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Abstract— This work proposes a robust control strategy for
an autonomous vehicle to overtake safely and comfortably a
human-driven vehicle. The proposed scheme designs a collision-
avoidance constraint setup that comprehensively coordinates
dimension-based and velocity-dependent constraints to fulfil the
safety criteria. A three-phase control framework is proposed
for the overtaking task, subject to separate collision-avoidance
constraints in lane changing, passing, and merging phases.
Moreover, the proposed method utilises a Stackelberg game
model to interactively involve the human-driven overtaken ve-
hicle behaviours in the online optimisation loop. To further cope
with uncertainties caused by the human driver, the optimisation
is solved by a robust model predictive controller to guarantee
the avoidance of collisions. Numerical case studies verify that
the proposed framework is capable of overtaking not only a
cooperative human-driven vehicle but also an uncooperative
human-driven vehicle with safe and comfortable trajectories.

I. INTRODUCTION
With the development of modern autonomous driving

techniques, optimal control strategies of connected and au-
tonomous vehicles (CAVs) have been extensively studied [1].
Compared with driving scenarios such as adaptive cruise
control [2], and intersection coordination [3], where the
majority motions are on the longitudinal direction, the mod-
ellings of overtaking problems also study lateral movements
of the ego vehicle, with vehicle models varying from an
accurate full-size four-wheel model to a simplified bicycle
model, seeking a good balance between the model accu-
racy and complexity [4]. In addition, the setup of the 2-
dimensional collision-avoidance constraints is a particular
research concern in autonomous overtaking. Specifically, a
safety constraint combining ellipse- and rectangle-shapes is
proposed in [5] where the ellipse-shaped model involves the
heading angle of the obstacle into the constraint expression
while the rectangle-shaped model conservatively reserves the
safety space. Moreover, [6] proposes geometric constraints
for collision avoidance, where both vehicles are modelled
as polygons without any overlap between them, during the
operation. To further make the collision-avoidance constraint
more realistic, the work in [7] utilises a phase-based con-
straint setup which depends on vehicle velocity. However,
this setup does not specifically exclude the risk of collisions
while the car is steering.

On the other hand, previous overtaking research usually
assumes the overtaken vehicle is connected and therefore
the movement is known to the ego vehicle [8]. However,
this is not realistic when the overtaken vehicle is a human-
driven vehicle (HDV). To address the human behaviours that
are hard to be formulated explicitly but may significantly
affect the controlled loop, [9] proposes a hierarchical learning
framework with an offline module trained by historical traffic
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data and an online module learning from the specific driver
to refine the prediction. However, this solution requires
extensive learning and training in advance. A novel idea that
emerged in the literature is to properly formulate the inter-
action between the overtaking CAV and the overtaken HDV
by utilising game theory, and the Stackelberg game has been
shown feasible [10]. A human-like decision-making strategy
is presented in [11] to address the co-existence of CAVs and
HDVs. During the process of game-based decision making,
different human driving styles and interaction behaviours
are formulated and considered regarding safety, comfort,
and efficiency. Moreover, a robust overtaking scheme is
proposed in [12] with a risk-aware reachability analysis that
reflects the possible human driver behaviours. However, the
involvement of human-caused uncertainties makes it difficult
to find feasible solutions for the optimisation problem, un-
less some assumptions are adopted. To summarise, previous
work utilising the Stackelberg game theory usually assumes
the human driver performs exactly as the game prediction
without considering unpredictable/erratic human behaviours.
Although some human uncertainties are addressed in [12]
through martingale theory, those exclude driving behaviours
such as speeding up that make it difficult to find feasible
solutions. Therefore, a further control design which not
only considers human behaviours in CAV-HDV interactions
but also can provide feasible solutions without being too
conservative is missing and is the subject of the present work.

The contribution of the paper is threefold: 1) it designs a
practical piece-wise collision-avoidance constraint setup for
an overtaking-overtaken vehicle pair that considers vehicle
dimensions and velocities; 2) it introduces a new overtaking-
overtaken vehicle interactive model based on the concept of
Stackelberg game, which further incorporates a stochastic
human driver cooperation index that captures the compliance
of the human driver to the game solution; 3) the resulting
game theoretic problem is solved by a robust model pre-
dictive controller (MPC) that accounts for the human driver
cooperation uncertainty; numerical case studies validate the
effectiveness of the proposed framework in controlling an
autonomous vehicle to safely and comfortably complete
overtaking of a human-driven vehicle.

The rest of the paper begins in Section II with the intro-
duction of the overtaking problem with an emphasis on the
proposed collision-avoidance constraint setup, followed by
Section III that explains the vehicle interactions formulated
as the Stackelberg game with uncertain human behaviours.
Moreover, simulation results are evaluated in Section IV and
conclusions are provided with a future plan in Section V.

II. OVERTAKING PROBLEM STATEMENT

This work solves an optimal control problem (OCP) for
an overtaking scenario, as illustrated by Fig. 1, where a
controlled CAV, denoted as an ego vehicle (EV) is driving at
its cruising speed (vc) and encounters a slow-moving HDV
denoted as an obstacle vehicle (OV) ahead. Both vehicles are
assumed to be driven in the middle of the initial lane. This
work considers the left-hand traffic, where the overtaking
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lane is on the right side of the initial lane. The EV is
requested to overtake the OV by crossing the white dashed
line, temporarily occupying an overtaking lane, and merging
back to the initial lane, with proper control of its steering
angle while maintaining its cruising speed vc during the
entire overtaking, which is also known as flying overtaking
[13]. The proposed overtaking scheme aims for the EV to
avoid collisions with the OV or road boundaries and to
maximise its driving comfort during overtaking manoeuvres,
with the adoption of the following assumption.

Assumption 1: There are no trailing, leading, or oncoming
vehicles on the overtaking lane. The lane width (Wl) is
uniform for each lane in the work, and the road remains
straight for the whole scenario. The dimensions (lengths and
widths) and powertrain limits (acceleration and deceleration)
of the EV and OV are identical. Only the front wheels of the
EV can be steered. The OV stays in the middle of the initial
lane and does not change its lane while being overtaken, thus
its displacement perpendicular to the road is zero.

A. Vehicle model
As illustrated by the blue vehicle in Fig. 1, this work

utilises a kinematic bicycle model to formulate the motions
of the EV during overtaking, where the vehicle side slip angle
is neglected (β = 0 in Fig. 1) and the small angle approxi-
mation is adopted for trigonometric quantities, such that this
model keeps a reasonable balance between modelling realism
and formulation complexity [12], [14], [15].

Fig. 1: Illustration of the bicycle model of the EV and
relevant parameters in the vehicle overtaking scenario; the
red vehicle is the OV. The x- and y-axes attached to the EV
denote its longitudinal and lateral directions, respectively.

By defining a moving coordinate system with the origin
(0,0) attached to the geometric centre of the OV and X- and
Y -axes directions fixed with respect to Earth (road), as shown
in Fig. 1, the relative vehicle dynamics of the EV along the
road (X-axis) and perpendicular to the road (Y -axis), as well
as the rotational dynamics of the EV, can be represented by
the following system equations in discrete time subject to a
sampling interval ∆T ∈ R>0

sX (t +1) = sX (t)+(vc − vOV (t))∆T, (1a)
sY (t +1) = sY (t)+ vcΨ(t)∆T, (1b)

Ψ(t +1) = Ψ(t)+
vc

l
δ (t)∆T, (1c)

where the sampling index t ∈N[0,t f ] with the total number of
samples t f = Tf /∆T ∈N>0 (Tf is the predefined total time of
overtaking manoeuvre). sX is the distance of the geometric
centre of the EV along the X-axis from the origin attached
to the OV, while sY is the displacement of the EV geometric
centre point along the Y -axis, as the OV stays in the middle
of the initial lane while being overtaken. vc is the constant
EV geometric centre velocity with respect to Earth along
the x-axis (longitudinal to the EV, see Fig. 1) and vOV (t) is
the actual OV velocity with respect to Earth along the X-
axis direction. Ψ(t) and δ (t) denote the EV heading (yaw)

angle and front wheel steering angle, respectively. l is the
wheelbase length of the EV.

In addition, the state of EV heading angle Ψ(t) and the
control input of steering angle δ (t) are subjected to

Ψ ≤ Ψ(t)≤ Ψ, δ ≤ δ (t)≤ δ , (2)

where Ψ/Ψ and δ /δ are realistic and small vehicle heading
and steering angle bounds during the overtaking, respec-
tively. The sign of δ (t) indicates the turning direction, with
positive for right turning and negative for left turning.

B. Collision-avoidance constraints
In addition to the above heading and steering angle limits

of the EV, further coupled constraints for avoiding collisions
are also required by the overtaking control strategy. The
novel collision-avoidance constraints utilised in this work ro-
bustly consider the geometric collision-avoidance constraint
between both vehicles, which is illustrated in Fig. 2. As it
can be noticed, the occupancy area of a normal passenger
vehicle (i.e, EV or OV) can be approximated as a rectangle
with length Lv and width Wv (dimensions shown in Fig.
1), which is illustrated by a dashed dark blue rectangle,
for example, at the top left box of Fig. 2. This rectangle
is further extended to an arc-polygon enclosed by solid
dark blue straight line segments and arcs to reserve more
gap on each side to cope with extra occupancy in the Y -
direction caused by steering and heading angle perturbations
during driving and lane changing. The coordinates that define
the arc-polygon (i.e., (sXm ,sYm), ∀m ∈ {A,B,C,D,E,F}) are
dependent on the EV geometric centre point coordinates
(sx,sY ), the length of vehicle diagonal (diagonal of the dashed
rectangle, 2r =

√
L2

v +W 2
v ), the angle between the diagonal

and long side of the dashed rectangle (θ ), and the maximum
heading angle (Ψ) of the EV.

Moreover, based on this vehicle dimension-based setup,
the velocity-dependent collision-avoidance constraints are
implemented, which are illustrated by light blue, green,
and purple piece-wise segments in Fig. 2 connecting points
(sXn ,sYn , ∀n ∈ {a,b,c,d,e}). Points (sXa ,sYa ) and (sXe(t),sYe ),
where sXa =−(dX0+vct0) and sXe(t) = dX0+vOV (t)(tr+t0),
define the minimum X-direction safe gap between the ge-
ometric centres of the two vehicles when they are both
in the middle of the initial lane (sYa = sYe = 0) before and
after the overtaking, respectively. dX0 = s0+2r represents a
velocity-independent term including the standstill headway
gap (s0) as well as the vehicle diagonal length (2r), t0 is the
minimum time gap in car-following, and tr is the response
time of the human driver of the OV. As the EV changes to or
merges from the overtaking lane (sY (t)>0), it is allowed to
be sXa < sX (t)< sXe(t) after the overtaking starts and before
it finishes, while the Euclidean distance between the two
vehicle geometric centres should satisfy

√
sX (t)2+sY (t)2 ≥

2r to ensure the avoidance of collision, which is illustrated
by the dashed red circle in Fig. 2. Note that the latter
condition is desirable when both the EV and OV undergo
large heading angle changes, which, however, is not the case
in the present work. Therefore, this condition can be too
conservative, particularly from the Y -direction perspective
(i.e., blocking the entire overtaking lane) and impractical in
real traffic. After practically setting the heading angle limits
of EV and OV (Ψ and ΨOV ), the minimum safe gap when
the EV is passing on the side of the OV is relaxed from
2r to sYc = r sin(θ+Ψ)+r sin(θ +ΨOV ). This defines the
green segment passing through the point (sXc ,sYc ) in Fig. 2
at constant offset sYc from the Y -axis, along which this gap
condition applies. Furthermore, the green segment intercepts
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Fig. 2: A three-phase-based collision-avoidance constraint setup. The OV is centred at the origin (0,0) of an X-Y coordinate
system. The blue vehicles illustrate possible occupancies of the EV during the overtaking, centred at position (sX (t),sY (t)).
Note that the associated dark blue arc-polygon around the EV is wider than the associated red arc-polygon around the OV,
where the arc-polygons capture the range of heading angle changes in each vehicle. Road boundaries and road lane markings
are denoted by solid and dashed white lines, respectively.

the dashed red circle at points (sXb ,sYb ) and (sXd ,sYd ), which
define the margins of the green segment. Note that along the
green segment, the arc-polygons of the EV and OV merely
touch but do not overlap.

By connecting points (sXa ,sYa ) with (sXb ,sYb ) and (sXd ,sYd )
with (sXe ,sYe ) accordingly, collision-avoidance constraints for
the periods of changing lane and merging back are obtained
and illustrated by the light blue and purple segments in Fig.
2. Moreover, to avoid collision with roadside barriers, the
centre point of the EV should always maintain a minimum Y -
direction distance (dY 0) to roadsides, as visualised by yellow
segments in Fig. 2. Hence, to fulfil the collision-avoidance
requirement, the centre point of the EV should remain within
the area bounded by light blue, green, purple, and yellow seg-
ments during overtaking. These marginal collision-avoidance
constraints are mathematically represented as

sYb−sYa

sXb−sXa

sX(t)+
(

sYa−
sXa(sYb−sYa)

sXb−sXa

)
≤sY(t),∀sX(t)≤sXb , (3a)

sYc ≤ sY (t), ∀sXb <sX (t)≤sXd , (3b)
sYe−sYd

sXe(t)−sXd

sX(t)+
(

sYd−
sXd (sYe−sYd )

sXe(t)−sXd

)
≤sY (t),∀sXd<sX(t), (3c)

− 1
2

Wl +dY 0 ≤ sY (t)≤
3
2

Wl −dY 0, ∀sX (t) ∈ R, (3d)

inferred from the light blue, green, purple, and yellow
boundaries, respectively.

C. Control framework and objectives
In line with the three (light blue, green, purple) segments

defined in Section II-B, a three-phase MPC algorithm is
proposed for the overtaking task, subject to state equations
(1), independent constraints (2), common collision-avoidance
constraint (3d), and a separate collision-avoidance constraint
from (3a)-(3c). For the sake of further discussion, let us
denote the phases with constraints represented by the light
blue, green, and purple segments as lane changing phase,
passing phase, and merging phase, respectively. The EV
executes lane changing, passing, and merging manoeuvres
during overtaking in turns, according to the status of sX (t).

This work shows that the overall overtaking OCP can be
addressed by three cascaded finite-horizon optimal control
problems (FHOCPs). In addition to satisfying the constraints
introduced above, each FHOCP aims to optimise its own ob-
jective function containing common (across all FHOCPs) and
separate objective terms, collectively emphasising the same
targets on comfort and safety during the manoeuvre. Similar
to the common approach in the literature [16], comfort during

overtaking can be quantitatively evaluated by investigating
solely the EV Y -direction acceleration (aY (t)≈ v2

c
l δ (t)) which

is proportional to δ (t). As such, it is reasonable to penalise
the L2-norm of δ (t) for enhanced comfort. Meanwhile,
to reduce the heading oscillations, Ψ(t) can be penalised
similarly, leading to two individual stage costs

J(p)
c =

N−1

∑
k=0

δ (t + k|t)2, J(p)
h =

N−1

∑
k=0

Ψ(t + k|t)2. (4)

where the superscript p∈{1,2,3} indicates lane changing,
passing, and merging phases, respectively. k∈N[0,N−1] is the
step index of a prediction horizon with length N.

On the other hand, although the collision-avoidance con-
straints specified in (3) provide a theoretical baseline guaran-
tee of safety, the solutions will be less prone to infeasibilities
if the movement of the EV could follow a target trajectory
away from constraints. Therefore, three safety-concerned ob-
jective functions are designed for the three phases regarding
each collision-avoidance constraint ((3a)-(3c)), respectively

J(1)s = (sY (t +N|t)−Wl)
2 , (5a)

J(2)s =
N−1

∑
k=0

(sY (t + k|t)−Wl)
2 , (5b)

J(3)s =
N−1

∑
k=0

(sY (t + k|t)−0)2 . (5c)

Specifically, (5a) contains a terminal cost such that the EV
aims to reach the middle of the overtaking lane which is also
the target position of the entire passing phase as claimed in
(5b). Hence, a smooth and continuous trajectory is expected
as the EV propagates from the lane changing phase to the
passing phase. Furthermore, (5c) pushes the EV to merge
back to the middle of the original lane in the merging phase.
Therefore, the control framework of the lane-changing and
passing phases, where interactions between the two vehicles
are not triggered yet, can be formulated as FHOCP 1 and
FHOCP 2, respectively, as

FHOCP 1 (if sX (t)≤ sXb ):

min
δ (t+k|t)

J1=W (1)
c J(1)c +W (1)

h J(1)h +W (1)
s J(1)s (6a)

s.t. sX (t+k+1|t)=sX (t+k|t)+(vc − v∗OV (t+k|t)+
w12(t+k|t))∆T, k∈N[0,N−1] (6b)

w12 ≤ w12(t + k|t)≤ w12, (6c)
(1b), (1c), (2), (3a), (3d), (4), (5a).
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FHOCP 2 (if sXb < sX (t)≤ sXd ):

min
δ (t+k|t)

J2=W (2)
c J(2)c +W (2)

h J(2)h +W (2)
s J(2)s , (7a)

s.t. (1b), (1c), (2), (3b), (3d), (4), (5b), (6b), (6c)
where W (1)

c , W (1)
h , W (1)

s , W (2)
c , W (2)

h , and W (2)
s are weighting

parameters of each associated objective term. The exogenous
input v∗OV (t) is the predicted velocity of the OV, which
is assumed to be a constant velocity within the prediction
horizons of FHOCP 1 and FHOCP 2, following a common
approach [17]. w12(t) ∈ [w12,w12] is the mismatch between
the real and predicted OV velocities, subject to its associated
boundaries. The FHOCP of the merging phase depending on
the interactions between the two vehicles will be addressed
in the next section by a game-based control strategy.

III. INTERACTIONS BETWEEN VEHICLES

This section models interactions between the controlled
EV and the human-driven OV as a Stackelberg game [11]
with a novel human driver cooperation index to reflect
the uncertain cooperative intentions of the overtaken hu-
man driver. Unlike other Nash equilibrium based algorithms
where decisions are made independently, the Stackelberg
game based algorithm considers the other player behaviours
and hence makes decisions accordingly, which emphasises
the interaction between the EV and OV. This work assumes
that interactions between the two vehicles are not triggered
until the EV enters the merging phase (i.e., sXd < sX (t)),
where the OV not only maximises its own driving satisfac-
tion, but also responds to behaviours of the EV.

A. Stackelberg game model
According to the Stackelberg game model, the interaction

between two vehicles is formulated as two cascaded FHOCPs
for two players (i.e., the sub-game for the leader, EV, and the
sub-game for the follower, OV), respectively. The purpose
of solving the OV sub-game is to determine the optimal
solution of the OV given all possible actions of the EV.
Moreover, the determined optimal solution of the OV is
involved in the EV sub-game as an exogenous input which
will ultimately affect the optimal solution of the EV sub-
game. Inspired by previous literature on driver modelling,
especially in car-following scenarios [18], [19], the OV sub-
game is formulated as FHOCP 3 as

FHOCP 3 (if sXd < sX (t)):

min
uOV (t+k|t)

δ (t+k|t)

JOV=
N−1

∑
k=0

(
WOV 1(uOV (t+k|t)−0)2+

WOV 2

(
vOV (t+k|t)−v(3)OV,i

)2
+ (8a)

WOV 3(sX (t+k|t)−sX (t+k|t))2
)
,

s.t. vOV(t+k+1|t)=vOV(t+k|t)+uOV(t+k|t)∆T, (8b)
0 ≤ vOV (t + k|t)≤ v, k∈N[0,N−1] (8c)
u ≤ uOV (t + k|t)≤ u, (8d)
(1), (2), (3c), (3d),

where WOV 1, WOV 2, and WOV 3 are weighting parameters
addressing comfort, velocity, and following gap objectives
of the OV. Moreover, v(3)OV,i is the initial OV velocity when
the EV enters the merging phase, which is also reasonably
deemed as the desired OV velocity while being overtaken.
The OV velocity determined by (8b) satisfies (8c), where
uOV (t) is the acceleration of the OV, subject to common
vehicle physical limits as shown in (8d) [20]. sX (t) = dX0 +

vOV (t)t∗ is the velocity-dependent desired following distance
given a desired car-following time gap t∗. The objective of
maintaining a desired relative distance gap requires coopera-
tive OV responses (i.e., slow down to yield) if sX (t)< sX (t).
Furthermore, FHOCP 3 is also subject to other constraints
applied to the EV during the merging phase ((2), (3c),(3d)),
such that all possible actions of the EV are involved in
FHOCP 3. Let us denote u∗OV (t) as the game-determined
optimal solution of FHOCP 3 given all possible actions of
the EV. Hence the predicted OV velocity (v∗OV (t)) can be
obtained by substituting u∗OV (t) for uOV (t) in (8b). Note
that the optimal solution u∗OV (t) determined by FHOCP 3
not only aims to maximise human driver own satisfaction
while being overtaken [19], but also is a cooperative driving
response because of minimising the third objective term in
(8a). Therefore, the human driver is regarded as cooperative
if the actual behaviour is aligned with u∗OV (t).

Based on the optimal solution u∗OV (t) of the OV sub-game
(FHOCP 3), the EV sub-game can be formulated as follows

FHOCP 4 (if sXd < sX (t)):

min
δ (t+k|t)

J3=W (3)
c J(3)c +W (3)

h J(3)h +W (3)
s J(3)s , k∈N[0,N−1] (9a)

s.t. v∗OV(t+k+1|t)=v∗OV (t+k|t)+u∗OV(t+k|t)∆T, (9b)
sX (t+k+1|t)=sX (t+k|t)+(vc−v∗OV (t+k|t))∆T, (9c)

(1b), (1c), (2), (3c), (3d), (4), (5c),
where W (3)

c , W (3)
h , and W (3)

s are associated weights of objec-
tives. The predicted OV velocity v∗OV (t) is determined based
on the optimal solution (u∗OV (t)) provided by FHOCP 3.

B. Human driver cooperation index
Although the current algorithm has already involved game-

based competitive interactions between the connected EV
and the human-driven OV, the formulation is still idealised
as the EV assumes the OV velocities can be accurately
predicted by the game model, as in (9b). In reality, the
human driver may perform as the game predicts, or may
not respond, or behave with contrasting actions. To cope
with this human-caused uncertainty, we define a parameter
called the human driver cooperation index (HDCI), denoted
as η(t), such that the connection between the actual human
driver behaviours (uOV (t)) with the game-based predictions
(u∗OV (t)) is expressed as uOV (t) = η(t)u∗OV (t) with η(t) ∈
[−1,1]. Specifically, the sign and magnitudes of η(t) indicate
how cooperative is the human driver response, e.g., η(t)=
1, η(t) = 0, and η(t) =−1 represent full cooperative, no
response, and full uncooperative, respectively. This work
assumes that η(t) is a Gaussian distributed random number,
η(t)∼N (µ,σ2). The mean of the Gaussian distribution
is zero, µ = 0. The variance of the Gaussian distribution
(σ2) is a function of the perception of the human driver
of the X-direction time gap (∆tX (t) =

sX (t)
vOV (t)

) such that σ

converges to zero as ∆tX (t) increases. This is understood as
the EV moves further ahead after passing the OV, the human
driver is less likely to respond to the overtaking vehicle [21],
[22]. A qualitatively compatible example illustration of the
bivariate probability density function (PDF) of the HDCI
is visualised in a 3D map in Fig. 3, while a quantitatively
accurate PDF of the HDCI can be determined after analysing
a large-size human driver dataset, which is beyond the
scope of the present work. By considering such uncertain
human behaviours, a more realistic expression of v∗OV (t) is
represented as

v∗OV (t +1) = v∗OV (t)+(u∗OV (t)+w3(t))∆T, (10)
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where the additive disturbance w3(t) = (η(t)−1)u∗OV (t).
Since η(t) has a Gaussian distribution and its variance
converges to zero as ∆tX (t) increases, a parameter denoted as
η∗ ∈R≥0 is introduced such that the η∗ confidence interval
boundaries are adopted as the boundaries of η(t) rather than
[−1,1] to reduce the tightness of disturbance boundaries. The
upper and lower confidence interval boundaries are denoted
as ηη∗(t) and η

η∗(t) (η
η∗(t)=−ηη∗(t)), respectively.

Fig. 3: An example illustration of the bivariate probability
density function (PDF) of η(t) at various ∆tX (t). η(t) is
normalised between −1 and 1. ∆tX (t) varies from zero
up to the time gap, where the PDF is truncated. Pink
curves represent an example of η∗=95% confidence interval
boundaries (ηη∗(t) and η

η∗(t)).

Thus, the disturbance-free FHOCP 4 is replaced by a
realistic FHOCP

FHOCP 5 (if sXd < sX (t)):

min
δ (t+k|t)

(9a),

s.t. w3(t + k|t)≤ w3(t + k|t)≤ w3(t + k|t), (11a)
(1b), (1c), (2), (3c), (3d), (4), (5c), (9c), (10),

where w3(t+k|t)=min{−(1+ηη∗(t+k|t))u∗OV(t+k|t),(ηη∗(t+
k|t)−1)u∗OV(t+k|t)} and w3(t+k|t) = max{(ηη∗(t+k|t)−
1)u∗OV(t +k|t),−(1+ηη∗(t +k|t))u∗OV(t +k|t)} such that the
disturbance boundaries in (11a) are dependent on the game-
based prediction u∗OV (t+k|t) to reduce conservativeness. Note
that the only difference between FHOCP 4 and FHOCP 5 is
the replacement of the disturbance-free expression (9b) by a
realistic expression (10) with an additive disturbance subject
to the associated constraint (11a).

To sum up, the three-phase finite-horizon controller formu-
lated as FHOCP 1, FHOCP 2, and FHOCP 5 are solved by
a recently proposed robust MPC [20], respectively. FHOCP
3 of the OV sub-game is solved by a nominal MPC.

Remark 1: Since the EV longitudinal velocity is constant
at vc in the present work, in cases where the OV speeds
up (aggressively prevents the EV from cutting in) such
that safely overtaking is no longer feasible, an emergency
handling rule can be triggered to force the EV to remain in
the overtaking lane.

IV. SIMULATION RESULTS

The performance of the proposed method is assessed
twofold: 1) the weights of the objective function are tuned
through trial and error such that the controller can reach a
balance between the two targets on safety and comfort; 2)
the proposed overtaking strategy is tested by using two OV
profiles to demonstrate its capability of handling cooperative
and uncooperative human driver behaviours. All simulation
examples are solved by the Yalmip toolkit with the MOSEK
solver in the Matlab environment. The sampling interval of
the controller is set at ∆T = 0.1 s and the prediction horizon
length is chosen as N = 10 steps such that the prediction

horizon covers the length of the minimum time gap (t0)
between two vehicles. The main characteristic parameters
of the overtaking problem are summarised in Table. I.

TABLE I: Parameters of Overtaking Problem.

Descriptions Symbols Values
EV cruising speed/OV speed limit vc/v 22.22/22.22 m/s

Length of half diagonal of vehicle rectangle r 2.38 m
Angle between vehicle diagonal and long side θ 22.47◦

Length/width/wheelbase of vehicle Lv/Wv/l 4.4/1.82/2.5 m
Width of one lane Wl 3.65 m

Standstill front-rear distance gap s0 2 m
Maximum deceleration/acceleration of vehicle u/u -3.5/3.5 m/s2

Minimum/desired time gap t0/t∗ 1/2 s
Driver response time tr 0.7 s

The safety-related performance is quantitatively evaluated
by the cut-in distance (s∗X ) which is defined as the relative
X-direction distance between two vehicles when the EV
mergers back to the initial lane, i.e., s∗X = sX (t) when sY (t) =
Wl
2 − dY 0. A large s∗X suggests the EV occupies the over-

taking lane for a long distance, which might unnecessarily
affect other traffic. On the other hand, the comfort level
is evaluated by the root mean squared (RMS) acceleration
in the Y -direction, aY,RMS =

√
1

ks3
∑

ks3−1
i=0 aY (i)2, where ks3 is

the number of samples in the merging phase. Therefore, the
objectives of safety and comfort are in conflict, as achieving
a small cut-in distance might result in a large acceleration
value. Hence, an exhaustive search is performed to find the
optimal weighting parameters W (3)

c , W (3)
h , and W (3)

s at the
nominal cooperative situation (w3(t) = 0) that offer a decent
compromise between minimisation of s∗X and aY,RMS, with
15 different values searched for each weight, i.e. a total
of 153 = 3375 combinations. Once the optimal weights are
found, each one is further swept in turn around its optimal
value to provide an exemplary illustration of its influence
on the performance objectives, as a Pareto type analysis, as
shown in Fig 4. In these results, the cut-in distance varies
from 15 m to 104 m while the aY,RMS varies from 0.03 m/s2

to 1.56 m/s2, and with the optimal weighting parameters the
two conflicting objectives reach a balance with 72% of the
most individual performance for both criteria.

0.5

1

1.5

72 %

100 %

0 %

100 % 72 % 0 %

60 80 1004020

Fig. 4: Optimal weighting parameter choices of FHOCP 5
in the merging phase, achieving a decent compromise in the
performance of both objectives.

Based on the optimised weights, further case studies are
performed to verify the capability of the proposed scheme
in dealing with two different human-driven OV responses in
Fig. 5. When the OV cooperates by slowing down to yield,
the EV successfully overtakes the OV with a safe trajectory
(see Fig. 5a). In the case of an uncooperative OV driver,
although the OV speeds up when the EV is attempting to
merge back, the EV still manages to return to the original
lane by adjusting δ (t) to create space for the accelerating
OV. This ensures that the collision-avoidance requirements
mentioned earlier are satisfied as the OV approaches from
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(a) A case when OV is cooperative (η(t) = η95%(t)).
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(b) A case when OV is uncooperative (η(t) = 0.1η95%(t)).

Fig. 5: Profiles of EV overtaking trajectory and OV ve-
locity for different case studies (i.e., η(t) = η95%(t) and
η(t) = 0.1η95%(t)). Blue and red curves represent profiles
of OV and EV, respectively. The purple dashed lines denote
when the Stackelberg game competitions are triggered in
optimisations. The yellow dashed lines denote when the EV
cuts in ahead of the OV (i.e., sY (t) =

Wl
2 −dY 0), indicating the

success of overtaking. In the top subplots of each figure, the
positions of EV and OV are marked by numbered triangles
indicating the trajectory sequences. EV heading and steering
angle profiles are shown in the second and third subplots. The
bottom subplot compares the game-based cooperative v∗OV (of
each receding horizon) and the actual vOV profiles. Further-
more, (b) illustrates the ability of the proposed overtaking
control scheme to deal with an uncooperative OV through
effective responses in terms of steering angle adjustments to
ensure the compliance of collision-avoidance constraints.

behind. The associated trajectories of the EV and OV are
shown in Fig. 5b. Additionally, the profiles of Ψ(t) and δ (t)
confirm the validity of the small angle approximation.

V. CONCLUSIONS AND FUTURE WORK

This work addresses an autonomous overtaking control
problem while considering the uncertain behaviours of the
overtaken vehicle human driver. To guarantee safety during
overtaking manoeuvres, a robust collision-avoidance con-
straint setup is designed which considers both vehicle dimen-
sions and real-time velocity. Moreover, the proposed scheme
uses a Stackelberg game-based framework to predict future
behaviours of the overtaken vehicle and set up disturbance
boundaries to cope with human-caused uncertainties. By
tuning the weights of the objective function, the presented
control framework is able to keep a balance between safety
and comfort during overtaking. Numerical case studies il-
lustrate that the proposed overtaking strategy is capable
of overtaking both cooperative and uncooperative human-
driven overtaken vehicles. Future research of this work will

emphasise involving a longitudinal velocity control in the
control strategy with a realistic human driver cooperation
model extracted from realistic datasets.
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