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Abstract—The use of predictive energy management systems
can improve the efficiency of multi-energy storage vehicles.
However, current systems have limitations, such as short pre-
diction horizons, the requirement for input data that is not
publicly available, or the training of the Neural Networks
on the routes on which the prediction is made. To overcome
these challenges, this paper introduces a novel method for
long-horizon energy prediction, utilizing readily available data
such as route geometry and traffic information. Our study
compares Convolutional Neural Networks (CNNs), Gated Re-
current Units (GRUs), and Transformer Networks optimized
using the Asynchronous Successive Halving Algorithm (ASHA).
The models were evaluated in a simulated environment using
the Simulation of Urban MObility (SUMO) and further tested
on real-world driving data, demonstrating that we are able to
predict the consumed energy over a 45km stretch of highway
with a median RMSE of 0.018 kWh/km for practical application.
The energy prediction developed in this study has the potential
to enhance predictive energy management systems, thereby
optimizing energy usage and contributing to CO2 emission
reduction.

I. INTRODUCTION

Climate change, a pressing global issue, is significantly
influenced by the transportation sector, which stands as the
third largest CO2 emitter, following the energy and industry
sectors. Specifically, road transport is responsible for over
70% [1] of the sector’s CO2 emissions. This highlights
the urgent need for drastic reductions in these emissions
as part of our collective efforts to combat climate change.
In response to this challenge, multi-energy storage vehicles
such as Hybrid Electric Vehicles (HEVs), Fuel-Cell Elec-
tric Vehicles (FCEVs), and Supercapacitor Electric Vehicles
(SCBEVs) have emerged as a focal point of considerable
attention and research interest. These vehicles necessitate a
control system to manage power distribution among different
energy storages and, in certain cases like HEVs, propulsion
types.

The control algorithms currently in use are predominantly
reactive. However, there has been a notable surge in research
efforts aimed at developing predictive energy management
systems (PEMS). These offer the potential for further op-
timization of the power distribution, thereby reducing CO2

emissions or battery degradation in the case of SCBEVs [4].
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While it has been demonstrated that long prediction horizons
are beneficial for PEMS [5], state-of-the-art energy man-
agement systems such as [2] typically have short prediction
horizons, often between 5–15 seconds (60 seconds at most
[3]). This underscores the need for innovative approaches to
long-horizon energy prediction.

In this paper, we present a novel approach to vehicle
energy prediction in traffic that focuses on full drive cycle
segment-wise predictions. The most common approach for
PEMS is to predict the vehicle’s speed. This highly detailed
prediction usually only allows for a prediction of a few
seconds. In their paper [4] Wu et. al. have proposed a
promising approach for long-horizon predictions of vehicle
speed, identifying this as a relevant open research topic. Their
method employs comprehensive route knowledge, identifying
potential stop points such as traffic signals and classifying
typical stop durations for each. While this could be a feasible
approach in a future scenario where intelligent road infras-
tructure communicates with vehicles, the current infrastruc-
ture generally lacks this capability. Contrarily, our proposed
technique uses readily accessible data, encompassing route
geometries and traffic information, to make predictions for
routes that have not been previously encountered. To ensure
the accuracy of our predictions, we concentrate on forecasting
energies over the entire road segment, which results in less
detailed data in comparison to the usual speed prediction but
enables us to predict over longer horizons. This methodology
increases the applicability and versatility of long-horizon
PEMS, potentially rendering it a practical tool for real-world
situations.

To the best of our knowledge, this is the first study to
provide a detailed energy prediction over an extended horizon
working on unseen routes. To achieve this, we trained and
optimized Convolutional Neural Networks (CNNs), Gated
Recurrent Units (GRUs), and Transformer networks. We op-
timized their topology and hyperparameters using the ASHA
algorithm [6].

After training the models in simulated environments using
SUMO, we retrained them on approximately 300 km of real-
world driving data collected from German country roads and
highways. We then tested the models on a continuous 45
km section of a German highway previously unseen by the
Neural Networks. This resulted in a network that is able
to predict the consumed energy over a continuous 45km
highway stretch, which it has not seen before, with a median
accuracy of 0.018 kWh/km.
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II. DATASET GENERATION AND VEHICLE MODEL

In the following section, we explain the process of gen-
erating the dataset, employing both the Simulation of Urban
MObility (SUMO) and real-world driving data. Additionally,
we provide an overview of the architectures of the deployed
Neural Networks.

A. Dataset Generation
1) Simulation: SUMO [7], an open-source microscopic

traffic simulation model, was used to generate both training
and testing data for the artificial Neural Networks. SUMO’s
ability to simulate each vehicle individually, with distinct
driving characteristics and driver profiles, makes it an ideal
tool for realistic simulations not only of traffic flow but also
of individual vehicles.

The road network in SUMO is represented through a series
of interconnected edges and lanes. An edge symbolizes a
section of road within the network, defined from one node
to another, thereby indicating its direction. Vehicles traverse
these edges during a simulation. Each edge can comprise one
or more lanes, each of which can accommodate traffic in the
direction of the edge. The actual movement of vehicles is
simulated within the lanes. SUMO operates as a time-discrete
simulation, calculating the state of each vehicle at each step.
The stepsize is variable and user-defined. The Traffic Control
Interface (TraCI) allows external scripts to control the SUMO
simulation and access all vehicle states.

To aggregate vehicle data segment-wise, the consumed
energy of each vehicle during each time step is summed up
as long as the vehicle remains on the same edge. Once the
vehicle leaves that edge, the total energy spent on that edge
is stored, and the value for the new edge is reset to zero. A
change of lanes on a given edge does not trigger this process.
Traffic in SUMO can be simulated by generating random
start and endpoints for vehicles. The traffic generation can
be influenced by setting a minimum drive distance. After
these have been generated, the vehicle routes are calculated;
any unreachable routes are discarded from SUMO.

During the simulation, SUMO calculates lane and edge-
based traffic measures such as average speed and vehicle
density. These measures are always calculated for a prede-
fined time, e.g., every five minutes. To generate the dataset,
the vehicle-specific data calculated during the simulation is
expanded by the edge-based traffic measures at the beginning
of each vehicle’s drive after the simulation has concluded.

While SUMO is a state-of-the-art traffic simulation, it
can not model all real-world scenarios. For example, illegal
driving maneuvers will not be simulated, and neither will
weather conditions or the impact of different road surfaces.
Additionally, it is important to note that SUMO does not
inherently contain a dynamic vehicle model. For this reason,
we augment the SUMO simulation with the longitudinal
vehicle model introduced in Section II-A2.

2) Longitudinal Vehicle Model: This study utilizes a lon-
gitudinal vehicle model, which is based on the hybrid-electric
Golf GTE as it is also the test vehicle used for the real-world
drives, described in Section II-A3. Several key equations
define the model. The overall moment of the vehicle’s tires
is represented by

Mtire = rdyn(FFr + FAir + FSlope + FAccel), (1)

where Mtire is the moment the tires experience, rdyn is
the dynamic tire radius, FFr is the force caused by the tire
friction, FAir the force caused by wind resistance, FSlope the
force caused by a slope of the road and FAccel is the force
caused by accelerating or decelerating the vehicle.

Fig. 1: Free-body diagram of longitudinal vehicle model

The force caused by tire friction, FFr is calculated as

FFr = cr ·m · g · cos(α), (2)

with cr the coefficient of rolling resistance, m the mass of
the vehicle, g the gravitation constant and α the slope angle.
FAir is the force caused by wind resistance.

FAir = cW ·AXF · ρ
2
· v2xF (3)

where cW is the drag coefficient, AXF the frontal area of the
vehicle, ρ the air density and vxF the longitudinal vehicle
speed. The slope angle of the road is accounted for by

FSlope = m · g · sin(α) (4)

and the acceleration or deceleration of the vehicle with the
formula

FAccel = m · axF · e, (5)

with axF the longitudinal acceleration and e a factor for
rotating masses. The parameter values for the Golf GTE
were either taken from the datasheet of the vehicle or
experimentally determined as in [8]. The different values are
shown in Table I.

Parameter Description Value Unit
ρ Air Density 1.225 kg/m³

AXF Frontal Area 2.19 m²
cW Drag Coefficient 0.27 —
m Vehicle Mass 1814.23 kg
e Rotational Mass Factor 1.109 —
cr Rolling Resistance Coefficient 0.013 —

TABLE I: Longitudinal vehicle model parameter of the test
vehicle Golf GTE
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3) Real World Data: Real-world test drives were con-
ducted to validate the findings derived from the simulation
data, and the corresponding vehicle data was stored. The test
vehicle utilized for this purpose was a 7th generation hybrid
electric Golf GTE, as depicted in Figure 2. The vehicle’s
current speed vxF and acceleration ax were recorded at a
frequency of 50 Hz. Additionally, the vehicle’s GPS position
was captured every 1.5 seconds. To synchronize all signals
to the same frequency, the GPS data was resampled to
match the 50 Hz signals. All signals were taken from the
vehicle’s internal sensors by accessing the CAN-Bus, reading
the corresponding signals, and storing them using an ETAS.

Fig. 2: Test Vehicle and measuring hardware

Post-drive, the vehicle states were cross-referenced with
route information using the HereMaps API, which provides
both route and traffic data. Upon completion of the drive, the
start and end points of the route were used with HereMaps
to compute the route between them. If discrepancies were
found between the calculated route and the actual test drive,
waypoints were iteratively added until full alignment was
achieved. Given that the HereMaps API has a maximum byte
limit for its requests, it is crucial to minimize the number of
necessary waypoints.

Once the GPS trace and the HereMaps route were aligned,
the data from each corresponding route segment was com-
bined with the vehicle drive dataset. This was achieved by
associating each GPS point with the nearest route segment
from the HereMaps route. Lastly, the energies on each
route segment were calculated using the measured speed
and acceleration as input for the dynamic longitudinal model
described in Section II-A2. The calculated torque is used
to calculate the power in each timestep. The power will
then be integrated over the time the vehicle spends on each
route segment, resulting in the energy consumption for each
segment, which will later be used as the labels for the neural
networks. Now that the generation of simulation real-world
data has been covered, all the necessary inputs and outputs for
the Neural Networks have been described. In the next section,
we’ll go over the fundamental structure of these networks in
order to explain the differences in performance later on.

B. Neural Network Architectures

A variety of neural network architectures have been
proposed and developed to solve the problem of sequence-
to-sequence predictions. This paper will concentrate on
examining the prediction accuracy among three primary
classes: Convolutional Neural Networks, Gated Recurrent
Units, and Transformer-based Networks.

1) Convolutional Neural Networks: CNNs have seen
widespread adoption in the field of image processing but
have also seen usage in sequence-to-sequence predictions.
CNNs operate by applying a series of filters to the input
sequence. Each of these is optimized during training. The
CNN applies these filters across the entire input sequence,
generating feature maps. These feature maps are then passed
through a non-linear activation function, such as ReLU,
to introduce non-linearity into the model. This process is
repeated for multiple layers, extracting more abstract features
from the input data. After several convolutional layers, the
output is passed through one fully connected layer to produce
the final one-dimensional output sequence. As the filters are
convoluted with the input, the output dimension changes. In
order to keep the same output length as the input data, the
input needs to be padded with the size

P =
K − 1

2
(6)

with P being the padding size and K the kernel size,
assuming that the stride is 1. Our proposed CNN structure
is shown in Figure 3. It is comprised of multiple parallel
paths with different kernel sizes in order to aid the learning
of short and long-term importance of features.

Kernel Size: 1
Filters: m_1
Layers: n_1

Conv 1D

Kernel Size: 3
Filters: m_2
Layers: n_2

Conv 1D

Kernel Size: 5
Filters: m_3
Layers: n_3

Conv 1D

Input
Sequence

Kernel Size: 3
Filters: m_4
Layers: n_4

Conv 1D

Fu
lly

 C
on

ne
ct

ed Output
Sequence

Fig. 3: Structure of the used CNN with multiple paths of
different kernel sizes to encourage the learning of features
of individual segments as well as larger scale features that
influence the network over multiple segments

2) Gated Recurrent Units: GRUs [9] are a type of Re-
current Neural Network (RNN) architecture that has shown
significant effectiveness in sequence-to-sequence prediction
tasks. Unlike traditional RNNs, GRUs incorporate gating
mechanisms that modulate the flow of information through
the network. These gates allow GRUs to mitigate the vanish-
ing gradient problem, a common issue in training traditional
RNNs, thereby enabling the network to capture long-term
dependencies in sequence data. In a sequence-to-sequence
prediction task, a GRU model takes a sequence of input data
and generates a corresponding output sequence. The gating
mechanisms in the GRU control the information flow be-
tween consecutive time steps. This makes GRUs particularly
suited for tasks where the prediction at a given time step
depends on the context from both past and future steps. [9]
The GRU cell has two gates: an update gate and a reset gate.
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The update gate helps the model determine how much of
the past information needs to be passed along to the future,
while the reset gate decides how much of the past information
to discard.

The update gate zt is computed as follows:

zt = σ(Wz · [ht−1,xt] + bz), (7)

where σ denotes the sigmoid function. The update gate de-
termines the extent of information from the previous hidden
state ht−1 that should be used for computing the candidate
hidden state.

The reset gate (rt) is given by

rt = σ(Wr · [ht−1,xt] + br). (8)

This gate decides the amount of information from ht−1 that
should be discarded.

The candidate hidden state h̃t contains potential values for
the new hidden state at time t, and is calculated as

h̃t = tanh(W · [rt ∗ ht−1,xt] + b), (9)

where ∗ denotes element-wise multiplication.
Finally, the new hidden state (ht) at time t is computed

as
ht = (1− zt) ∗ ht−1 + zt ∗ h̃t. (10)

Here, xt represents the input at time t, while Wz, Wr, and
W are weight matrices to be learned for the update, reset,
and candidate hidden state respectively. Similarly, bz, br,
and b are bias terms to be learned for these states.

3) Transformer: Transformer networks are model archi-
tecture that relies entirely on an attention mechanism to
draw global dependencies between input and output. They
have been firmly established as state-of-the-art approaches in
sequence modeling and transduction problems [10].

The Transformer model is based on a sequence-to-
sequence framework, where the input and output are se-
quences. The model consists of an encoder and a decoder,
both of which are composed of multiple identical layers
containing self-attention and feed-forward Neural Networks,
as can be seen in Figure 4.

The self-attention mechanism in the Transformer model
allows it to weigh the importance of tokens within the
sequence, thereby capturing the dependencies between tokens
regardless of their distance from each other. [11]

The input matrix X is first transformed into query, key, and
value matrices using learned weight matrices WQ, WK, and
WV respectively, as shown below:

Q = XWQ,

K = XWK,

V = XWV.

The scaled dot-product attention mechanism then computes
the attention scores as follows:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V

Fig. 4: The Transformer Network processes all inputs as one,
which allows it to use information from future parts of the
data, in comparison to sequential models, that can only rely
on past information [11]

In the Multi-Head Attention mechanism, multiple attention
heads are concatenated and linearly transformed:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO

Each attention head is computed as:

headi = Attention(QWQi,KWKi,VWVi)

Finally, the Position-wise Feed-Forward Networks are ap-
plied to the output of the multi-head attention layer:

FFN(x) = max(0, xW1 + b1)W2 + b2

Compared to GRUs, Transformer networks offer several
advantages. They process all tokens in the sequence simulta-
neously, which allows for efficient handling of long-range de-
pendencies and parallelization of computations. Furthermore,
the self-attention mechanism in Transformers assigns weights
to tokens within the sequence based on their importance,
capturing dependencies between tokens irrespective of their
distance from each other. To compensate for their lack of
recurrence, Transformers incorporate positional encoding to
inject order information into the input [11].
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III. EXPERIMENTS AND RESULTS

A. Simulation

1) Dataset: The initial phase of this study involved the
generation of simulation training data for the Neural Net-
works, utilizing SUMO as outlined in Section II-A1. The
road network employed for data generation was derived from
the open-source Stuttgart Open Motorway Project (STOMP)
[12]. This project accurately models traffic over a 24-hour
period on a 45 km section based on traffic data from German
traffic authorities. The vehicle population in the simulation
is categorized into four classes: passenger cars, motorbikes,
trucks, and buses, each with their respective acceleration
profiles.

The STOMP road network, depicted in Figure 5, consists
of four large segments of German highways. However, traffic
is only modeled on one of these four segments. To augment
the training data, traffic was synthetically generated by cre-
ating random routes through the remaining three segments.
In order to simulate varying traffic densities, the number of
departing vehicles in the SUMO simulation was progressively
increased over time for the synthetically generated data. The
original four vehicle classes from the STOMP data set were
retained, and the distribution of vehicle types was aligned
with the data from STOMP.

The data generated on the three segments of the road
network served as the training set for the models, while the
vehicle data from the STOMP dataset, grounded in real-world
traffic, was utilized as the validation set for the simulation.
Given that the networks were not exposed to any portion of
the highway used for validation during their training, it can
be ensured that there was no information leakage. The split
between the training, validation, and test dataset in SUMO,
as well as an overview of the input features, is shown in
Figure 5.

 10 km

STO
M

P (Test) Section

Training/Validation
Sections

Features Unit
Edge Length m
Avg. Speed m/s

Allowed Speed m/s
Lane Curvature rad

Lane Slope rad
Avg.Speed

AllowedSpeed /

Fig. 5: Topology of the SUMO road network together with
the input-data used for each segment as input for the Neural
Networks

2) Training: Three neural network architectures are com-
pared in this study: CNNs, GRUs, and Transformer networks.
The Networks were built using PyTorch, and to improve their
prediction quality, their hyper-parameter were tuned using
the Asynchronous Successive Halving Algorithm (ASHA),
which is an optimization technique that operates by sampling
a large number of configurations from the hyper-parameter
space and allocating each a small amount of resources.

Configurations that perform poorly are discarded early, free-
ing resources for more promising configurations. The top-
performing configurations are then given more resources for
further training. [6]

The structure of the input data is shown in Figure 5;
the label data consisted of the log of the energy used on
the specific road segment; this helped with the convergence
during training as the energy consumed on one road segment
can vary widely making standard normalization unfeasible.
To train the models, a domain-specific loss function was
created to further aid with the convergence of the models.
It is calculated as

(11)loss = mse(y, ŷ) + mse(

n∑
i=1

10yi ,

n∑
i=1

10min(ŷi,5)).

For the predictions, the cumulative sum is calculated with
10min(ŷi,5) and not 10ŷi because the loss during early training
could cause an overflow.

With this loss function, the networks are also incentivized
to predict potential energy when it is not clear on which of
the route’s segments exactly that energy will be needed.

The CNNs that were optimized had the structure shown in
Figure 3, the optimizable features were the decision of which
paths to activate, the number of layers for each convolution
block, the kernel size for the final convolution block, the
number of filters and the learning rate. An overview of the
parameters is given in Table II.

Hyperparameter Tuning Range
Learning Rate Distribution between 1× 10−4 and 1× 10−1

Filters Choice among 2, 4, 8, 16, 32
Kernel Sizes Choice among 1, 3, 5

Number of Layers Choice among 1, 2, 4, 8
Path Activation Choice among True, False

TABLE II: CNN Hyperparameters Searchspace

The optimal CNN structure on the simulation data used the
path with kernel sizes one and three, with four filters. The
path with kernel size one consisted of one layer; the other
path, as well as the final convolution block, used four layers.

For the GRU networks, the learning rate, number of layers,
and hidden dimensions were optimized as shown in Table III.
The best-found model consisted of two layers with sixty-four
hidden dimensions each.

Hyperparameter Tuning Range
Learning Rate Distribution between 1× 10−4 and 1× 10−1

Hidden Dimensions Choice among 2, 4, 8, 16, 32, 64
Number of Layers Choice among 2, 4, 8, 16, 32

TABLE III: GRU Hyperparameters Searchspace

Finally, the transformer networks were optimized. As
before, the learning rate and number of layers were
optimized, as well as the number of attention heads, as
shown in Table IV. The chosen network used two attention
heads and layers. After finding an optimized structure for all
network types, these networks were trained on the SUMO
dataset and evaluated using the STOMP dataset.
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The results are shown in Figure 6. GRUs and CNNs perform
comparably, but the Transformer performs best on the
simulation data.

Hyperparameter Tuning Range
Learning Rate Distribution between 1× 10−4 and 1× 10−1

Number of Heads Choice among 1, 2, 3
Number of Layers Choice among 1, 2, 4, 8, 16, 32

TABLE IV: Transformer Hyperparameters Searchspace

Transformer CNN GRU

0

1

2

3

4

10
-4

Fig. 6: RMSE in kWh/km of the three Networks for the
50 longest routes over the test section in SUMO. The
Transformer Networks perform best, followed by the GRUs
and the CNNs.

B. Real World Data Validation

1) Dataset: To ensure the accuracy and reliability of the
simulation results, a validation process was undertaken using
real-world driving data. This data was collected as outlined
in Section II-A3, providing a dataset for model testing.

The dataset comprises five individual test drives, which
collectively account for 345 kilometers of driving data. These
test drives were conducted across various days and times,
ensuring a diverse range of conditions and scenarios were
captured. Furthermore, different routes were driven by dif-
ferent drivers. This diversity is crucial in testing the model’s
robustness under different circumstances.

Driver Road Type Length
Driver A Highway 28.2 km
Driver A Highway 28.9 km
Driver B Highway and Country Road 190.6 km
Driver C Highway and Country Road 51.6 km
Driver D Highway 45.9 km

TABLE V: Overview of the driver, length, and road types of
the five taken real-world drives.

Four of the five test drives, consisting of 300 km, were
split up into training and validation data. The last drive was
chosen as test data, as no part of it overlapped with any of the
other drives. The training drives were utilized to retrain the
pre-existing models that were initially trained as described
in Section III-A. This retraining process allowed the models
to learn and adapt based on real-world driving data, thereby
enhancing their prediction accuracy.

The final evaluation of the model was carried out using
the test drive.

It consists of a 45-kilometer segment of the German
highway, a route not included in any part of the training
process. This drive was chosen as the driver did none of the
drives in the training or validation data set, and no part of
the test route was in them.

2) Results: For the evaluation of the network, we split the
45km into four parts with a length of 10km each. The results
can be seen in Figure 7.

The Transformer network had better predictions for sec-
tions one and three, while the CNN outperformed it in Section
2. In Section 4, both networks had comparable results. The
GRU, however, was, in all cases, the worst network. This may
be due to the sequential structure of the model, as it does not
allow the GRU to take into account future segments, while
the CNN, due to its kernel size and the Transformer network,
can.

Fig. 7: Results for 10 km predictions, while Transformer Net-
works and CNNs perform comparably, GRUs are consistently
worse

To further validate that the networks are able to make long-
term predictions, we additionally made a prediction for the
whole 45km route. The resulting predictions can be seen in
Figure 8.

During this test, the limitations of the CNNs and GRU
Networks become visible. They are not able to make accurate
predictions for such long horizons and suffer from drifts.
They are still able to predict the relative movement of the
energy but consistently under-predict the total amount of
drive energy. The Transformer network, on the other hand,
is still able to accurately predict the energies because it
processes all inputs at once.

To further illustrate the difference in performance, we show
the root mean square error of the cumulative predicted energy
divided by the total number of driven kilometers so far in
Figure 9.
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Fig. 8: Results for a 45 km long test. While both Transformer
Networks and CNNs performed comparably on 10 km seg-
ments, Transformers outperform the CNNs on longer routes

GRU CNN Transformer

0

0.05

0.1

0.15

Fig. 9: RMSE in kWh/km of the three Networks over the
full 45 km drive consisting of n = 200 individual road
segments. With a median RMSE of 0.018 kWh/km or 6.43%,
the Transformer model predicts the energies most accurately.

With a median RMSE of 0.018 kWh/km, the Transformer
network is the best network for long-horizon energy predic-
tion, showing promising results for future usage in predic-
tive energy management systems. While the GRU network
outperformed the CNN on the simulated data, the CNNs
performed slightly better on the real-world data. In general,
the performance of the networks is better on simulated data
than on real-world data. This is to be expected because not
all real-world effects can be simulated. Nevertheless, the real-
world results shown in this paper are still encouraging.

IV. CONCLUSIONS

In conclusion, this paper has successfully demonstrated the
feasibility of long-horizon prediction of driving energies. We
have trained and evaluated GRUs, CNNs, and transformer-
based networks. To train them, we created a domain-specific
loss function to improve the prediction accuracy. We have
shown that it is possible to predict energy consumption
in a simulated environment and, promisingly, real-world
conditions. Our approach is novel as it works with only
publicly available data from the HereMaps API. This means
that our method can be widely applied without requiring
specific knowledge of the route, making it a practical and
accessible tool for energy prediction.

The energy prediction developed in this paper has the
potential to enhance predictive energy management systems,
as the limited prediction currently hinders their progress. By
improving these systems, energy usage in the transportation
sector can be further optimized. This, in turn, would lead to a
reduction in CO2 emissions, aiding global efforts to combat
climate change.

While our findings are promising, they necessitate further
validation through extensive real-world driving tests. In the
future, this method can be expanded using driving data from
inner-city traffic to increase its coverage of driving scenarios,
and the current prediction in the spatial domain can be
transformed into a temporal domain prediction.
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