
Structural Exploitation for the Homogeneous Reformulation of Model
Predictive Control Problems

Jonas Hall1,2 and Arvind U Raghunathan1

Abstract— Algorithms for solving Quadratic Pro-
grams (QPs) are indispensable in the research of
Model Predictive Control (MPC) of linear dynam-
ical systems. In a recent paper, Raghunathan [1]
proposed a novel Homogeneous Quadratic Program
(HQP) formulation that can determine optimality
and infeasibility of QPs under assumptions that are
readily satisfied for MPC. In this paper, we develop
a structure exploiting factorization for the linear
systems that occur when solving the QPs arising in
MPC using the HQP formulation. We have developed
a C++ framework (QOACH-MPC) that abstracts the
structure exploiting factorization from the algorithm
implementation, and makes it convenient for imple-
menting and testing algorithms for MPC. Currently,
QOACH-MPC implements an Interior Point Method
(IPM) and Semismooth Newton Method (SNM) for
solving the HQP, where the step computation ex-
ploits the structure in MPC. We demonstrate how
our framework can be leveraged to produce a mixed
algorithmic strategy for solving the closed-loop MPC
problem.

I. Introduction
Model Predictive Control (MPC) has become the pre-

dominant choice for control of constrained linear dynam-
ical systems. Central to MPC is the solution of Quadratic
Programs (QPs) that compute a control action guaran-
teeing the system’s stability while satisfying the limits on
states and controls. This has motivated research in the
development of algorithms based on Interior Point Meth-
ods (IPMs) [2], [3], active-set methods [4], [5], splitting
methods [6], [7], [8], and Semismooth Newton Methods
(SNMs) [9]. The methods differ in their computational
complexity per iteration, ability to leverage solutions
at the previous time step, and iteration complexity.
However, most of the algorithms can benefit from ex-
ploiting the structure that is inherent in QP instances
arising in MPC. To this end, Riccati recursion has been
used to reduce the computational effort involved in the
factorization of the linear systems arising in the context
of MPC [10], [2]. This allows the computational effort
involved per iteration to scale linearly instead of cubically
in the number of time steps in MPC.

QP algorithms are designed to guarantee convergence
to an optimal solution when the problem is feasible.
However, feasibility is not always guaranteed. In real-
time applications such as MPC, it is imperative for

1Mitsubishi Electric Research Laboratories, 201 Broadway, Cam-
bridge, MA 02139, USA

2Division of Systems Engineering, Boston University, USA
hallj@bu.edu, raghunathan@merl.com

QP algorithms to recognize infeasibility and produce a
certificate of infeasibility. In this context, not all QP
algorithms are capable of returning such a certificate.
For example, the standard IPM in [2] cannot produce
a certificate of infeasibility. On the other hand, IPMs
based on the Homogeneous Self-Dual embedding such as
the one in [3] can return a certificate of infeasibility. The
active-set methods [4], [5], some splitting method [8] and
SNMs [9] can also return a certificate of infeasibility.

Raghunathan [1] introduced a novel approach of
reformulating the QP into a so-called Homogeneous
Quadratic Program (HQP). The HQP has one additional
nonnegative variable compared to the original QP, is
always feasible, and can be shown to inherit the convexity
properties of the QP under very mild assumptions. The
HQP always has an optimal solution. Further, optimality
and infeasibility of a QP can be inferred by inspecting
the solution of the HQP. The key advantage is that any
algorithm based on HQP can now handle optimality and
infeasibility of QPs robustly. In a follow-up work [11],
the authors presented an IPM with predictor-corrector
step for solving the HQP, and implemented the algo-
rithm in Julia [12]. The results demonstrated that the
effectiveness of the HQP formulation based IPM in de-
termining optimality and infeasibility of QP. Leveraging
these works, Raghunathan and Hall [13] have developed
QOACH (Quadratic Optimization Algorithms for Convex
problems based on Homogenization), a C++ implemen-
tation for solving QPs based on the HQP reformulation.
QOACH abstracts the specifics of the factorizations in
the step computations away from the algorithm imple-
mentation. QOACH currently implements an infeasible
IPM and SNM for solving QP and employs sparse lin-
ear algebra for factorizations in the step computation.
These implementations have been tested on a number of
publicly available QP instances.

In this paper, we extend QOACH to exploit the struc-
ture that is inherent in QP instances arising in MPC.
A key departure of our approach from [2] is that we
employ the HQP formulation for MPC. In addition, we
allow the dynamical systems to also feature algebraic
variable at each time step in the MPC. These algebraic
variables could be slacks variables inserted into inequality
constraints at each time step of the MPC or they could be
naturally present in the dynamics of the system. We ex-
tend the Riccati recursion developed in [10], [2] for factor-
ization of the matrices that arise in the step computation
for dynamical systems with algebraic variables. QOACH-

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3164



MPC allows to easily switch between different algorithms
while continuing to exploit the structure inherent in the
MPC. In a numerical experiment we demonstrate that
switching between SNM and IPM can be beneficial when
solving a sequence of Optimal Control Problems (OCPs).

The remainder of this paper is organized as follows. §II
introduces the MPC problem formulation. We present
the homogeneous reformulation of the QP arising in
MPC in §III. §IV describes the IPM and SNM algorithms
using the HQP. The Riccati recursion for exploiting
structure is described in §V. §VI presents the compu-
tational results and conclusions are presented in §VII.

A. Notation
The notation R denotes the set of reals, v ∈ Rn denotes

a real-valued vector of dimension n, and diag(v) ∈ Rn×n

denotes the diagonal matrix with entries of v on the
diagonal. The i-th component of v is denoted as [v]i.
For a matrix M ∈ Rn×m we refer to the element
at i-th row and j-th column by [M ]ij . For a, b ∈ R,
0 ≤ a ⊥ b ≥ 0 represents the complementarity con-
straint a, b ≥ 0, ab = 0. For vectors u, v ∈ Rn, the
notation 0 ≤ u ⊥ v ≥ 0 denotes the component-wise
complementarity constraint 0 ≤ [u]i ⊥ [v]i ≥ 0. For
a, b ∈ R, the Fischer-Burmeister function is denoted
as ϕ(a, b) = a + b −

√
a2 + b2. For vectors u, v ∈ Rn,

Φ : Rn×n → Rn denotes the componenent-wise Fischer-
Burmeister function, i.e., [Φ(u, v)]i = ϕ([u]i, [v]i). The
space of n × n real, symmetric matrix is denoted as Sn.
For a matrix A ∈ Sn, the notation A (⪰) ≻ 0 denotes
the positive (semi)definiteness of the matrix.

II. Problem Formulation
We are interested in solving the discrete-time finite

horizon Optimal Control Problem (OCP)

min
xk,uk,yk

N−1∑
k=0

(ℓx
k(xk) + ℓu

k(uk) + ℓy
k(yk))

+ ℓx
N (xN ) + ℓy

N (yN ) (1a)
s.t. x0 = x̂0, (1b)

− xk+1 + Akxk + Bkuk + Ckyk = gk, (1c)
Dkxk + Ekuk + Fkyk = hk, (1d)
DN xN + FN yN = hN , (1e)
(xk, uk, y

k
) ≤ (xk, uk, yk) ≤ (xk, uk, yk), (1f)

(xN , y
N

) ≤ (xN , yN ) ≤ (xN , yN ), (1g)

where k = 0, 1, . . . , N − 1 is the time index, xk ∈ Rnx is
the state at time k, uk ∈ Rnu is the control action during
the kth control interval, and yk ∈ Rny is the algebraic
variables at time k. The bar quantities xk, xk ∈ Rnx

represent fixed lower and upper bounds for the state
variables xk (analogously for uk and yk), and gk ∈ Rnx ,
hk, hN ∈ Rny define the affine offsets for the dynamics.
The convex quadratic stage and terminal cost terms are
defined by ℓx

k(xk) = 1
2 x⊤

k Qx
kxk+(qx

k)⊤xk for k = 0, . . . , N
and ℓu

k(uk), ℓy
k(yk), ℓy

N (yN ) are defined analogously.

A. Assumptions
Throughout the remainder of this paper we make the

following assumptions:
(M1) The stage cost Hessians Qx

k, Qy
k are positive semi-

definite and crucially Qu
k is positive definite.

(M2) The matrices Fk are invertible for all k.
Assumption (M1) is standard in MPC. Assumption (M2)
is not restrictive. This holds for example when the
discrete-time system results from the time discretization
of index-1 Differential Algebraic Equation (DAE) [14].

III. Homogeneous Reformulation
For ease of exposition, we view (1) as a QP

min
z

1
2z⊤Qz + q⊤z (2a)

s.t. Az = b, (2b)
z ≤ z ≤ z̄, (2c)

where z = (x0, u0, y0, . . . , xN−1, uN−1, yN−1, xN , yN ).
The remaining parameters Q, q, A, b, z, z in (2) can be
readily inferred from (1). Q and A are sparse and highly
structured matrices. Exploiting this sparsity pattern is
well understood and discussed in detail in §V.

The Homogeneous Slacked QP (HSQP) reformula-
tion [11] of (2) is given by

min
z, sl, su, τ

1
2z⊤Qz + τq⊤z + 1

2θτ2 − θτ (3a)

s.t. Az = τb, (3b)
z − sl = τz, (3c)
z + su = τ z̄, (3d)

τ, sl, su ≥ 0, (3e)

where θ ∈ R is a parameter controlling the convexity
of the reformulation (see Theorem 1). The HSQP in-
troduces a nonnegative variable τ which multiplies the
right hand side of the equality constraints (2b) and the
bounds (2c) rendering the constraints in HSQP to be
homogeneous. Thus, (z, sl, su, τ) = 0 is always a feasible
solution of (3) regardless of the feasibility of (2). The
nonnegative slack variables sl and su are introduced
in order to convert the homogenizations of (2c) into
equality constraints. Raghunathan et al [11] showed that
a solution of (2) or its infeasibility can be inferred from
solving (3) if the following assumptions hold.
(A1) The matrix A has full row rank.
(A2) The matrix Q is positive definite on the null space

of A i.e., vT Qv > 0 for all v with Av = 0.
We now show that these assumptions hold in the given
MPC setting.

Lemma 1. Suppose Assumptions (M1)-(M2) hold for
MPC (1), then QP (2) satisfies Assumptions (A1)-(A2).

Proof. From Assumption (M2), the algebraic variables
yk can be eliminated for each k using (1d) to obtain
the dynamical system in terms of states and controls

3165



alone. Subsequently, the states xk can also be elimi-
nated using (1b)-(1c). Since equality constraints provide
unique pivots to eliminate a set of variable the equality
constraints are full row rank, this proves that Assump-
tion (A1) holds. The elimination of xk, yk described
above results in an inequality constrained optimization
problem in the controls uk. The Hessian of the objective
function for the inequality constrained problem is posi-
tive definite due to Assumption (M1). This implies that
Assumption (A2) holds, completing the proof.

Using Lemma 1, we can restate the main result
from [11] relating HSQP and QP in the following.

Theorem 1. Suppose Assumptions (M1)-(M2) hold
for (1). Choose the parameter θ > 0 to satisfy

• θ + 2θ⋆ > 0 where θ⋆ is the optimal value of the QP
without bounds, i.e. (2a)-(2b)

• θ is chosen large enough to satisfy[
dz

dτ

]T [
Q q
qT θ

] [
dz

dτ

]
> 0 ∀ (dz, dτ ) : Adz − bdτ = 0.

Then, the following hold
(i) QP (2) has an optimal solution x⋆ iff HSQP (3) has

an optimal solution (ẑ, ŝl, ŝu, τ̂) with τ̂ > 0.
(ii) QP (2) is infeasible iff HSQP (3) has an optimal

solution (ẑ, ŝl, ŝu, τ̂) with τ̂ = 0.

Proof. From Lemma 1 we have that Assumptions (A1)-
(A2) hold for QP (2). Theorems 1-2 in [11] are applicable
and be used to prove the claim.

Theorem 1 provides the basis for solving QP by devel-
oping algorithms that find a minimizer of HSQP. In [11]
the authors described an infeasible Interior Point Method
(IPM) with Mehrotra’s predictor-corrector step compu-
tation in Julia. Specifically, the authors derived a block
elimination strategy for the linear system in the IPM
applied to HSQP such that the computational effort per
iteration is similar to that of IPMs applied to QPs [15].
In QOACH [13] we recognized that the block elimination
strategy can be applied to any method that solves HSQP
through the application of Newton’s method to the first-
order stationary conditions. We leveraged this observa-
tion to implement an IPM and a Semismooth Newton
Method (SNM) for solving HSQP (3). We provide a
description of a general algorithm for solving HSQP (3)
and the step computation in §IV.

A. Computation of θ

We conclude this section with a brief discussion on
the computation of θ, for details we refer to [1]. The
main effort in the computation of θ⋆ = 1

2 (zunc)⊤Qzunc +
q⊤zunc, where zunc is the solution of(

Q A⊤

A 0

) (
zunc

λunc

)
=

(
−q
b

)
. (4)

In what follows we show that computing the step direc-
tion requires solving systems similar to the one above. To

this end, the computational cost of obtaining θ⋆ amounts
to one additional iteration.

IV. Algorithmic Framework for Solving HSQP
We now outline a generic framework for solving HSQP.

The first-order stationary conditions for HSQP are

Rd(v, λ, ν) := (5a)
Qz + A⊤λ + qτ + λl + λu

q⊤z − b⊤λ − z⊤λl − z⊤λu + θτ − ντ − θ
−λl − νl

+λu − νu

 = 0,

Rp(v, λ, ν) :=

 Az − bτ
z − sl − zτ
z + su − zτ

 = 0, (5b)

Rc(v, λ, ν) :=

 0 ≤ sl ⊥ νl ≥ 0
0 ≤ su ⊥ νu ≥ 0
0 ≤ τ ⊥ ντ ≥ 0

 , (5c)

where λ, λl, λu are multipliers for the equality con-
straints (3b)-(3d), respectively, νl, νu, ντ are multipli-
ers for the bounds on sl, su, τ , respectively, and v :=
(z, sl, su, τ), λ := (λ, λl, λu), and ν := (νl, νu, ντ ).

Different algorithms for solving HSQP (3) can
be viewed as differing in how complementarity con-
straints (5c) are handled. IPMs [15] satisfy bounds on
sl, su, τ and ν by enforcing that all iterates are positive
and solve for

RIPM
c (v, λ, ν) :=

 diag(sl)νl

diag(su)νu

τντ

 = 0. (6)

On the other hand, SNMs such as [9], choose to solve

RSNM
c (v, λ, ν; ρ, νprox) := Φ(sl, νl) + ρ · (νl − νl,prox)
Φ(su, νu) + ρ · (νu − νu,prox)
ϕ(τ, ντ ) + ρ · (ντ − ντ,prox)

 = 0,
(7)

where Φ and ϕ are defined in §I-A, ρ > 0 is the so-called
proximal parameter and νprox := (νl,prox, νu,prox, ντ,prox)
is the proximal point for the bound multipliers. In
contrast to [9], we do not add a proximal term to
the conditions in (5a)-(5b). Similar to typical proximal
point algorithms, we approximately solve a sequence of
proximal problems and update the proximal point νprox

until HSQP (3) is solved.
QOACH implements an IPM with a Mehrotra

predictor-corrector method [15] for computing the step
at each iteration. As for the SNM, QOACH computes
a Newton step of the system (5a), (5b), and (7), and
uses a linesearch filter mechanism [16] for globalization.
The key ingredient is the computation of the step by
solving the linear system derived from linearization of
the first-order stationary conditions: (5a)-(5b),(6) for
IPM; and (5a)-(5b),(7) for SNM. The linear system has
identical structure in both algorithms as described next.

3166



A. Step Computation
IPM and SNM at an iterate (v̂, λ̂, ν̂) solve

Q∆z + A⊤∆λ + q∆τ + ∆λl + ∆λu = −Rd,z, (8a)
A∆z − b∆τ = −Rp,e, (8b)

q⊤∆z − b⊤∆λ − z⊤∆λl − z⊤∆λu (8c)
+θ∆τ − ∆ντ = −Rd,τ , (8d)

wτ ∆τ + wν∆ντ = −Rc,τ , (8e)
∆z − ∆sl − z∆τ = −Rp,l, (8f)
W l∆sl + W l

ν∆νl = −Rc,l, (8g)
−∆λl − ∆νl = −Rd,l, (8h)

∆z + ∆su − z∆τ = −Rp,u, (8i)
W u∆sl + W u

ν ∆νl = −Rc,u, (8j)
∆λu − ∆νu = −Rd,u, (8k)

where (wτ , wν) = ∂(τ,ντ )φ(τ̂ , ν̂τ ), and W l, W l
ν , W u, W u

ν

are diagonal matrices defined as(
[W l]ii, [W l

ν ]ii
)

= ∂([sl]i,[νl]i)φ([ŝl]i, [ν̂l]i),(
[W u]ii, [W u

ν ]ii
)

= ∂([su]i,[νu]i)φ([ŝu]i, [ν̂u]i),

where the function φ(a, a′) = aa′ for IPM, and φ(a, a′) =
ϕ(a, a′) + ρa′ for SNM. Note that the right hand side
in (8) is chosen as for a Newton step for sake of exposi-
tion. We prove the property that enables the block elim-
ination approach in [11]. The block elimination strategy
can be applied to any choice of the right hand side.

Lemma 2. Consider a generic iterate (v̂, λ̂, ν̂), and let
us assume in the case of IPM that ŝl, ŝu, τ̂ , ν̂ > 0. Then,
wτ , wν > 0 and W l, W l

ν , W u, W u
ν are positive diagonal

matrices.

Proof. IPM enforces ŝl, ŝu, τ̂ , ν̂ > 0 and the claim holds.
For SNM, the partial ∂(a,a′)φ(a, a′) is given by: (1 −
a/

√
a2 + (a′)2, 1 + ρ − a′/

√
a2 + (a′)2) if (a, a′) ̸= 0 and(

1 − 1/
√

2, 1 + ρ − 1/
√

2
)

otherwise. Since ρ > 0, the
claim holds.

We outline briefly the block elimination strategy
in [11]. We begin by eliminating ∆λl, ∆u in terms of
∆νl, ∆νu using (8h), (8k). Lemma 2 establishes in-
vertibility of W l

ν , W u
ν and thus enables elimination of

∆νl, ∆νu in terms of ∆sl, ∆su using (8g), (8j). Fur-
ther, ∆sl, ∆su can be eliminated in terms of ∆z, ∆τ
using (8f), (8i). Finally, again due to Lemma 2, we can
eliminate ∆ντ using (8e). The block eliminations reduce
the linear system (8) toQ + Σ A⊤ q

A 0 −b
q⊤ −b⊤ θ + σ

 ∆z
∆λ
∆τ

 =

 R̃d,z

−Rp,e

R̃d,τ

 , (9)

where Σ is a diagonal matrix with positive entries on the
diagonal, σ > 0, and R̃d,z, Rp,e, R̃d,τ are appropriately
defined using the elimination strategy. The system (9) is

solved by eliminating (∆z, ∆λ) in terms of ∆τ using the
first two block equations as[

Q + Σ A⊤

A 0

] [
∆z
∆λ

]
=

[
R̃d,z

−Rp,e

]
−

[
q

−b

]
∆τ. (10)

The matrix on the left-hand side is factorized and used to
backsolve for two vectors on the right-hand side in (10).
The solution of backsolves can then be substituted in the
third block equation in (9) to obtain a scalar equation in
∆τ alone. Starting with the determination of ∆τ we can
proceed to recover (∆z, ∆λ) and the rest of the quantities
in (8). QOACH performs a LDLT factorization of the
matrix in (10) using Intel MKL Pardiso [17]. We show
in §V how the structure of the MPC constraints (1b)-
(1e) defining the constraint matrix A can be leveraged
to reduce the cost for performing the factorization.

B. Initialization
We conclude this section with a discussion on the

computation of an initial iterate for the IPM and SNM
algorithms. We can leverage the solution of (4) to com-
pute an initial iterate. For IPM, certain quantities of
the initial iterate are required to satisfy strict positivity.
Accordingly, we set the initial iterate as

τ0 = θ +
√

θ2 + 4(2θ⋆ + θ)µ0

2(2θ⋆ + θ) , ντ,0 = µ0

τ0 , (11a)

z0 = τ0zunc, λ0 = τ0λunc, λl,0 = 0, λu,0 = 0, (11b)

sl,0 = max(1.0, z0 − τ0z), [νl,0]i = µ0

[sl,0]i
, (11c)

su,0 = max(1.0, τ0z − z0), [νu,0]i = µ0

[su,0]i
, (11d)

where µ0 is an initial choice of the barrier parameter.
Note that τ0 > 0 if θ is chosen to satisfy the first
assumption in Theorem 1. For the SNM, there is no
requirement for any of the iterates to be positive and
hence, the slacks and bound multipliers are initialized as
follows sl,0 = z0 − τ0z, su,0 = τ0z − z0, νl,0 = 0, νu,0 = 0.

V. Structural Exploitation
The main effort in the step computation of the IPM

or SNM is the solution of a linear system of the form[
Q + Σ A⊤

A 0

] [
dz
dλ

]
=

[
r
f

]
, (12)

where (r, f) represent one of the vectors on the right hand
side of (10). In this section we introduce the notation
(dz, dλ) in order to prevent confusion with the Newton
step (∆z, ∆λ). By exploiting the structure of A inherited
from the system’s dynamics (1b)-(1e), we can show that
(dz, dλ) in (12) is the primal-dual solution of the equality
constrained QP

min
dxk,duk,dyk

N−1∑
k=0

(dxk, duk, dyk)⊤QΣ
k (dxk, duk, dyk)

+ (dxN , dyN )⊤QΣ
N (dxN , dyN )

3167



−
N−1∑
k=0

r⊤
k (dxk, duk, dyk) − r⊤

N (dxN , dyN )

(13a)
s.t. dx0 = fd

−1 (13b)
− dxk+1 + Akdxk + Bkduk + Ckdyk = fd

k

(13c)
Dkdxk + Ekduk + Fkdyk = f c

k (13d)
DN xN + FN yN = f c

N (13e)

where rk represents the components in r corresponding
to (dxk, duk, dyk) for stage k, and rN corresponds to
(dxN , dyN ). In a similar manner, fd

−1, fd
k , f c

k , f c
N are the

components in f corresponding to the right hand sides
for the equality constraints in (1b)-(1e), respectively.
Further, QΣ

k = Qk + Σk.
Let −dλd

−1, dλd
k, dλc

k, dλc
N denote the multipliers

for the constraints in (13b)-(13e), respectively. Then
dλ in (12) corresponds to the optimal values of the
multipliers for the equality constraints in (13). Using the
introduced notation and the structure in (13) we can
recast the step computation in (12) as

−

I
0
0

 dλd
k−1 + QΣ

k

dxk

duk

dyk

 +

D⊤
k

E⊤
k

F ⊤
k

 dλc
k +

A⊤
k

B⊤
k

C⊤
k

 dλd
k = rk

(14a)

−
[
I
0

]
dλd

N−1 + QΣ
N

[
xN

yN

]
+

[
D⊤

N

F ⊤
N

]
dλc

N = rN (14b)

(13b) − (13e) (14c)

for k = 0, . . . , N −1 (note that we chose the sign of dλd
−1

such that (14a) extends to k = 0). Here, I denotes the
identity matrix. Consider (14b) and (13e) in block matrix
form

−I QΣ,x
N D⊤

N

QΣ,y
N F ⊤

N

DN FN

ΨN ΦN




dλd
N−1

dxN

dyN

dλc
N

 =

rx
N

ry
N

f c
N

. (15)

From Assumption (M2) we have that F −1
N exists. It can

be easily verified that Φ−1
N is given by

Φ−1
N =

[
0 F −1

N

F −⊤
N −F −⊤

N QΣ,y
N F −1

N

]
. (16)

Using (16), we can eliminate (dyN , dλc
N ) from (15) in

terms of dxN as[
dyN

dλc
N

]
=

[
F −1

N (f c
N − DN dxN )

F −⊤
N ry

N + F −⊤
N QΣ,y

N F −1
N (−f c

N + DN dxN )

]
.

(17)
Plugging (17) into the first block equation in (15) yields
the Riccati form

−dλd
N−1 + ΠN dxN = πN , (18)

where

ΠN = QΣ,x
N − Ψ⊤

N Φ−1
N ΨN , (19a)

πN = rx
N − Ψ⊤

N Φ−1
N

[
ry

N

f c
N

]
. (19b)

Further, simplifying the right hand side of (19a) yields
that ΠN = QΣ,x

N +D⊤
N F −⊤

N QΣ,y
N F −1

N DN which shows that
ΠN ⪰ 0. Following [2], we show that the form

−dλd
k−1 + Πkdxk = πk (20)

holds for 0 ≤ k ≤ N and Πk ⪰ 0 by induction
starting from k = N which we have shown to be true.
Suppose, (20) hold for k + 1. Consider the constraints
in (14a) in conjunction with (20) for k + 1

−I QΣ,x
k A⊤

k D⊤
k

QΣ,u
k B⊤

k E⊤
k

Ak Bk −I Ck

−I Πk+1
C⊤

k QΣ,y
k F ⊤

k

Dk Ek Fk

Ψk Φk




dλd
k−1

dxk

duk

dλd
k

dxk+1
dyk

dλc
k


=


rx

k

ru
k

fd
k

πk+1
ry

k

f c
k

 . (21)

We eliminate (dyk, dλc
k) from (21) using the last two

block rows[
dyk

dλc
k

]
=

[
F −1

k

−F −⊤
k QΣ,y

k F −1
k

]
(−Dkdxk − Ekduk + f c

k)

+
[

0
F −⊤

k

]
(−CT

k dλd
k + ry

k)

to obtain
−I Q̃x

k Q̃xu
k Ã⊤

k

Q̃ux
k Q̃u

k B̃⊤
k

Ãk B̃k −I
−I Πk+1




−dλd
k−1

dxk

duk

dλd
k

dxk+1

 =


r̃x

k

r̃u
k

f̃d
k

πk+1


(22)

where [
Q̃x

k Q̃xu
k

Q̃ux
k Q̃u

k

]
=

[
QΣ,x

k

QΣu

k

]
+

[
D⊤

k

E⊤
k

]
(F −⊤

k QΣ,y
k F −1

k )
[
Dk Ek

] (23)

Ãk = Ak − CkF −1
k Dk

B̃k = Bk − CkF −1
k Ekr̃x

k

r̃u
k

f̃d
k

 =

rx
k

ru
k

fd
k

 −

D⊤
k (F −⊤

k ry
k − F −⊤

k QΣ,y
k F −1

k f c
k)

E⊤
k (F −⊤

k ry
k − F −⊤

k QΣ,y
k F −1

k f c
k)

CkF −1
k f c

k


3168



Using the last two block rows in (22) we can eliminate
(dλd

k, dxk+1) in terms of (dxk, duk) to obtain[
dλd

k

dxk+1

]
=

[
Πk+1
I

]
(Ãkdxk + B̃kduk − f̃d

k ) −
[
πk+1

0

]
.

(24)
Substituting for (dλd

k, dxk+1) in the first two block rows
of (22) and simplify to obtain[

−I Q̂x
k Q̂xu

k

Q̂ux
k Q̂u

k

] dλd
k−1

dxk

duk

 =
[
r̂x

k

r̂u
k

]
(25)

where[
Q̂x

k Q̂xu
k

Q̂ux
k Q̂u

k

]
=

[
Q̃x

k Q̃xu
k

Q̃ux
k Q̃u

k

]
+

[
Ã⊤

k

B̃⊤
k

]
Πk+1

[
Ã⊤

k

B̃⊤
k

]⊤

(26a)
r̂x

k = r̃x
k + Ã⊤

k (Πk+1f̃d
k + πk+1) (26b)

r̂u
k = r̃u

k + B̃⊤
k (Πk+1f̃d

k + πk+1) (26c)

Finally, from (25) we obtain from eliminating duk using
the second block equation that

Πk = Q̂x
k − Q̂xu

k (Q̂u
k)−1Q̂ux

k (27a)
πk = r̂x

k − Q̂xu
k (Q̂u

k)−1r̂u
k (27b)

The inverse of Q̂u
k exists since the matrices in (26a)

and (23) are formed by the addition of low rank matrices
to the original Hessian matrices QΣ,x

k and QΣ,u
k . Further,

Πk ⪰ 0 since this is obtained as Schur-complement of the
matrix in (26a). Finally, the block elimination procedure
serves as proof that Φk is invertible as claimed before.
The main computational effort is the inversion of a dense
matrix Q̂u

k of size nu. The steps involved in solving the
Riccati recursion are summarized in Algorithm 1.

Algorithm 1: Riccati recursion for solving (12)
Data: (r, f)
Result: (dz, dλ)

1 Compute Πk, πk for k = N, . . . , 0 via (19), (27);
2 Set dx0 = fd

−1;
3 Set dλd

−1 = Π0dx0 − π0;
4 for k = 0, . . . , N − 1 do
5 Set duk = (Q̂u

k)−1(r̂u
k − Q̂uxdxk);

6 Set dxk+1 = Ãkdxk + B̃kduk − f̃d
k ;

7 Set dλd
k = Πk+1dxk+1 − πk+1;

8 Set dyk = F −1
k (f c

k − Dkdxk − Ekduk);
9 Set dλc

k = F −⊤
k (rc

k − C⊤
k dλd

k − QΣ,y
k dyk);

10 Compute (dyN , dλc
N ) using (17).

VI. Numerical Results
All results in this section were obtained using a 12th

Generation Intel Core i9 processor with 3.2GHz and

125GiB RAM under Linux operating system Ubuntu
20.04.

We first compare the introduced methods to state-of-
the-art solvers: the open-source SNM solver FBstab [9],
which utilizes the Riccati recursion to solve the MPC
problem (1); and the commercial solver Gurobi [18].

A. Servo Motor Control
Consider the continuous time servo motor model [19]

ẋ =


0 1 0 0

−128 −2.5 6.4 0
0 0 0 1

128 0 −6.4 −10.2

x +


0
0
0
1

 u

y =
[

1 0 0 0
1282 0 −64 0

]
x,

with output and input constraints |y2| ≤ 78.5Nm and
|u| ≤ 220V, respectively. We conduct a similar experi-
ment as was done in [9]: we solve discretized reference
tracking OCPs, where the time horizon N is varied from
1 to 1000.

The results are depicted in Figure 1 and Table I.
We find that the IPM achieves comparable results to
the state-of-the-art solver FBstab and slightly slower
results compared to Gurobi (at most a factor 3-4). For
N ∈ {3, 4}, the initial iterate of the SNM is found to be
optimal. The initial iterate (see §IV-B) is chosen as the
optimal solution of the equality constrained QP neglect-
ing the bounds, which resembles the Linear Quadratic
Regulator (LQR), and is optimal if it is feasible for the
bounds. For larger N , the SNM is slower by about a
factor of 3 compared to the IPM for large horizons,
which is due to the increased number of iterations taken
(see Table I). Note that FBstab requires about twice as
many Newton iterations compared to the IPM, yet it
has comparable solution times. This is due to the two
backsolves (10) required for step computations in HSQP,
which makes an HSQP iterate about twice as expensive
as a QP iterate. We further find that for this example the
implemented Riccati recursion with dense linear algebra
does not lead to significant speed-ups over solving the
MPC problem as a sparse QP.

B. From OCP to MPC
The above results discuss the performance for solving

a single OCP rather than a series of such as is done in
MPC. Oftentimes the OCP does not change much from
one time instance to the next, in which case we expect the
utilization of the current solution to reduce the computa-
tional effort required to obtain its successor. For any se-
quence of optimization problems this is known as warm-
starting. Unfortunately, some algorithms are difficult to
warm-start, e.g., the discussed IPM algorithm, whereas
other methods are able to recycle the previous solution
easily, e.g., the discussed SNM algorithm. Nonetheless,
we have seen above that IPM outperforms SNM in the

3169



Fig. 1: Comparing computational timings of the intro-
duced method to state-of-the-art solvers.

TABLE I: Comparing the number of iterates required for
each solver dependent on the number of stages N . The
respective computation times are depicted in Figure 1.
The number of iterates for the respective QOACH Riccati
and sparse implementations are identical.

IPM SNM

N QOACH Gurobi QOACH FBstab

3 5 10 0 2
4 6 11 0 2
10 12 12 30 23
100 12 12 34 24

OCP setting, since it often requires significantly fewer
Newton iterations. Furthermore, the IPM method tends
to be more robust towards poor conditioning, whereas
the iterations within an SNM framework may stagnate.
Ideally, for an MPC application we desire a method that
is capable of both: robust convergence properties while
exploiting the knowledge of the current solution in the
computation of the next.

In what follows we analyze the effect of warm-starting
versus cold-starting for both methods. Cold-starting
QOACH does not leverage the previous iterate but rather
utilizes the initialization as discussed in §IV-B. As noted
in §VI-A, the initial iterate of the SNM can readily pro-
vide the optimal solution. Clearly, the situation is quite
different for IPM since we require an initialization with
positive slacks. As opposed to the LQR-like initialization,
the warm-started method uses a shift initialization as
is commonly done in MPC [20]. For IPM we initialize
via a convex combination between the shifted solution
and the initialization used for cold starts, which prevents
initialization with vanishing slacks.

Figure 2 depicts the computational times required for
solving the closed-loop servo motor as introduced in
§VI-A using the cold-start. The respective warm-started
solutions are depicted in Figure 3. In both figures, the left

plot shows the original reference tracking problem and
we find that warm-starting makes little to no difference
for IPM. The right figures show results for the same
reference tracking problem but with included terminal
inequality constraints −ε ≤ y(T ) ≤ ε (see Figure 4).
We find that warm-starting significantly improves the
performance of SNM and slightly improves the perfor-
mance of IPM. Note that the difference between the cold-
started and the warm-started SNM is almost an order of
magnitude.

The observations above indicate that it would be
beneficial to use a cold-started IPM at the first time step,
and otherwise rely on a warm-started SNM method. The
flexibility of QOACH enables us to switch between these
algorithms easily. The results in Figure 3 show the IPM-
SNM method inherits the computational benefits of both
methods.

VII. Conclusion and Future Work
In this paper we introduced the structural exploitation

of MPC problems when such are solved via the homo-
geneous QP framework [1]. We showed that standard
assumptions in MPC satisfy the assumptions required
for the homogenization. We then specified the IPM and
SNM step computations within HSQP tailored to MPC
via a Riccati recursion. In a numerical experiment we
report comparable results to state-of-the-art solvers, and
discuss the benefit of switching between IPM and SNM
during the MPC feedback loop.

Future work aims at extending the HSQP framework
further, both by integration of other solution methods
and forms of structural exploitation. For instance, one
line of work could consist of integrating an active set
strategy, or the structural exploitation in MPC could be
extended to a stochastic MPC setting.

Fig. 2: Plotting the wall time required to obtain the cold-
started MPC solution at each time step. The right results
includes the terminal constraint −ε ≤ y(T ) ≤ ε, which
is omitted on the left.

References
[1] A. U. Raghunathan, “Homogeneous formulation of convex

quadratic programs for infeasibility detection,” in 2021 60th
IEEE Conference on Decision and Control (CDC), pp. 968–
973, 2021.

[2] C. V. Rao, S. J. Wright, and J. B. Rawlings, “Application of
interior-point methods to model predictive control,” Journal
of optimization theory and applications, vol. 99, pp. 723–757,
1998.

3170



Fig. 3: Plotting the wall time required to obtain the
warm-started MPC solution at each time step. The right
results includes the terminal constraint −ε ≤ y(T ) ≤ ε,
which is omitted on the left. The mixed method utilizes
cold-started IPM in the first time step and warm-started
SNM for the remaining time steps.

Fig. 4: Open loop servo motor OCP trajectories with
(green) and without (blue) terminal constraint y(T ) ≈ 0.

[3] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An socp solver
for embedded systems,” in 2013 European Control Conference
(ECC), pp. 3071–3076, 2013.

[4] R. Bartlett and L. Biegler, “QPSchur: A dual, active-set,
schur-complement method for large-scale and structured con-
vex quadratic programming,” Optimization and Engineering,
vol. 7, p. 5–32, 2006.

[5] H. Ferreau, H. Bock, and M. Diehl, “An online active set
strategy to overcome the limitations of explicit MPC,” Inter-
national Journal of Robust and Nonlinear Control, vol. 18,
no. 8, p. 816–830, 2008.

[6] P. Patrinos, L. Stella, and A. Bemporad, “Douglas-rachford
splitting: Complexity estimates and accelerated variants,” in
53rd IEEE Conference on Decision and Control, pp. 4234–
4239, 2014.

[7] P. Giselsson and S. Boyd, “Diagonal scaling in douglas-
rachford splitting and admm,” in 53rd IEEE Conference on
Decision and Control, pp. 5033–5039, 2014.

[8] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An operator splitting solver for quadratic programs,”
Mathematical Programming Computation, vol. 12, no. 4,
pp. 637–672, 2020.

[9] D. Liao-McPherson and I. Kolmanovsky, “FBstab: A proxi-
mally stabilized semismooth algorithm for convex quadratic
programming,” Automatica, vol. 113, p. 108801, 2020.

[10] T. Glad and H. Jonson, “A method for state and control con-

strained linear quadratic control problems,” IFAC Proceedings
Volumes, vol. 17, no. 2, pp. 1583–1587, 1984.

[11] A. U. Raghunathan, D. Jha, and D. Romeres, “Homoge-
neous infeasible interior point method for convex quadratic
programs,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), pp. 7571–7578, IEEE, 2022.

[12] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
“Julia: A fresh approach to numerical computing,” SIAM
Review, vol. 59, no. 1, pp. 65–98, 2017.

[13] A. U. Raghunathan and J. Hall, “Homogeneous formulation
for a class of convex quadratic programs.” under preparation,
2023.

[14] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. Society for Industrial and Applied Mathematics,
1995.

[15] S. Wright, Primal-Dual Interior-Point Methods. SIAM, 1997.
[16] N. I. M. Gould, S. Leyffer, and P. L. Toint, “A multidimen-

sional filter algorithm for nonlinear equations and nonlinear
least-squares,” SIAM Journal on Optimization, vol. 15, no. 1,
pp. 17–38, 2004.

[17] O. Schenk and K. Gartner, “Solving unsymmetric sparse
systems of linear equations with PARDISO,” J. of Future
Generation Computer Systems, vol. 20, no. 3, pp. 475–487,
2004.

[18] Gurobi Optimization, LLC, “Gurobi Optimizer Reference
Manual,” 2023.

[19] A. Bemporad and E. Mosca, “Fulfilling hard constraints in
uncertain linear systems by reference managing,” Automatica,
vol. 34, no. 4, pp. 451–461, 1998.

[20] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient nu-
merical methods for nonlinear MPC and moving horizon es-
timation,” Nonlinear model predictive control: towards new
challenging applications, pp. 391–417, 2009.

3171


