
Recursive Least Squares-Based Identification for Multi-Step Koopman
Operators

Omar Sayed and Sergio Lucia

Abstract— This paper proposes a generalized algorithmic
approach for learning linear model representations for non-
linear systems within the Koopman framework. We focus on
schemes that rely on learning the nonlinear transformation
functions using deep neural networks. Beyond achieving dy-
namical accuracy, our primary objective is to develop models
capable of simulating nonlinear systems across multiple time
steps in the linear space. An algorithm that is based on
recursive least squares is proposed to address the optimization
complexities inherent in learning such models. In addition, we
leverage the learned linear representation to design a linear
quadratic regulator to control the original nonlinear system.
The effectiveness of the proposed algorithm is demonstrated in
two numerical examples.

I. INTRODUCTION

With the increasing availability of data and the growing
complexity of modern control systems, more interest has
shifted toward learning mathematical models using system
identification [1], [2]. Since the majority of systems exhibit
nonlinear behaviour, nonlinear models are often employed
to capture dynamics from input-output datasets. However, a
drawback of these models is the computational challenges
they impose when used as prediction models in optimal
control [3], motivating research on linearization techniques
[4].

Koopman theory, as articulated by Koopman in his seminal
works [5] and [6], states that nonlinear systems can be
represented by an infinite-dimensional linear systems. In
this transformed coordinate system, often referred to as
the embedding space, the dynamics are represented by the
Koopman operator. In the field of modelling and control,
this is appealing, since it facilitates the use of linear theory
analysis and optimal control techniques [7], [8], [9] on
complex nonlinear systems. To make this theory practically
applicable, it is necessary to seek finite approximations of
the Koopman operator and the embedding space.

A prominent approach to learning the Koopman operator
in the context of autonomous systems is Dynamic Mode
Decomposition (DMD) [10]. This approach learns a finite
Koopman operator by using linear transformation matrices.
To increase the versatility of DMD, modifications have been
implemented, enabling nonlinear transformations through
the use of predefined basis functions. This extension is
commonly referred to as Extended Dynamic Mode Decom-
position (EDMD) [11]. Furthermore, various algorithms have

*This work was not supported by any organization
Omar Sayed and Sergio Lucia are with the Chair of Process

Automation Systems, TU Dortmund University, Dortmund, Germany
{omar.sayed, sergio.lucia}@tu-dortmund.de

been proposed to extend the aforementioned schemes to
incorporate exogenous inputs, making the transformed linear
models suitable for use as prediction models in optimal
control [12], [13], [14].

However, finding the appropriate basis functions requires
knowledge about the system which can sometimes be a
limiting factor [15]. To alleviate this issue, Deep Neural
Networks (DNNs) can be used to learn the nonlinear trans-
formation [16], [17], [15]. Consequently, this idea has also
been extended to control problems in [18], [19], [20].

Koopman-based algorithms trained with single-step loss,
show poor performance when used for multi-step predictions
[21], where the model’s output is used in a closed-loop
fashion to predict states at further time steps. To improve the
multi-step prediction, a common approach is to use a multi-
step loss during training [22], [16]. However, optimizing for
multi-step loss is challenging, even if the dynamic model is
linear, as this turns the optimization problem of finding the
optimal model parameters into a non-convex problem with
various local minima [23].

The use of commonly employed first-order optimization
methods can fail depending on the initial parametrization
[24]. To address this issue, this work reformulates the non-
convex problem of multi-step training into a convex recur-
sive least-squares (RLS) identification [25] for learning the
Koopman operator. RLS has been used in the Koopman
framework in [26] to update the model parameters online.
In this work, we use the RLS to solve the problem of multi-
step predictions using a convex optimization during offline
training.

Another challenge arises when using the linearized model
in conjunction with an LQR controller. This stems from
the difficulty of designing the cost function in the lifted
Koopman space, as it is a priori not known how achieving
a certain control goal on the lifted Koopman space can
translate to achieving the desired control goal in the original
space. In this work, we mitigate this issue by using a linear
transformation of the cost function as in [18], [27].

The main contribution of this work is as follows. First,
we propose a training scheme that utilizes RLS estimation
to improve the training of the Koopman operator for multi-
step prediction during training. Second, we highlight the
improved performance of our proposed scheme over the
baseline methods through two numerical example. We show
how our approach effectively overcomes local optima that
can hinder the training of models using first-order optimiza-
tion techniques. Finally, we design an LQR controller using
the models trained using the proposed and baseline methods,

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 934

and we evaluate their effectiveness in controlling the original
nonlinear system.

This paper is structured as follows: Section II provides a
brief introduction to the Koopman theory. Section III presents
the proposed algorithms. Section IV shows how the learned
linear models can be used to design LQR controllers. In
Section V we evaluate and compare the performance of
our proposed algorithms with baseline methods. Finally, we
conclude the work in Section VI.

II. BACKGROUND

A. Koopman theory for autonomous systems

We consider the following autonomous nonlinear system
with discrete dynamics

xk+1 = F (xk), (1)

where xk, xk+1 ∈ Rnx is the state vector of the system
with nx states. F : Rnx → Rnx is a nonlinear function that
simulates the states forward by one time step of length ts.
To analyse the system in (1) with the tools of linear control
theory, the states of the original system are transformed into a
larger infinite dimension where the following relation holds:

Kψ(xk) = ψ ◦ F (xk) = ψ(xk+1). (2)

In the context of the Koopman theory, ψ : Rnx → Rnz is
the lifting function, i.e. a nonlinear transformation function
that maps the nonlinear original states to the infinite linear
Koopman space (nz = ∞). K ∈ Rnz×nz is the Koopman
operator, linear and infinite in dimension, which simulates
the embedding states by one sampling time.

To approximate K and ψ, finite-dimensional approxi-
mations are derived using time-series data sampled from
the original nonlinear system. The goal is to find a fi-
nite embedding space that is typically larger than the true
state space of the original system. For a given data-set
D := [x0, x1, . . . , xn] this approximation can be obtained
by solving an optimization problem given by

argmin
ψ,K,nz

n−1∑
k=0

∥ψ(xk+1)−Kψ(xk)∥. (3)

It is important to note that this optimization problem has
a trivial solution (ψ(x ∈ Rnx) = 0), which can be avoided
by employing appropriate measures as we will also describe
in the next sections.

B. Koopman operator with exogenous inputs

In this work, we consider a controlled system represented
as xk+1 = F (xk, uk). To extend the Koopman theory to this
type of system, similar to previous studies [18], [13] and
[12], we redefine (2) as

K(ψ(xk), uk) = ψ(F (xk, uk)) = ψ(xk+1), (4)

where F : Rnx × Rnu → Rnx is a nonlinear function
representing the dynamic equation with both the state xk
and the control input uk ∈ Rnu . The Koopman operator,

K, is decomposed into two parts, K = [Kx ∈ Rnz×nz ,
Ku ∈ Rnz×nu], which are linear functions learned for the
state and control input, respectively.

The lifting function and the Koopman operator can be
obtained by solving the following optimization problem:

argmin
ψ,Kx,Ku,nz

n−1∑
k=0

∥ψ(xk+1)− (Kxψ(xk) +Kuuk)∥. (5)

Following from the definition of the Koopman operator
for controlled systems, a discrete nonlinear system can be
approximated by the following linear system

ψ(xk+1) = Kxψ(xk) +Kuuk, (6)
zk+1 = Kxzk +Kuuk, (7)

where Kx and Ku are equivalent to the state matrix A and the
input matrix B. zk, zk+1 are the embedding states (Koopman
states), and defined as zi := ψ(xi). For more details on the
Koopman operator, readers can refer to [28].

III. DEEP KOOPMAN WITH RECURSIVE LEAST SQUARES

Deep Koopman schemes typically consist of two key
components: the first is the learning of the transforma-
tion function, which lifts the original states to a higher-
dimensional coordinate system, while the second is the
learning of the Koopman operator, which represents the
dynamics of the lifted linear system. This work considers
learning both the transformation function and the Koopman
operator simultaneously.

In Subsection III-A we demonstrate how recursive least
squares (RLS) can be used with an offline dataset to improve
multi-step prediction in linear system identification replacing
the nominal multi-step loss. Then we show in Subsection III-
B how this approach can be integrated into the Koopman
framework.

A. RLS for Linear System Identification

Consider a linear discrete system in the following form:

xk+1 = Axk +Buk + ϵ (8)

where ϵ ∼ N (0, σ) is white Gaussian noise resem-
bling model uncertainties due to the finite approxima-
tion of the Koopman operator. Given a state trajectory
X0:n := [x0, x1, . . . , xn] and input trajectory U0:n−1 :=
[u0, u1, . . . , un−1], where n is the length of the trajectory,
the following single-step optimization problem for system
identification can be formulated as

min
θ

n−1∑
k=0

∥xk+1 −A(θ)xk −B(θ)uk∥2, (9)

where A(θ) and B(θ) are parametrized state and input
matrices. The optimal parameters θ∗ have the closed-form
solution

θ∗ = X1:n[X0:n−1|U0:n−1]
†, (10)

where † is the Moore-Penrose pseudoinverse. However, in
the context of optimal control, it is necessary to compute a

935

multi-step trajectory of the states given an input trajectory U
and initial condition x0. We define the multi-step predicted
trajectory X̂ as

X̂ : = {x̂[0,1], . . . , x̂[p,m], . . . , x̂[n−k,n]}, (11)

p =

{
m− k if m ≥ k
0 otherwise

, m ∈ [0, n],

where

x̂[p,m] = Am−pxp +
m−1∑
i=p

Am−i−1Bui. (12)

In words, x̂[p,m] denotes the state at time step m predicted
using (12) with an initial state at time p and the inputs
from p to m − 1. In this case, the number of multi-steps
in the prediction for x̂p,m is (k = m − p). Using A(θ) and
B(θ) yielded from the one-step training (9) and the forward
propagation (12) can lead to a poor performance [22], [16],
[23], due to the accumulation of the approximation errors
(
∑m−1
i=p Am−i−1ϵi) along the predictions. Alternatively, one

can use a multi-step loss, which finds the model parameters
by minimizing the error not only for the next step but
over a trajectory of k steps. The corresponding optimization
problem can be defined as:

min
A(θ),B(θ)

∥X1:n − X̂∥2. (13)

Problem (13) is non-convex and its complexity increases
as the number of states nx and multi-steps k increases [23].
In this work, we seek to mitigate this issue by reformulating
(13) into an RLS formulation defined by

[Ã(θ)|B̃(θ)] = X2:n[X̂0:n−2|U1:n−1]
†, (14)

[A(θ)|B(θ)] = (1− γ)[A(θ)|B(θ)] + γ[Ã(θ)|B̃(θ)], (15)

where γ is the forgetting factor, X2:n = [x2, . . . , xn] and
X̂0:n−2 = [x̂0, . . . , x̂n−2]. The RLS loop starts with the
initialization of A(θ) and B(θ) by the single-step loss (10).
Then, the predicted trajectory (X̂) is iteratively computed as
outlined in (11). Ã(θ) and B̃(θ) are computed using least
squares (14) to find the system dynamics that can shift the
predicted trajectory one step further. In an optimal scenario,
Ã(θ) and B̃(θ) would be equal to A(θ) and B(θ).

Using (15), the computed Ã(θ) and B̃(θ) are used to
update the current A(θ) and B(θ) with a step size of γ. This
iterative process continues until specific termination criteria
for (13) are satisfied. For numerical stability the initial A(θ)
and B(θ) matrices must be be Schur stable.

B. Deep Learning Framework

This work leverages DNNs to learn the forward ψ and
inverse ψ−1 transformation functions, in order to recover
the transformed states back to their original form. These
requirements make the use of deep autoencoders [29] a
natural choice. A schematic of the overall architecture shown
in Fig. 1.

Fig. 1. Deep Koopman Scheme: ψ and ψ−1 are parametrized neural
networks denoting the forward and inverse transformation functions. Kx

and Ku are linear matrices similar to the system (A) and input (B) matrices
respectively.

The encoder ψ has the task of lifting the states to a
higher dimension while linearizing the dynamics. This can
be achieved by the following single-step loss function Lss

Lss =

n−1∑
k=0

∥ψ(xk+1; θ)−Kxψ(xk; θ) +Kuuk)∥, (16)

where Kx and Ku are learned by the RLS formulation in III-
A, and θ are the trainable parameters of the encoder network.
As mentioned earlier, the use of (16) can lead to the trivial
solution of adjusting the weights such that ψ(x) = 0. This
is avoided by the reconstruction loss Lrec defined as

Lrec =

n−1∑
k=0

∥xk − ψ−1(ψ(xk; θ); θ)∥, (17)

where ψ−1 is the decoder with trainable parameters θ. We
propose to add a third loss function for the multi-step loss
Lms as

Lms =

n−k∑
p=0

p+k∑
m=p+1

∥Xp,m − X̂p,m∥, (18)

where, Xp,m = [xp, xp+1, . . . , xm], (19)

X̂p,m = [x̂[p−1,p+1], x̂[p−1,p+2], . . . , x̂[p−1,m]],
(20)

x̂[p,m] = ψ−1(Kxm−pψ(xp) +
m−1∑
i=p

Km−i−1
x Kuui; θ). (21)

The total loss function is the weighted sum of the Lss,
Lms and Lrec. While it can be argued that Lrec is implicitly
fulfilled by Lms, the inclusion of Lrec serves to improve the
overall training process. Algorithm 1 summarizes the training
approach, that integrates DNN training and RLS.

IV. LQR IN THE KOOPMAN EMBEDDING SPACE

The objective of this section is to design a controller for
the nonlinear system using the transformed linear dynamics.
For this purpose an LQR set-point tracking controller can be
used, which is defined as follows:

min
uk,xk

∞∑
k=0

∥zk−ztarget∥2Q + ∥uk − uss∥2R, (22)

s.t. zk+1 = Kxzk +Kuuk,
ztarget := ψ(xtarget), z0 = ψ(x0),

936

Algorithm 1 Deep Koopman with RLS
1: Input: Set forgetting factor γ
2: Initialize [A(θ)|B(θ)] ← ψ(X1:n)[ψ(X0:n−1|U0:n−1)]

†

3: while termination criteria not met do
4: Compute X̂ for ψ(x) using (11) ▷ Prediction step
5: [Ã(θ)|B̃(θ)]← ψ(X2:n)[X̂0:n−2|U1:n−1]

†

6: Update [A(θ)|B(θ)] using (15) ▷ Update step
7: Update θ for ψ and ψ−1 minimizing (16), (17), (18)

return θ, A(θ) and B(θ)

where Q and R are the cost matrices for the states and inputs
respectively. uss is the steady state input. The set-point in the
original nonlinear state space is xtarget. Solving (22) using the
algebraic Riccati equation yields the optimal gain matrix K∗

and the optimal control input becomes u∗t = K∗zt. To apply
the LQR to an arbitrary steady state, the following control
input can be used:

u∗ = uss −K∗(zk − ztarget), (23)

uss = −(BTB)−1BTAztarget,

Designing the state cost matrix Q for embedding states
presents a challenge due to the increased dimensionality
of the state space, making it less manageable to establish
the relationship between embedded states and their original
counterparts. One solution is to linearly approximate the
nonlinear relationship between the two spaces [21], [27]. The
new state cost matrix Q∗ can be calculated as

Q∗ = TT Q̂T, (24)

T : = (ψ(X)†X)T , (25)

where T ∈ Rnx×nz is the linear transformation matrix. Q̂ ∈
Rnx×nx is the state matrix designed for the original state
space. Since the the input is not lifted, the R matrix does
not need to be transformed.

V. RESULT

In this section, we evaluate the proposed RLS identifica-
tion method within the Koopman framework, comparing it to
a baseline method that uses first-order optimization for linear
system identification using the multi-step loss problem (13).
First, we compare the performance of our proposed algorithm
with the baseline in learning the linear dynamics of a simple
two-state nonlinear system. We then test the learned models
by simulating the dynamics of the system over 200 time
steps, using only the initial state ψ(x0) and the control inputs.
In the second case study, we evaluate the proposed approach
against the baseline to learn a model for a quadruple process
and use the learned models with LQR to control the original
nonlinear system.

A. RLS with Deep Koopman
Consider the following two-state nonlinear system taken

from [28],

ẋ1 = µx1,

ẋ2 = λ(x2 − x21) + u, (26)

where µ and λ are constants chosen to determine the behavior
of the system, set to λ = 1 and µ = 0.5, resulting in an
unstable system. A data set of 200 trajectories was used, each
consisting of n = 200 steps with a step size of ts = 0.2.
The inputs in the dataset are chosen so that the closed-loop
dynamics are stable.

Similar to [28] and [20], our goal is to obtain a represen-
tation of a three-state linear system in which the nonlinear
dynamics can be represented linearly. To achieve this, we use
an encoder and decoder network, each consisting of an input
layer, a single hidden layer with 16 neurons and an output
layer. We use ReLU activations between the input and hidden
layers, and between the hidden and the output layers. The
model is trained using 100 trajectories from the dataset. As a
baseline, we use parametrized matrices [A(θ)|B(θ)] and use
first-order optimization, namely Adams, to learn the system
dynamics simultaneously using (13), along with learning the
weights of the encoder and decoder.

In this case study, we perform a comparison with six
baseline models with fixed neural network structure trained
with different multi-step losses specifically, with k-steps =
[1, 4, 8, 16, 32, 64]. To ensure a fair evaluation, we initialize
the A(θ) matrix with a diagonal matrix of 0.5, while setting
the B(θ) matrix is set to 0 for both the proposed and baseline
methods. Thus, the only difference is that the linear dynamics
for the proposed method is learned using our RLS scheme.
For the RLS setting, we set the k-steps = 200 and γ was
fixed at 0.005. The results of this comparison are shown in
Fig. 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

label

ms 64

RLS

0 50 100 150 200

Time Steps

100

10−1

10−2

10−3

10−4

10−5

T
es

ti
n

g
M

S
E

(l
og

)

1

4

8

16

32

64

RLS

0

2
x

1

0 50 100 150 200

Time Steps

0

2

x
2

True RLS 64

Fig. 2. Deep Koopman for a two-state nonlinear system: The left plot shows
the test Mean Squared Error (MSE) over 100 test trajectories. These models
were evaluated for their ability to linearly simulate the system dynamics over
200 time steps, using only ψ(x0) and the control inputs. On the right, we
present a qualitative evaluation of the predictions made by the proposed and
baseline methods on one of the test trajectories.

The results, as shown in Fig.2, indicate that increasing
the number of steps for the baseline leads to an overall
improvement in the simulation for 200 steps. However, going
beyond k-steps = 64 does not improve performance. This is
probably due to the model reaching a local minimum during
training.

In contrast, the performance of the RLS model appears
to be unaffected by this issue, as it relies on optimizing the
multi-step prediction using a recursive convex operation. It
is important to note that the identification of the nonlinear

937

transformation function remains non-convex and is optimized
using Adams for both the baseline and proposed methods, as
these are neural networks with ReLU activation functions.

B. LQR in the embedding space

Consider the following four-state nonlinear system taken
from [30]:

ḣ1 = − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

u1,

ḣ2 = − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

u2,

ḣ3 = − a3
A3

√
2gh3 +

(1− γ2)k2
A3

u2, (27)

ḣ4 = − a4
A4

√
2gh4 +

(1− γ1)k1
A4

u1,

where [h1, h2, h3, h4] ∈ R4 represent the heights (in
meters) of the liquid in each of the four tanks, while
[u1, u2] ∈ R2 denote the system inputs in volts (V). The
parameters γ1 and γ2 refer to the valve constants, that
regulate the flow in all four tanks and are set to 0.75.
The remaining variables are constants, as defined in [30].

We generated a dataset of 1100 trajectories by simu-
lating (27) with control inputs from an MPC controller.
The sampling time was set to ts = 1s, and the trajectory
length was fixed to n = 40 for all trajectories. The initial
states were randomly sampled from a uniform distribution
in the range [0, 0, 0, 0] ≤ [h1, h2, h3, h4] ≤ [10, 10, 10, 10],
while the controller set-point was sampled from a uniform
distribution within the range [10, 10] ≤ [h1, h2] ≤ [20, 20].
800 trajectories were used for training, while the remaining
300 trajectories were reserved for testing.

Different latent space sizes were tested to find the optimal
balance between prediction accuracy and embedding space
dimensionality. An embedding space of 8 states showed the
best compromise. The encoder and decoder are designed with
two hidden layers of 32, 16 neurons each and ReLU acti-
vation functions. For the baseline, six models were trained
with k-steps = [1, 4, 8, 16, 32]. The results can be seen in
Fig. 3.

The results in Fig. 3 show a similar trend to the previous
case study. Increasing the number of k-steps improves the
accuracy of the simulation up to a point where the learning
converges to a local minimum. In the given example it can
be seen that between [8, 16, 32] steps an increase in k-steps
did not lead to any improvement in the performance.

Moving on, we apply an LQR tracking controller to the
learned linear models to control the nonlinear quadruple
tank. In this example, we set the state cost matrix as Q =
[1, 1, 0, 0], since our goal is to control the levels of the lower
tanks, namely h1 and h2. The Q ∈ Rnx matrix can be
transformed into the Koopman space as Q̃ ∈ Rnz using
(24). To compute the linear transformation matrix T , we
apply (25) to 300 randomly selected trajectories from the
training dataset. Using the learned A(θ) and B(θ) matrices,
we determine the control gain matrix K∗ using (22). Finally,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

label

ms 64

RLS

10 20 30 40

Time Steps

101

10−1

10−2

10−3

T
es

ti
n

g
M

S
E

(l
og

)

1

4

8

16

32

RLS

12.5

15.0

17.5

h
1

(c
m

)

15.0

17.5

h
2

(c
m

)

0

10

h
3

(c
m

)

0 10 20 30 40

Time Steps

10.0

12.5

h
4

(c
m

)

True RLS 8

Fig. 3. Deep-Koopman for the quadruple tank: The left plot displays the
testing Mean Squared Error (MSE) across 300 trajectories. These models
were evaluated for their ability to linearly simulate system dynamics over
40 time steps, using only ψ(x0) and the control inputs. On the right, we
present a qualitative evaluation of the predictions made by the proposed and
baseline methods on one of the test trajectories.

for a given set-point, we compute the optimal inputs using
(23).

In this example, we compare the controllers designed
by both the proposed scheme and the baseline, which was
trained with an 8-step loss. For each controller, we compute
the open-loop control inputs for a span of 80 time steps. We
achieve this by initializing the initial point as z0 = ψ(x0)
and setting the desired target points as ztarget,1 = ψ(xtarget,1)
between 0 ≤ k < 40 and ztarget,2 = ψ(xtarget,2) between
40 ≤ k ≤ 80. Here, ψ(·) denotes the encoder, which is
different for both the proposed and baseline models. Finally,
we apply these calculated inputs to the original systems. The
results are shown in Fig. 4.

The results show that open-loop inputs computed using the
proposed model (RLS (OL)) effectively guide the original
system to the set-point with minimal steady-state error. In
contrast, the open-loop performance of the baseline model
(8-step (OL)) exhibits compounding errors that diverge be-
yond the limits of the training dataset. Moving to the closed-
loop scenario (8-step (CL)), the baseline shows improved
performance with reduced steady-state error, although it
remains inferior to that of the controller designed using the
proposed model in terms of meeting the control objective.

VI. CONCLUSION AND FUTURE WORK

This work proposes a deep learning Koopman framework
that uses recursive least squares to effectively address the
optimization complexities associated with multi-step system
identification. This scheme replaces the use of multi-step loss
by solving a recursive convex problem. The result is linear
models that can be reliably used to perform long multi-step
predictions in the embedding space with increased accuracy.
Furthermore, this work utilizes the learned linear model to

938

10

20

30

40

h
1

(c
m

)

0 20 40 60 80

Time Steps

10

20

30
40

h
2

(c
m

)
Set-point

RLS (OL)

8-Step (OL)

8-Step (CL)

Fig. 4. Koopman LQR: Comparison of the performance of the linear
controller on the original non linear system. We evaluate the control inputs
of the linear model obtained by the proposed scheme, operated in an open-
loop manner. This is compared with the performance of the 8-step model,
which is operated in both open-loop and closed-loop modes.

control the original nonlinear system using LQR through a
linear transformation of the state cost matrix. The results
show that the controllers designed using the models learned
by the proposed scheme outperform those of the baseline in
terms of meeting the control objectives.

Our future work will evaluate the performance of the
proposed algorithms in more realistic scenarios where some
states are not measurable, and with nonlinear systems with
more complex dynamics.

REFERENCES

[1] Steven L Brunton and J Nathan Kutz. Data-driven science and
engineering: Machine learning, dynamical systems, and control. Cam-
bridge University Press, 2022.

[2] Rajesh Kumar, Smriti Srivastava, JRP Gupta, and Amit Mohindru.
Comparative study of neural networks for dynamic nonlinear systems
identification. Soft Computing, 23:101–114, 2019.

[3] S Joe Qin and Thomas A Badgwell. An overview of nonlinear model
predictive control applications. Nonlinear model predictive control,
pages 369–392, 2000.

[4] Yusuke Igarashi, Masaki Yamakita, Jerry Ng, and H Harry Asada.
Mpc performances for nonlinear systems using several linearization
models. In 2020 American Control Conference (ACC), pages 2426–
2431. IEEE, 2020.

[5] Bernard O Koopman. Hamiltonian systems and transformation in
hilbert space. Proceedings of the National Academy of Sciences,
17(5):315–318, 1931.

[6] Bernard O Koopman and J v Neumann. Dynamical systems of
continuous spectra. Proceedings of the National Academy of Sciences,
18(3):255–263, 1932.

[7] Katsuhiko Ogata. Modern control engineering fifth edition. Prentice
Hall PTR, 2010.

[8] Kenneth R Muske and James B Rawlings. Model predictive control
with linear models. AIChE Journal, 39(2):262–287, 1993.

[9] Brian DO Anderson and John B Moore. Optimal control: linear
quadratic methods. Courier Corporation, 2007.

[10] Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter,
and Dan S Henningson. Spectral analysis of nonlinear flows. Journal
of fluid mechanics, 641:115–127, 2009.

[11] Matthew O Williams, Maziar S Hemati, Scott TM Dawson, Ioannis G
Kevrekidis, and Clarence W Rowley. Extending data-driven koopman
analysis to actuated systems. IFAC-PapersOnLine, 49(18):704–709,
2016.

[12] Xu Ma, Bowen Huang, and Umesh Vaidya. Optimal quadratic
regulation of nonlinear system using koopman operator. In 2019
American Control Conference (ACC), pages 4911–4916. IEEE, 2019.

[13] Milan Korda and Igor Mezić. Linear predictors for nonlinear dy-
namical systems: Koopman operator meets model predictive control.
Automatica, 93:149–160, 2018.

[14] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Generalizing
koopman theory to allow for inputs and control. SIAM Journal on
Applied Dynamical Systems, 17(1):909–930, 2018.

[15] Qianxiao Li, Felix Dietrich, Erik M Bollt, and Ioannis G Kevrekidis.
Extended dynamic mode decomposition with dictionary learning: A
data-driven adaptive spectral decomposition of the koopman operator.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10),
2017.

[16] Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep
neural network representations for koopman operators of nonlinear
dynamical systems. In 2019 American Control Conference (ACC),
pages 4832–4839. IEEE, 2019.

[17] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning
for universal linear embeddings of nonlinear dynamics. Nature
communications, 9(1):4950, 2018.

[18] Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of
koopman representation for control. In 2020 59th IEEE Conference
on Decision and Control (CDC), pages 1890–1895. IEEE, 2020.

[19] Jan C Schulze and Alexander Mitsos. Data-driven nonlinear model
reduction using koopman theory: Integrated control form and nmpc
case study. IEEE Control Systems Letters, 6:2978–2983, 2022.

[20] Akhil Ahmed, Ehecatl Antonio del Rio-Chanona, and Mehmet Mer-
cangöz. Linearizing nonlinear dynamics using deep learning. Com-
puters & Chemical Engineering, 170:108104, 2023.

[21] Haojie Shi and Max Q-H Meng. Deep koopman operator with
control for nonlinear systems. IEEE Robotics and Automation Letters,
7(3):7700–7707, 2022.

[22] H-T Su and TJ McAvoy. Neural model predictive control of non-
linear chemical processes. In Proceedings of 8th IEEE International
Symposium on Intelligent Control, pages 358–363. IEEE, 1993.

[23] Adrian Wills, Chengpu Yu, Lennart Ljung, and Michel Verhaegen.
Affinely parametrized state-space models: Ways to maximize the
likelihood function. IFAC-PapersOnLine, 51(15):718–723, 2018.

[24] Pablo A Parrilo and Lennart Ljung. Initialization of physical parameter
estimates. IFAC Proceedings Volumes, 36(16):1483–1488, 2003.

[25] Torsten Söderström, Lennart Ljung, and Ivar Gustavsson. A com-
parative study of recursive identification methods. Lund Institute of
Technology Sweden, 1974.

[26] Horacio M Calderón, Erik Schulz, Thimo Oehlschlägel, and Herbert
Werner. Koopman operator-based model predictive control with
recursive online update. In 2021 European Control Conference (ECC),
pages 1543–1549. IEEE, 2021.

[27] Zuowei Ping, Zhun Yin, Xiuting Li, Yefeng Liu, and Tao Yang. Deep
koopman model predictive control for enhancing transient stability in
power grids. International Journal of Robust and Nonlinear Control,
31(6):1964–1978, 2021.

[28] Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz.
Modern koopman theory for dynamical systems. arXiv preprint
arXiv:2102.12086, 2021.

[29] Pierre Baldi. Autoencoders, unsupervised learning, and deep architec-
tures. In Proceedings of ICML workshop on unsupervised and transfer
learning, pages 37–49. JMLR Workshop and Conference Proceedings,
2012.

[30] Karl Henrik Johansson. The quadruple-tank process: A multivariable
laboratory process with an adjustable zero. IEEE Transactions on
control systems technology, 8(3):456–465, 2000.

939

