
Control Barrier Functions for Stochastic Systems
under Signal Temporal Logic Tasks

Arash Bahari Kordabad, Maria Charitidou, Dimos V. Dimarogonas, and Sadegh Soudjani

Abstract— Signal Temporal Logic (STL) offers an expressive
formalism for describing complex high-level tasks in dynam-
ical systems. This paper introduces a time-varying Control
Barrier Function (CBF) for control-affine nonlinear stochastic
systems to fulfill STL specifications. The CBFs are used in
a robust optimization problem to provide a lower bound on
the satisfaction probability of a given STL specification with a
predetermined robustness level. We present an online control
synthesis approach to minimize a performance function while
having the required satisfaction guarantee. We finally provide a
tractable solution to the robust optimization for STL with linear
and quadratic predicate functions. To illustrate the effectiveness
of the method, we apply it to a simple linear case study and
to the path-planning problem for a nonlinear wheeled mobile
robot.

I. INTRODUCTION

Control synthesis for dynamical systems against complex
tasks has recently garnered significant attention [1], [2], [3].
Temporal Logic has been considered a popular method for
encoding complex specifications involving spatial and/or time
requirements for dynamical systems [4]. Signal Temporal
Logic (STL) is a formal language that allows us to encode
time-constrained tasks by offering a closer connection to the
physical system in the sense of having robust semantics as
a function of system trajectories [5], [6]. However, control
synthesis involving temporal logic typically leads to mixed-
integer programming problems, which, regrettably, can entail
computationally expensive numerical solutions [7].

Barrier functions offer Lyapunov-like guarantees on system
behavior for safety verification [8]. In particular, Control
Barrier Functions (CBFs) have proven valuable in syn-
thesizing control strategies for safety-critical systems [9],
[10]. In stochastic systems, CBFs are designed using the
concept of supermartingales [11]. This concept provides a
probabilistic guarantee of maintaining the barrier function
within a desired sub-level for a finite-time horizon, given that
the CBF has a gradual increment or decrement in expectation
in each time step [12]. In the context of control under STL
specifications, CBFs have been widely considered, as they
offer a computationally efficient framework for encoding
STL tasks while avoiding the complexity associated with
mixed-integer optimization [13].
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Contributions. This paper considers discrete-time control-
affine nonlinear stochastic systems and aims to synthesize
a controller for the system that satisfies a given STL
specification with the desired robustness and a desired satis-
faction probability. Motivated by [14], a time-varying CBF is
designed that fulfills a temporal behavior resulting from the
STL specification. We enforce the CBF to be supermartingales
for the dynamical system in order to establish the probabilistic
guarantee of STL satisfaction using a robust optimization
problem. Enforcing the CBFs to be supermartingale leads us
to an inequality that involves the predicate functions of the
STL specification. Once the corresponding CBF parameters
are obtained, the supermartingale inequality can be treated as
a constraint in a one-step optimization along with minimizing
a performance function, such as the control effort. For linear
and quadratic predicates, we study this robust optimization
and provide tractable formulations. The contributions of this
work are thus summarized as follows. 1) Introducing a novel
stochastic CBF based on the concept of supermartingales
that guarantee STL specifications with a desired probability
threshold. 2) Providing a robust optimization to determine the
parameters of the CBF. 3) Presenting tractable formulations
to solve the robust optimization in the case of linear and
quadratic predicate functions.

Related work. A receding horizon approach was introduced
in [7] to solve the control synthesis problem for STL
specifications by decomposing the STL specification into
a series of formulas over each time horizon and solving
mixed-integer programming for each subformula. A robust
Model Predictive Control (MPC) problem was utilized in [15]
to address STL tasks for uncertain dynamics using mixed-
integer linear programming techniques. Shrinking horizon
MPC with STL constraints and stochastic dynamics was
addressed in [16] utilizing the structure of the formula and
appropriate concentration inequalities.

In the context of continuous-time deterministic systems
with STL specifications, a novel time-varying control barrier
function is proposed in [13]. An MPC based on time-varying
CBFs with a recursive feasibility guarantee was proposed
in [14] and was extended to multi-agent systems in [17].
Mixed-integer quadratic programming was proposed in [18]
to satisfy STL formulas for continuous-time linear systems.

In [19], the authors proposed synthesizing control policies
for discrete-time stochastic systems under linear temporal
logic specifications using CBFs. The authors in [20] developed
a framework to interpret STL formulas over discrete-time
stochastic processes in terms of the induced risk using STL
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robustness risk. In [21], partially unknown dynamics with
STL specifications were considered, and the STL satisfaction
was studied using trajectories of the system and checking
whether the probability of satisfying the specification is at
least a given threshold. Verification and synthesis problems for
safety specifications have been studied in [22] using barrier
certificate as a robust convex program.

The closest work to our approach is the time-varying
CBF presented in [13], which is then utilized in an MPC
setting [14] and in a multi-agent system context [17]. These
works focus on continuous-time deterministic systems and
provide a CBF based on a log-sum-exp function of the
predicate functions that results in quadratic optimizations.
In contrast, our approach addresses discrete-time stochastic
systems and develops CBFs that depend linearly on the
predicate functions. We then employ robust programming
techniques for computing a lower bound on that satisfaction
probability of the specification.

Outline. The remainder of this paper is organized as follows.
Section II presents a preliminary overview of the problem
setting and formulates the problem. The time-varying CBFs
for the STL specifications are designed in Section III. Sec-
tion IV introduces a robust optimization problem to maximize
the probability of STL satisfaction while enforcing the CBFs
to be supermartingale. Moreover, we synthesize the control
input while optimizing a performance criterion. We discuss
the tractability of the robust optimization problem for linear
and control-affine nonlinear systems. Section V provides case
studies to illustrate the efficiency of the proposed framework,
and Section VI gives a conclusion.

Notation. We use normal font for scalars and bold font for
vectors. We denote the interior points of a closed set X by
Int(X). We denote the set of real numbers and non-negative
integers by R and N, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section describes the model of the dynamical system
used in the paper, STL specifications, and the problem
statement.

A. Dynamics

We consider a nonlinear stochastic discrete-time system
with a compact state space X ⊂ Rn, input space U ⊆ Rm,
and disturbance set W ⊆ Rn. The dynamics of the system
are as

xk+1 = f(xk) + g(xk)uk +wk, (1)

where k is the time index, xk ∈ X is the state, uk ∈ U is
the control input, wk ∈ W is the stochastic disturbance, and
f : X → Rn and g : X → Rn×m are the functions describing
the system dynamics. Note that due to the potential unbounded
stochastic disturbance wk, the states of the process xk may
depart from the state space X, which leads us to define the
stopped process.

Definition 1. Suppose that κ > 0 is the first time of exit of
the states from the open set Int(X). The stopped process x̃

is then defined, as follows:

x̃k =

{
xk for k < κ

xκ−1 for k ≥ κ .

For the sake of notational simplicity, in this paper, we
consider the stochastic process in (1) as a stopped process,
and we denote it simply by x instead of x̃. Without loss
of generality, we assume E[w] = 0 and E[ww⊤] = Σ.
Moreover, we make the following assumption on the function
g.

Assumption 1. Function g is such that g(x)g⊤(x) is positive
definite for all x ∈ X.

Assumption 1 enables us to make the system (1) feedback
equivalent to xk+1 = uk + wk which will be used in
Section IV-C to solve the proposed robust optimization. A
similar assumption is also adopted in prior works such as [13].

B. Stochastic Control Barrier Function (CBF)

We now review the concepts from probability theory and
martingales that will allow us to construct a notion of safety
with probabilistic guarantees. We will use this framework to
generate time-varying CBFs for STL specifications. We start
by recalling the definition of nonnegative supermartingales
provided, e.g., in [23].

Definition 2. Let xk be the trajectory of the system in (1),
B : X × N → R, and suppose that E [|B(xk, k)|] < ∞ for
all k ∈ N. The process Bk := B(xk, k) is a supermartingale
for the system (1) if:

E [Bk+1|x0:k] ≤ Bk, almost surely for all k ∈ N,

where x0:k indicates {x0, . . . ,xk}. If, additionally, Bk ≥ 0
for all k ∈ N, Bk is a nonnegative supermartingale.

Roughly speaking, function Bk is non-increasing in ex-
pectation along the system trajectories for supermartingale
functions. The next Lemma is an important consequence of
nonnegative supermartingales.

Lemma 1. Let Bk be a nonnegative supermartingale as
given in definition 2, then for all λ ∈ R>0, the following
holds:

P
{
sup
k∈N

Bk > λ

}
≤ B0

λ
.

Proof. The proof is based on Villes’s inequality and can be
found, e.g., in [24]. ■

The above inequality can also be expressed equivalently
as follows

P
{
sup
k∈N

Bk ≤ λ

}
≥ 1− B0

λ
,

which we are more interested in. Note that the term B0/λ rep-
resents the probability of escaping the set S :=

⋂N
k=0{xk ∈

X |B(xk, k) ≤ λ} before a given time instant N ∈ N.
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C. Signal Temporal Logic (STL)

Signal Temporal Logic (STL) is a predicate logic composed
of atomic predicates µ that may be false ⊥ or true ⊤ [5], [6].
The assessment of the validity of each atomic predicate µ
relies on the sign of a continuously differentiable predicate
function h : Rn → R as follows:

µ =

{
⊤, if h(x) ≥ 0
⊥, if h(x) < 0 .

The syntax of the STL formulae is defined recursively
according to the following grammar:

ϕ ::= ⊤ |µ | ¬ϕ |ϕ ∧ ψ |ϕU[a,b] ψ ,

where ϕ, ψ are STL formulas, notations ¬ and ∧ denote
negation and conjunction of formulas and U[a,b] denotes the
until operator.

The eventually and the always operators are defined as
F[a,b]ϕ := ⊤U[a,b] ϕ and G[a,b]ϕ := ¬F[a,b]¬ϕ, respectively.
Note that since we are focusing on discrete-time systems in
this paper, the intervals that appear as subscripts of formulas
comprise integers between, and including, two integers, a, b ∈
N where 0 ≤ a ≤ b < +∞. The satisfaction relation (ξ, k) |=
ϕ denotes if the sequence ξ satisfies ϕ at time k, where
(ξ, k) := {xk,xk+1, . . .} is a trajectory of a system starting
at time k and e.g., obtained from system (1) for a given input
sequence {uk,uk−1, . . .}.

Semantics: The satisfaction of an STL formula ϕ by a
trajectory ξ at time k is defined recursively as follows:

(ξ, k) |= µ ⇔ h(xk) ≥ 0

(ξ, k) |= ¬ϕ ⇔ ¬((ξ, k) |= ϕ)

(ξ, k) |= ϕ ∧ ψ ⇔ (ξ, k) |= ϕ ∧ (ξ, k) |= ψ

(ξ, k) |= ϕU[a,b] ψ ⇔ ∃k′ ∈ {k + a, . . . , k + b}, (ξ, k′) |= ψ

∧ ∀k′′ ∈ {k, . . . , k′}, (ξ, k′′) |= ϕ .

Robustness measure: Quantitative or robust semantics for
an STL formula ϕ are defined by providing a real-valued
function ρϕ of the signal ξ at time k such that ρϕ(ξ, k) > 0
implies that (ξ, k) |= ϕ. Such functions are defined recursively
as follows:

ρ⊤(ξ, k) = +∞
ρµ(ξ, k) = h(xk)

ρ¬ϕ(ξ, k) = −ρϕ(ξ, k)
ρϕ∧ψ(ξ, k) = min(ρϕ(ξ, k), ρψ(ξ, k))

ρϕU[a,b] ψ(ξ, k) = max
k′∈{k+a,...,k+b}

(
min (ρψ(ξ, k′),

min
k′′∈{k,...,k′}

ρϕ(ξ, k′′))
)
.

The robustness function ρϕ(ξ, k) can be interpreted as how
much ξ satisfies ϕ.

D. Problem formulation
We consider in this paper a fragment of STL as:

ψ = ⊤ |µ | ¬µ, (2a)
ψ̄ = G[a,b]ψ | F[a,b]ψ |ψ1 U[a,b] ψ2 , (2b)

ϕ =

nϕ∧
j=1

ψ̄j , (2c)

where ψ1, ψ2 are STL formulas of the form (2a), ψ̄js for
j = 1, . . . , nϕ are STL formulas of the form (2b) for some
nϕ. Any ϕ in (2c) can be fulfilled by the following formula:

ϕ =

M∧
i=1

ϕi, (3)

where M = nϕ+nu and nu is the number of until operators.
The sub-formula ϕi is either an eventually formula or an
always formula with the corresponding time interval [ai, bi]
and predicate function hi. Note that this is true since the
satisfaction of any until formula ψ1 U[a,b] ψ2 in (2c) can
be ensured by the satisfaction of a formula written in
conjunction of an always and an eventually formula, i.e.,
G[a,b]ψ1 ∧ F[b,b]ψ2.

Since the system discussed in this paper is stochastic and
may involve unbounded disturbances, a challenge in dealing
with such systems is to satisfy the constraints probabilistically.
Therefore, the objective of this paper is to synthesize a control
strategy that fulfills the provided STL formulas with a desired
confidence level.

Problem 1. For a given robustness level r > 0 and
probability threshold ϵ, design state feedback control inputs
uk : X → U, k ∈ N, for the system in (1), such that the
probability of the system’s trajectories satisfying the STL task
in (3) with robustness level r is at least (1− ϵ):

P{ρϕ(ξ, 0) ≥ r} ≥ 1− ϵ.

In the next section, we detail the design of CBFs for
stochastic systems to satisfy STL tasks in probability and
solve problem 1.

III. CBF DESIGN FOR STL SPECIFICATIONS

In the following, we propose a novel time-varying CBF as
a nonnegative supermartingale that fulfills the STL specifi-
cations, defined in Section II-D, with a desired confidence
level. We first define a time-varying CBF, denoted by Bik,
corresponding to the STL sub-formula ϕi, defined in (3), as
follows:

Bik(xk, k) := himax − γi0 − hi(xk) + γik , (4)

for all 1 ≤ i ≤ M and k ∈ N, where γik is a time-varying
parameter describing a desired temporal behavior for the
system and himax := supx∈X hi(x) < ∞. Note that we
assume that himax (or an upper bound) is provided as in [13],
[14]. Inspired by [17], we design the time-varying parameters
γik as

γik =

{
γi
∞−γi

0

k⋆,i k + γi0 if k < k⋆,i

γi∞ if k ≥ k⋆,i ,
(5)
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where γi0, γi∞ and k⋆,i are the design parameters selected as

γi0 ∈ (−∞, hi(x0)) , (6a)

γi∞ ∈ (max(r, γi0), h
i
max) , (6b)

k⋆,i ∈
{
{ai, . . . , bi} if ϕi = F[ai,bi]ψ

{ai} if ϕi = G[ai,bi]ψ ,
(6c)

for a robustness parameter r > 0, satisfying

r ∈
{
(0, hi(x0)) if k⋆,i = 0
(0, himax) if k⋆,i > 0 .

Note that the justification for piece-wise linearly considering
the time-varying parameter γik can be found in [25]. From (5)
and (6b), it can be seen that for k ≥ k⋆,i, r − hi(x) ≤
γik − hi(x) since r ≤ γi∞. Subsequently

γik − hi(x) ≤ 0 ⇒ r − hi(x) ≤ 0 (7)

for all time k ≥ k⋆,i. Another consequence of (6a) is γi0 <
himax. From (6b), one can see γi0 ≤ γi∞, therefore, γik ≤ γik+1

from (5). Note that here, we only provide an upper bound
on γi0, and this parameter will be used as a decision variable
to maximize the satisfaction probability. We will detail on
this in the next section. For the always formula, k⋆,i is at the
beginning of the interval to guarantee the satisfaction of the
formula for the entire interval, and for the eventually formula,
this time can be any value in the given time interval. This
choice of k⋆,i, depending on the type of the STL formula
and its time interval, is made similarly to the choice of t∗i
in [13] to guarantee that the desired STL property is satisfied
at the desired time instance.

In the next section, we provide an optimization problem to
maximize the probability of STL satisfaction and synthesize
the control input.

IV. CONTROL SYNTHESIS

This section presents an optimization based on the CBFs,
designed in the previous section, to maximize the probability
of STL satisfaction and extract the control input. To this end,
we require the functions Bik to be nonnegative supermartingale
functions for all i ∈ {1, . . . ,M}, provided that certain
inequalities are satisfied in the predicate function for all
states. These conditions are addressed as constraints in a
robust optimization problem.

A. Maximizing the probability of satisfaction

We now consider a robust optimization problem that
maximizes the probability of STL satisfaction while making
the functions Bik nonnegative supermartingales for all i ∈
{1, . . . ,M}. Based on Biks, the maximum satisfaction proba-
bility can be obtained from the following robust optimization:

min
ϵ,γi

0

ϵ (8a)

s.t. ∀i ∈ {1, . . . ,M} :

himax − hi(x0)

himax − γi0
≤ ϵ, (8b)

γi0 ≤ hi(x0), (8c)
∀k ∈ N, ∀xk ∈ X, ∃uk ∈ U :

E [hi(xk+1)|xk] ≥ hi(xk) + δik, (8d)

where

δik = γik+1 − γik =

{
γi
∞−γi

0

k⋆,i if k < k⋆,i

0 if k ≥ k⋆,i ,
(9)

and ϵ is the STL violation probability. We denote the optimal
solution of (8) by ϵ⋆. In (8), the objective is to minimize the
probability of the violation, the constraint (8b) provides a
tight upper-bound on the probability of the violation of all sub-
formulas ϕi for all i ∈ {1, . . . ,M}, which is minimized in the
objective function and the constraint (8d) ensures that Biks are
supermartingale functions. Since δik in constraint (8d) depends
on time k and appears as a piecewise constant function in (9),
the condition “∀k ∈ N” can be omitted. Thus, (8d) can be
solved without time indices with condition: “∀x ∈ X, ∃u ∈
U”. Consequently, it is sufficient to solve (8d) only for the
constants δik =

γi
∞−γi

0

k⋆,i and δik = 0 which is also fulfilled
by solving only for δik =

γi
∞−γi

0

k⋆,i because γi
∞−γi

0

k⋆,i ≥ 0. It is
worth noting that, for the sake of simplicity, we treat γi0 as
a decision variable to shape Bik, whereas γi∞ and k⋆,i are
considered known parameters and are selected from (6b)-(6c).
These statements will be detailed in the following theorem.

Theorem 1. The following statements hold for the solution
of (8):

1) The functions Bik are non-negative supermartingale for
all i ∈ {1, . . . ,M}.

2) For the given STL formula ϕ in (3):

P{ρϕ(ξ, 0) ≥ r} ≥ 1−Mϵ⋆ ,

where ϵ⋆ is an optimal solution of (8) and ξ is the
system trajectory when the control input uk obtained
from the constraint (8d) is applied to the system at the
state xk. Therefore, we obtain a solution for problem 1
with any ϵ ≥Mϵ∗.

Proof. First, we show that Bik is a nonnegative supermartin-
gale function. Considering that γi0 ≤ γi∞, then according
to (5), γi0 ≤ γik. It results in Bik ≥ 0 due to the fact
that himax ≥ hi(xk). Considering the Markovian property
of the system (1), E

[
Bik+1|x0:k

]
= E

[
Bik+1|xk

]
for all

i ∈ {1, . . . ,M} holds because xk+1 (and Bik+1) only
depends on the state, input and disturbance at time k. From
constraint (8d), we have:

E [hi(xk+1)|xk] ≥ hi(xk) + γik+1 − γik,

⇒E
[
Bik+1|xk

]
≤ Bik,
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for all xk ∈ X and i ∈ {1, . . . ,M}. Thus, the requirement
of inequality (8d) for the functions hi ensures that functions
Bik are supermartingales. Applying lemma 1 for Bik, ∀i ∈
{1, . . . ,M}, and using the first statement of the theorem 1,
λ = himax − γi0 > 0 for all i ∈ {1, . . . ,M}, yields:

P
{
sup
k∈N

Bik ≤ himax − γi0

}
≥ 1− himax − hi(x0)

himax − γi0

(8b)

≥ 1−ϵ⋆,
(11)

for all i ∈ {1, . . . ,M}. Moreover, we have:

sup
k∈N

Bik ≤ himax − γi0 ⇒ ∀k ∈ N : Bik ≤ himax − γi0

⇒∀k ∈ N : γik ≤ hi(xk)
(7)⇒ ∀k ≥ k⋆,i : r ≤ hi(xk), (12)

for all i ∈ {1, . . . ,M}. If (12) holds, for the always formula
ϕi, we have k⋆,i = ai and

ρϕi(ξ, 0) = min
k∈{ai,...,bi}

hi(xk) ≥ r,

and for the eventually formula ϕi, k⋆,i ∈ {ai, . . . , bi} and

ρϕi(ξ, 0) = max
k∈{ai,...,bi}

hi(xk) ≥ hi(xk⋆,i) ≥ r,

Therefore (11) results in P{ρϕi(ξ, 0) ≥ r} > 1−ϵ⋆ for all i ∈
{1, . . . ,M}. Then, since ρϕ(ξ, 0) = min1≤i≤M ρϕi(ξ, 0), we
have:

P{ρϕ(ξ, 0) ≥ r} = 1− P{ min
1≤i≤M

ρϕi(ξ, 0) < r}

≥ 1−
M∑
i=1

P{ρϕi(ξ, 0) < r}

= 1−
M∑
i=1

(
1− P{ρϕi(ξ, 0) ≥ r}

)
≥ 1−

M∑
i=1

ϵ⋆ = 1−Mϵ⋆, ■

B. Control synthesis using an optimization problem

In the robust optimization problem (8), our objective is
to determine a lower bound on the violation probability of
the STL specifications and evaluate the corresponding CBFs
offline. However, the control input uk obtained from this
optimization may not be optimal in terms of performance
criteria. After obtaining the optimal values for ϵ and γi0, we
can aim to minimize control efforts, for instance, in terms of
2-norm of the input, using the following online optimization
problem:

u⋆k(xk) ∈ arg min
uk∈U

u⊤
k uk (13)

s.t. E [hi(xk+1)|xk] ≥ hi(xk) + δ⋆,ik ,

which is solved at every time instance k, where δ⋆,ik is
evaluated given by (9) based on the optimal CBF parameters
obtained from (8). It is worth noting that alternative objective
functions such as minimizing a nominal control with the STL
control or other tracking-type objectives can be considered.
The feasibility of (13) is ensured for all xk ∈ X as long
as (8) is feasible.

C. Tractable formulation for robust optimization (8)

In this section, we provide a tractable optimization problem,
equivalent to the robust optimization in (8), for cases of the
linear and quadratic predicate functions using the concept
of duality in optimization. Through this section, we assume
U := Rm for the sake of simplicity and clarity. However,
it is important to note that this assumption is not limiting;
a control set can be incorporated as an additional robust
inequality, expanding the applicability of our approach.

Linear Predicate: Suppose that the predicate functions
are linear in the form of hi(x) = α⊤

i x+βi and the state set
is a polyhedron in the form of X := {x ∈ Rn |Dxx ≤ dx}
with dx ∈ Rp. Then the robust inequality in (8d) is written
as

∀x ∈ X, ∃u ∈ Rm : α⊤
i (f(x) + g(x)u− x) ≥ δik , (14)

Considering a control input u in the form of

u = g⊤(x)(g(x)g⊤(x))−1(−f(x) + ū) ∈ Rm , (15)

results in ū = f(x) + g(x)u for all x ∈ X and an auxiliary
variable ū ∈ Rm. Then (14) can be written as

∀x ∈ X, ∃ū ∈ Rm : α⊤
i (ū− x) ≥ δik , (16)

Note that the control input u in (15) exists for all x ∈ X
from assumption 1. In order to solve (16), it is sufficient to
find a ū ∈ Rm such that the inequality holds with respect to
the worst-case x ∈ X, i.e.,:

∃ū ∈ Rm : α⊤
i ū+min

x∈X
(−α⊤

i x) ≥ δik , (17)

gives a solution for ū that satisfies (16) for all x ∈ X
regardless of the value x. Note that the control input u still
depends on the state x based on the transformation in (15).
We now consider the duality of the minimization in (17), as
follows:{

minx −α⊤
i x,

s.t. Dxx ≤ dx
=

{
maxλi

−d⊤
x λi,

s.t. D⊤
x λi = αi, λi ≥ 0

It should be emphasized that the strong duality holds for
linear programming [26] assuming that X is a non-empty set
and a feasible solution exists. Therefore, the optimal values
of the above optimizations are identical. Consequently, (17)
can be written as the following feasibility problem:

∃ ū ∈ Rm,λi ∈ Rp :
α⊤
i ū− d⊤

x λi ≥ δik, D
⊤
x λi = αi, andλi ≥ 0

and (8) can be written as follows:

min
ū,ϵ,γi

0,λi

ϵ

s.t. ∀i ∈ {1, . . . ,M} :

himax − hi(x0)

himax − γi0
≤ ϵ, γi0 ≤ hi(x0),

α⊤
i ū− d⊤

x λi ≥ δik, D⊤
x λi = αi .
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Quadratic Predicate: We now consider the case where
the predicate function is quadratic in the form of

hi(x) = x⊤Γix+ 2α⊤
i x+ βi

and the state set X = {x ∈ Rn |x⊤x ≤ dx}. From (15), the
inequality (8d) is written as follows:

∀x ∈ X, ∃ū ∈ Rm :

ū⊤Γiū+ 2α⊤
i ū+ tr(ΓiΣ) ≥ x⊤Γix+ 2α⊤

i x+ δik .

In the STL formulations, the predicate functions are not
necessarily convex. Accordingly, we investigate both concave
and convex quadratic functions. Based on a procedure similar
to the linear predicate case, and from where in [26], the
following strong duality holds for indefinite Γi:{

maxx −x⊤Γix− 2α⊤
i x,

s.t. x⊤x ≤ dx
=

minλi,µi
µi,

s.t.

[
λiI + Γi α⊤

i

α⊤
i −λidx + µi

]
⪰ 0, λi ≥ 0 .

Hence, similar to the linear predicate, we can extract the
following optimization:

min
ū,ϵ,γi

0,λi,µi

ϵ

s.t. ∀i ∈ {1, . . . ,M} :

himax − hi(x0)

himax − γi0
≤ ϵ, γi0 ≤ hi(x0),

ū⊤Γiū+ 2α⊤
i ū+ tr(ΓiΣ) ≥ µi + δik,[

λiI + Γi α⊤
i

α⊤
i −λidx + µi

]
⪰ 0, λi ≥ 0 .

In order to apply the method to control restricted problems,
it is sufficient to confirm whether u belongs to the set U for
all x ∈ X. This verification can be performed for specific
cases, such as linear and quadratic systems with polyhedral
and quadratic control sets. In such situations, an additional
robust inequality must be satisfied and can be treated similarly
to the approach we have proposed. For instance, this issue is
addressed in case study V-A.

V. CASE STUDIES

In this section, we present two case studies to demonstrate
the efficiency of the proposed method for both linear and
quadratic predicates.

A. Linear dynamics

We implement our method on a simple linear system with a
bounded control set. The dynamics are described by xk+1 =
xk + uk + wk, where −10 ≤ xk ≤ 10 is the state, −du ≤
uk ≤ du is the input with a parametric set, and wk is a zero
mean random variable. Moreover, we consider an eventually
formula F[0,10]ϕ1 with predicate function h1(x) = x − 5.
Figure 1 illustrates the maximum probability of satisfaction
as a function of the control set size. As it can be seen, the
probability is zero for a very small control set, and it increases
as the control set size grows.

Fig. 1. The probability of the STL satisfaction as a function of the control
set size.

B. Robot path planning

Consider the Wheeled Mobile Robot (WMR) path planning
problem with the following dynamics:

xk+1 = xk +

cos(zk) − sin(zk) 0
sin(zk) cos(zk) 0

0 0 1

uk +wk ,

where xk = [xk, yk, zk]
⊤, uk = [u1k, u

2
k, u

3
k]

⊤ and wk ∼
N (0,diag(0.025, 0.025, 0.005)) are the system state, input,
and disturbance, respectively, and where (xk, yk) is the
position of the robot in R2 and zk is the orientation angle.
Based on the quadratic predicates, we define the following
sets:

O = {x, y |h1(x) := ∥[x− 4, y − 4]∥2−4 ≤ 0} ,
A = {x, y |h2(x) := 2.25− ∥[x− 1, y − 8]∥2≥ 0} ,
T = {x, y |h3(x) := 1− ∥[x− 9, y − 9]∥2≥ 0} .

The sets A, O, and T are shown in green, gray, and purple
colors, respectively, in figure 2. The objective is to control the
WMR to visit set A within 30 steps and eventually visit set T
within 40 steps from the beginning while always avoiding set
O with the level of robustness r = 0.1. The task can be written
as ϕ =

∧3
l=1 ψ̄l, where ψ̄1 = G[0,40] ψ1, ψ̄2 = ¬ψ3 U[0,30] ψ2

and ψ̄3 = F[30,40] ψ3. The corresponding predicate functions
for ψis are his. We get the maximum satisfaction probability
of ϵ⋆ ≈ 0.12. Figure 2 shows 100 trajectories of the WMR
for the different realizations of the disturbance. As it can be
seen, most of the trajectories (96 of them) avoid the obstacle
set O, and all the trajectories reach the target set T while
passing from the set A within the desired deadlines.

Figure 3 illustrates the histogram of the time taken to reach
sets A and T . As it can be seen, both respect the required
deadline for the reaching time from the STL specification.

VI. CONCLUSION

The paper addresses the control synthesis problem for
discrete-time stochastic systems that are subject to STL
specifications. A time-varying Control Barrier Function (CBF)
was constructed to ensure a desired probability of the
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Fig. 2. The simulation result for the system trajectory.

Fig. 3. Histogram of the reaching time to the sets A and T .

STL satisfaction with a given user-defined robustness value.
The paper thus provides a probabilistic guarantee of the
satisfaction of STL formulas by employing the concepts of
stochastic CBFs and supermartingales. The efficacy of the
proposed controller is verified in a simple linear case and
a robot motion planning scenario. The extension of these
results to multi-agent systems and investigating data-driven
methods for unknown dynamics constitute future research
directions.
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