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Abstract— Despite the number of works published in re-
cent years, vehicle localization remains an open, challenging
problem. While map-based localization and SLAM algorithms
are getting better and better, they remain a single point of
failure in typical localization pipelines. This paper proposes a
modular localization architecture that fuses sensor measure-
ments with the outputs of off-the-shelf localization algorithms.
The fusion filter estimates model uncertainties to improve
odometry in case absolute pose measurements are lost entirely.
The architecture is validated experimentally on a real robot
navigating autonomously proving a reduction of the position
error of more than 90% with respect to the odometrical estimate
without uncertainty estimation in a two-minute navigation
period without position measurements.

I. INTRODUCTION

As more and more autonomous mobile robots (AMRs)
are getting deployed “into the wild”, the need for robust,
reliable, and always-available localization is increasing. This
is especially true when focusing on the urban environments,
where last-mile delivery robots are becoming an interesting
option for many businesses, while the localization problem
is exacerbated by the challenging context. GNSS-based lo-
calization with Real Time Kinematics (RTK) corrections has
been successfully employed in some application scenarios
like agricultural fields, but its quality in urban areas is
uneven, with vast areas where the signal has low quality due
to multi-path reflections or is completely unavailable (indoor
or covered areas and underpasses). For this reason, a lot
of effort is directed towards the development of map-based
localization algorithms [1], [2], that compare live sensor data
(typically LiDARs or cameras) to an a-priori known map
of the environment to estimate the vehicle location. While
these provide invaluable data in some settings, they are not
a silver bullet and previous works have shown how they
may struggle in some scenarios like vast open areas and
repetitive environments [3]. To mitigate these issues sensor
fusion has been explored since the early days of robotics.
Although some modern approaches integrate more sensors,
like GNSS receivers, in a graph Simultaneous Localization
and Mapping (SLAM) framework [4], these tend to be com-
putationally complex and rarely consider the peculiarities of
the vehicle on which the algorithm is deployed, resulting in
high sensitivity to sensor calibrations and completely unreal-
istic motion estimates during failures (sudden jumps, lateral
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translations for holonomic vehicles or vertical movement
for robots working in a planar environment, for example).
Indeed, most of these SLAM systems aim to be off-the-
shelf algorithms compatible with a vast variety of vehicles
and setups, assuming unconstrained rigid body dynamics.
Adapting them to exploit the motion constraints imposed
by a specific vehicle can be a resource-intensive hurdle,
even though the benefits could be noteworthy. More classical
approaches employ Extended Kalman Filters (EKFs), as
it is a lightweight and versatile sensor fusion algorithm:
common examples fuse proprioceptive sensors (like IMUs
and wheel encoders) with GNSS measurements [5], [6].
While approaches fusing a vast variety of sensors have been
developed over the years [7], [8], GNSS receivers have long
remained the only source of absolute localization data, with
few application and environment-specific exceptions [9].

This paper proposes a modular, two-layered localization
architecture that can incorporate raw sensor measurements,
as well as the output of off-the-shelf localization algorithms.
This enables the exploitation of complex, vehicle-agnostic
algorithms in a localization system that is aware of the
vehicle’s peculiarities, with relevant benefits in the reliability
of odometrical estimates. Indeed, while in [9] little thought
is given to the availability of the position measurements,
in an urban area position sources might unexpectedly be-
come unavailable. Such losses would force to robot to
halt, even if continuing along the trajectory would allow
it to re-localize (think of an underpass that blocks GNSS
reception: reaching the end would allow the reception of
new measures). While fusing two position sources definitely
increases the robustness of the localization solution, the loss
of both is not uncommon. In such conditions, having short
or medium-term resilience to complete measurement loss can
significantly increase the robot’s autonomous capabilities and
reduce the need for human intervention. Since proprioceptive
sensors are highly reliable, continuing to move trusting an
odometrical estimate is an option but, without the necessary
precautions, it is often too risky: the drift rates of odometry
can be unpredictable and highly affected by model parame-
ters like wheel radii. Our approach improves the odometrical
estimation by estimating model uncertainties online, result-
ing in relevant improvements in positional errors.

To recap, the main contribution of this paper is the devel-
opment of a localization architecture that merges the benefits
of modern localization algorithms and more classical EKF-
based state estimation approaches. The proposed architecture
is:

• modular and capable of incorporating the output of com-
plex off-the-shelf algorithms, guaranteeing competitive
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Fig. 1: Block scheme of the proposed localization architec-
ture.

performance in GNSS-denied environments;
• aware of vehicle-specific motion models, as the EKF

can be tailored to a specific vehicle;
• capable of improving the odometrical data by estimating

model uncertainties;
The architecture is also capable of handling asynchronous,
multi-rate, and unavailable measurements by adapting the es-
timated state based on time-varying observability conditions
and can be easily ported to different vehicles and setups. The
architecture is developed an deployed experimentally on an
autonomous mobile robot.

The remainder of this paper is structured as follows.
Section II discusses the core principles of the proposed
localization architecture. Next, Section III will present the
robotic platform used to develop and validate the proposed
algorithm. The implementation of the architecture for the
specific experimental platform is detailed in IV and the
experimental results are reported in Section V.

II. LOCALIZATION ARCHITECTURE
The proposed localization architecture comprises two lay-

ers, exemplified in Figure 1. The first layer, on the left,
is constituted by the localization sources, while the second
layer performs the sensor fusion operations. Localization
sources could be physical sensors, like GNSS receivers,
encoders, IMUs and magnetometers or other algorithms that
provide useful localization data, like map-based localization
algorithms or LiDAR odometries. In general, three categories
can be identified: absolute source, displacement sources and
proprioceptive sensors. Absolute sources provide the robot’s
position with respect to a fixed reference frame. At least one
absolute source is required to obtain an absoulute position
estimate. Displacement sources include odometries based
on exteroceptive sensors, like LiDAR or visual odometries.
Proprioceptive sensors measure the internal state of the
vehicle, like IMUs and encoders. It is worth noting that,
when multiple absolute position sources are considered, each
might provide data in a different reference frame. For the
fusion to work correctly, the roto-translation between such
references is estimated by aligning the raw sensor data from
the mapping session using the closed form minimization of
the point-to-point mean squared error as in [10].

The second layer of the proposed localization architec-
ture consists of a filter based on the Extended Kalman

Fig. 2: Yape, the deployment target of the developed local-
ization algorithm.

Filter framework. Under this extremely popular framework,
a model is employed to predict the evolution of the state be-
tween iterations and the prediction is subsequently corrected
by integrating measures. The applied correction is propor-
tional to the error between measured values and measurement
predictions, obtained through an observation model from the
predicted state. In the proposed approach, and contrary to [9],
we advocate for vehicle-specific models. This enables the use
of formulations that are better tailored: the more accurate the
state transition model is the more robust the localization will
be to failures in the absolute localization error sources.

Note that the filter must be capable of handling a varying
number of measurements, which is not a given in the
EKF paradigm. A common method to bypass this issue to
handle multi-rate measurements is to design the filter to
run at the frequency of the slowest sensor. This solution is
clearly suboptimal and might not meet the output frequency
requirements. Furthermore, some of the inputs might become
unavailable for prolonged periods. For these reasons, we
approach this issue differently: selecting the filter execution
frequency based on the fastest sensor. At each iteration,
we perform the prediction step and the correction step, but
the latter considers only the available measurements. This
is achieved by dynamically adjusting the dimensions of the
involved matrices.

III. EXPERIMENTAL SETUP

The localization architecture presented in this paper was
developed and tested on Yape, an autonomous ground drone
designed for last-mile delivery ([11], [12], [13]). Yape (Fig-
ure 2) is a Two-Wheeled Inverted Pendulum (TWIP) robot,
which independently controls the two wheels to achieve
motion while keeping the chassis balanced. The robot is
equipped with a sensor package comprising

• an Ardusimple simpleRTK2B Lite RTK GNSS receiver;
• a Robosense R16 16-layer mechanical LiDAR;
• a chassis-mounted e-shock DC Perception-Lean: a 6

degrees of freedom Inertial Measurement Unit (IMU);
• two incremental wheel encoders with a resolution of

0.06◦

The IMU measures linear accelerations and rotational veloci-
ties along the three axes, while wheel encoders provide wheel
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positions and rotational speeds. The presented algorithm was
implemented running online on the onboard processing unit,
an Nvidia Xavier AGX development board, by employing
the ROS framework [14].

IV. ARCHITECTURE SPECIALIZATION FOR YAPE

This Section details how the architecture principles out-
lined in Section II translate in a practical implementation on
the Yape AMR.

A. Localization sources

In this work, we fuse data from two types of sources:
absolute pose sources and proprioceptive sources, leaving
the integration of displacement sources to future develo-
ments. To achieve absolute localization, the GNSS receiver
provides position measures at 10 Hz. GNSS data achieves
centimeter-level accuracy when a clear view of the sky and an
internet connection to receive RTK corrections are available.
Furthermore, a LiDAR, map-based localization algorithm
was deployed to provide absolute pose data indoors and
under poor GNSS coverage. Cartographer [2] was selected
to cover this role after a detailed analysis of its performance,
presented in [3]. The Cartographer algorithm is employed in
pure localization mode: the localization map is considered
available after a mapping experiment. In said experiment, the
robot is teleoperated on the area that will be autonomously
traversed while acquiring raw sensor data. The dataset is
then fed to the Cartographer algorithm in SLAM mode,
which builds and optimizes the map. Note that GNSS and
Cartographer data are referred to different reference frames:
to estimate the roto-translation between the two, the mapping
phase is exploited, applying the alignment method described
in Section II to the optimized SLAM trajectory and the
GNSS one. Cartographer pose data is provided at a frequency
of 20 Hz. Regarding proprioceptive sources, we fuse the
wheel speeds measured by the encoders, as well as the yaw
rate measurement from the IMU. Both sensors sample data
at 100 Hz.

B. State transition model

To show the potential of implementing vehicle-specific
models we developed an uncertain kinematic differential
model. The estimated state x is

xk =
[
Xk Yk ψk ωR

k ωL
k RR

k RL
k bk

]T
(1)

where X , Y and ψ represent the pose of the robot, ωR and
ωL the wheels rotational speeds while RR, RL and b the
wheel radii and IMU yaw rate bias. Subscript k indicates
that the variables are referred to time instant k. The last three
states represent uncertain model parameters, which strongly
affect the odometrical performance of the localization solu-
tion. A sensitivity analysis of this phenomenon is reported
in Figure 3. Notice how even small inaccuracies can have
huge effects on the estimated trajectory.

We make the assumption of low wheel speeds, radii and
IMU bias dynamics, which allows us to write the state

transition function as

xk+1 = f(xk, uk) =



Xk +
ωR

k RR
k +ωL

k RL
k

2 cos(ψk)Ts

Yk +
ωR

k RR
k +ωL

k RL
k

2 sin(ψk)Ts

ψk +
ωR

k RR
k −ωL
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k

T Ts
ωR
k

ωL
k

RR
k

RL
k

bk


(2)

where Ts is the sampling time and T the vehicle’s track
width. Note that in our formulation uk = ∅: we include all
sensor data as outputs.

C. Measurement model

Since Cartographer and encoder measurements map di-
rectly to state variables the predicted measures ŷ will be

ŷenck =

[
ωR
k

ωL
k

]
(3)

and

ŷcartok =

Xk

Yk
ψk

 . (4)

The measurement model of the GNSS receiver is similar to
(4) but lacks a heading measurement and needs to take into
account the displacement of the antenna mounting position
with respect to the vehicle’s center of mass, expressed here
in polar coordinates (d, α):

ŷgnssk =

[
Xk + d cos(ψk + α)
Yk + d sin(ψk + α)

]
. (5)

Finally, the IMU yaw rate measurement prediction needs to
be computed from both wheel speeds, both radii as well as
the bias:

ŷimu
k =

ωR
k R

R
k − ωL

kR
L
k

T
+ bk. (6)

D. Dealing with multi-rate and unavailable measures

As introduced above, we aim to achieve a high-frequency
output, independently from the acquisition frequency of the
slowest sensor. In our case, both the encoders and the IMU
provide data at 100 Hz: we select the execution frequency
1/Ts = 60 Hz to maximize the probability of receiving
new samples from the proprioceptive sensors before each
iteration, even under severe congestion of the ROS network.
In practice, this means that the predicted measurements
vector will have a minimum of 3 elements and a maximum
of 8, with GNSS measures being integrated roughly every 6
iterations and Cartographer ones every 3.

An important side-effect of this design choice is that the
observability properties of the system change between one
iteration and the following one. Indeed, in all the iterations
where no position measurements are available, the linearized
measurement matrix would result in being

C =

0 0 0 RR

T −RL

T
ωR

T
ωL

T 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

 . (7)
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(a) (b)

Fig. 3: Sensitivity analysis of model uncertainties on the estimated (odometrical) trajectory: left wheel radius (a) and IMU
yaw rate bias (b).

The 3 × 3 null block will cause the first three columns of
the observability matrix O =

[
C CA . . . CA7

]T
to

be zero-valued as well. As a matter of fact, the number
of linearly independent rows would be rankO = 3: the
observable state is reduced to the two wheel speeds and one
between the radii and the yaw rate bias.

Some works in the literature solve this issue by predicting
the measurement as usual and inserting it as a virtual
measurement [15] or by dividing the estimation problem
into multiple sub-filters [16]. The former approach, however,
induces an artificial convergence of the unobservable states
covariances. The latter, while being theoretically sounder,
cannot consider cross-correlations between the states of
different filters and its implementation is inevitably complex.
We opt for a different approach, which applies the prediction
steps of the EKF to the full state, while the correction step
is applied only to the observable states. Although one of the
model uncertainty states would theoretically be observable
even without position measures, we choose to correct just
the wheel speeds. Indeed if, as an example, we opted to
estimate the IMU bias as well, the measurement model in
(6) would become

ŷimu
k =

ωR
k R̄

R − ωL
k R̄

L

T
+ bk (8)

where R̄R and R̄L are the latest available estimates of
the wheel radii. However, it is not possible to assert that
such estimates have reached convergence, and employing
erroneous values would result in an incorrect estimate of
the bias b as well.

In practice, this approach results in the model uncertainty
states remaining constant, while the position states get up-
dated in an odometrical fashion. Notice that the covariance
of the unobservable states grows during these “open-loop”
periods, since the state covariance prediction step is applied
to the full state.

Fig. 4: Aerial view of the trajectory traveled by Yape in the
courtyard of the Niguarda Hospital in Milan.

V. VALIDATION RESULTS

The proposed algorithm has been extensively tested in field
trials in which the robot autonomously navigated public side-
walks. The experiment reported in this paper was conducted
in the spacious courtyard of the Niguarda Hospital (ASST
Grande Ospedale Metropolitano Niguarda) in Milan during
test runs of the Budd-e project [17]. The traversed courtyard
is a vast area with heavy pedestrian and vehicular traffic,
presenting numerous buildings and green areas. Figure 4
shows the aerial view of the robot trajectory.

The presented analysis focuses on the robustness of the
localization solution to the loss of absolute position measure-
ments and the effect of model uncertainty estimation. The
first set of experiments proves the robustness of the algorithm
to the loss of one of the two absolute pose measurements, ei-
ther the GNSS or Cartographer. The second analysis presents
the effect of model uncertainty estimation with position
measurement available. The last set of experiments combines
the previous two, by assessing the performance when all
position measures are lost and evaluating the impact of
estimating model uncertainties under such circumstances.
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A. Loss of one absolute pose source

In the presented experiment, both GNSS and Cartographer
provide high-quality measurements during the entirety of the
test, exception made for the final seconds in which GNSS
quality degrades as the robot enters a indoor area (top right
in Figure 4). This allowed us to simulate the loss of one
sensor by disabling the fusion in the filter while using it for
ground truth purposes. Figure 5 presents the results of these
experiments: in blue, the error between the output of the
filter and Cartographer measures remains close to the raw
sensor data, even when fed GNSS data only (right plots).
Note that in spite of not having direct yaw measurements,
the error maintains a median of 1 deg. Similar conclusions
can be drawn by inspecting the red plots, which report errors
with respect to the GNSS position.

Fig. 5: Position (top) and yaw (bottom) error distribution
of filter estimate with respect to Cartographer and GNSS
measures. The X-axis refers to the fused position inputs
(GNSS, Cartographer, or both).

B. Model uncertainties estimation

The next set of experiments shows the effect of the model
uncertainty estimation on the velocity states. The goal of
this analysis is to show how estimating the wheel radii
and IMU yaw rate bias is necessary to achieve coherency
between the position and velocity states of the filter. Two
experiments were performed, with and without model un-
certainty estimation, and for each one the position outputs
were used to compute the cumulative traveled distance s.
Similarly, the output velocities were integrated to obtain both
the traveled distance and cumulated yaw angle. The top
plot in Figure 6 displays the error between the cumulated
distance computed from the poses and the one computed
from the velocities, while the bottom one shows the error
between the yaw angle estimated from the EKF and the
one obtained by integrating the estimated yaw rate. With
the model uncertainty estimation disabled (dark red dashed
lines) both errors diverge: this means that the velocities
are not getting estimated correctly, and their integration

drifts. With the estimation enabled (light green lines), after
a convergence phase, such drift is significantly reduced from
the longitudinal distance and even eliminated entirely from
the yaw angle.

Fig. 6: Effect of model uncertainties estimation on the
curvilinear abscissa (top) and yaw (bottom) error between
the filter output pose and integrated output velocities. The
experiment was repeated with (green lines) and without (red
dashed lines) model uncertainties estimation.

C. Loss of all absolute pose sources

The final validation experiments aim to assess the effect
of losing both position measures, a severe but not uncom-
mon circumstance in real-world deployments of autonomous
vehicles. To simulate this scenario, both the GNSS and
Cartographer fusion are disabled from t = 220 s, leaving
the algorithm running with proprioceptive inputs only for
130 s. The trajectory estimated by the filter fed with both
inputs was employed as ground truth. The effect of the
estimation is clearly visible in Figure 7a, which depicts the
trajectories after the measurement loss occurs (black dot).
With the model uncertainties estimated until such moment,
the resulting model is much more accurate and enables to
maintain significantly lower errors and minimize odometrical
drift, as visible in Figure 7b, which reports the time series of
the filter output with respect to Cartographer’s pose. Notice
how, after more than two minutes of navigation and ≈ 70 m
traveled the cumulated drift reduces from 5.3 m to 0.35 m
in terms of position error and from 7 deg to less than 2 deg
in terms of yaw error.

VI. CONCLUSIONS

This paper presented a localization architecture for au-
tonomous mobile robots. Structured on two layers, the
first one encompasses localization sources including both
physical sensors (IMU, encoders and GNSS) and fully-
featured off-the-shelf localization algorithms (Cartographer).
The second layer is a fusion filter based on the Extended
Kalman Filter framework and tailored to the vehicle motion
model, allowing the estimation of model uncertainties and
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(a) (b)

Fig. 7: Effect of model uncertainties estimation on the estimated (odometrical) trajectory (a)when position measures are
lost: position ((b), top) and yaw ((b), bottom) errors. The black dot in (a) and dashed lines in (b) indicate the last position
measurement received. The experiment was repeated with (green lines) and without (red dashed lines) model uncertainties
estimation.

the subsequent improvement of odometry estimates. This
represents a relevant improvement with respect of vehicle-
agnostic localization algorithms, which despite their un-
doubtable usefulness, can fail in unrealistic ways. The filter is
capable of handling multi-rate and unavailable measurements
by adapting the estimated state online based on to the time-
varying observability properties. Robustness to complete loss
of position measurements is demonstrated by disabling Car-
tographer and GNSS corrections for more than two minutes,
resulting in a cumulated error of 0.35 m, with respect to the
5.3 m achieved without uncertainties estimation.
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