUSION

In this study, we showed that for general D-state N -
dimensional quantum network systems, consensus states can
be generated by local measurements and a local feedback
control. It was shown in [9], [10] that the consensus algo-
rithm analyzed in the present study can generate the W-state,
which is one of the usable entangled states. Therefore, one of
our future tasks is the physical implementation of a W-state
generator.
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