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Abstract— This paper presents a RADAR-Based, vehicle
lateral dynamics control algorithm that ensures a safe pull-
over of autonomous racing vehicles to the roadside barriers in
the event of localization failures. The position and curvature
of the roadside barriers are estimated from RADAR measure-
ments through a Total Least Squares algorithm and fed to a
Linear-Quadratic-Regulator (LQR), which outputs the steering
commands to the vehicle. As the estimates accuracy varies with
the distance to the barriers, the proposed algorithm controls
the car at a target distance which is dynamically adjusted based
on the confidence interval of the barrier distance estimate. The
convergence of the resulting closed-loop, nonlinear system to
a minimum safe distance to the barrier is proven through
Lyapunov stability theory. We consider the setup based on the
Dallara AV-21, a fully autonomous racing car competing in
the Indy Autonomous Challenge. Simulations on the Las Vegas
Motor Speedway track demonstrate the emergency controller’s
effectiveness, offering a robust safety solution for racing cars
in case of localization losses.

I. INTRODUCTION

The quest for enhanced safety and control in the domain
of autonomous racing cars has driven the development of so-
phisticated technologies that enable these high-performance
vehicles to operate at the edge of their capabilities. One
particular challenge arises in the case of localization failure,
which require the design of emergency systems capable of
swiftly taking control of the vehicle and executing a safe
pull-over. This paper presents the design and implementation
of a RADAR-based safe pull over maneuver for autonomous
racing cars, with a specific focus on situations involving
localization failures, such as GPS signal loss and LiDAR
faults. The reference vehicle is the Dallara AV-21, competing
in the Indy Autonomous Challenge1. This fully autonomous
racing car boasts an extensive sensor suite encompassing
three RADARs, three LiDARs, six cameras, and two dual-
antenna GPS-RTK systems. Typically, the primary means
of localization relies heavily on GPS [1] [2]; however,
even with redundancy measures in place, signal loss can
significantly impact these sensor systems, especially in the
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Fig. 1. Dallara AV-21 of TII Unimore Racing team and map of the Las
Vegas Motor Speedway (LVMS).

presence of obstacles like buildings, banners, bridges, and
tunnels. For these reasons, emergency routines must be in
place to prevent potential collisions with track barriers. It is
worth noting that in such situations, an emergency braking
maneuver could jeopardize the vehicle’s stability. Hence,
an emergency controller must be designed to be capable
of steering the vehicle while maintaining a safe distance
from the track’s boundaries. Vehicle path-following tech-
niques have been extensively explored in the literature, with
solutions such as loop-shaping [3], Model Predictive Control
[4] [5], and learning-based methods [6]. These approaches
have demonstrated promising results in autonomous racing
scenarios. However, they prove to be ineffective in the
event of a localization failure. This ineffectiveness stems
from their reliance on precise localization information, as
well as the assumption of a known reference path, i.e. not
affected by uncertainty. In [7], the authors propose a wall-
following algorithm as a resilient emergency solution that
utilizes LiDAR sensors when GPS data becomes unreliable.
In this paper, we introduce a collision avoidance controller
(Fig. 2) relying on RADAR measurements, which serve to
detect the position of the walls along the track boundaries. By
leveraging a Total Least Squares fitting approach to construct
a quadratic model from RADAR data, we derive estimates
for the relative position, orientation, and curvature of the
track barrier (Section II). These estimates, are fed into a
Linear-Quadratic-Regulator (LQR)[8], primarily responsible
for controlling the vehicle’s lateral dynamics. The resulting
system aims at stabilizing the racing car at a dynamically
computed target distance from the wall. The controller is
proven to steer the vehicle toward the barrier, thereby en-
hancing the fitting accuracy and reducing the distance to the
wall until it reaches a value determined by the desired confi-
dence level. Such a distance setpoint calculation yields to a
nonlinear closed-loop dynamics, whose stability is analyzed
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Fig. 2. RADAR-Based Emergency Controller block diagram.

in Section III. In the rest of the paper, we will use the oval
track of Las Vegas Motor Speedway (LVMS) as our reference
(Fig. 1), with the support of the data collected during the
Indy Autonomous Challenge @CES 2023. Eventually, we
show the results of a closed-loop simulation of the emergency
controller, including the barrier detection, setpoint generation
and tracking (Section IV).

II. BARRIER DETECTION

The RADAR sensor consistently demonstrates its reliabil-
ity, even in high-speed scenarios. In comparison to LiDAR,
RADAR provides a notably lower data point count. Nev-
ertheless, even with such reduced data density, it remains
highly effective in detecting the presence of track barriers.
This characteristic not only simplifies data processing but
also permits the utilization of lightweight fitting algorithms.
This contrasts with LiDAR’s reliance on clustering and
segmentation [9], or necessitates fusion with camera sensors
[10]. Consequently, RADAR emerges as a versatile and
efficient sensor choice for these safety-critical applications.

It’s important to note that, in our specific case, the RADAR
sensor provides two distinct Field-Of-View options with
varying ranges (Fig. 3). To best serve our purpose, we
begin by filtering out long-range measurements, as they
hold less significance for wall detection and have shown
greater susceptibility to outliers. Furthermore, without loss
of generality, we will focus on wall detection on the right-
hand side only, according to the layout of the LVMS.

A. RADAR measurements fitting

To extract the positions of the barriers, a Least Squares
fitting algorithm has been chosen. The data from the RADAR
are fitted with a quadratic polynomial model; this choice has
proven to be a good trade-off between accuracy in modeling
the barriers profile within the selected range, given the
slowly varying curvature, and robustness, avoiding an over-
fitting that may affect higher-order polynomial models. It is
worth noting that addressing outlier robustness requires data
pre-processing and potentially incorporating robust fitting
techniques, such as re-weighted least squares [11], which
goes beyond this paper’s scope.

The problem of fitting data that are affected by noise in
both variables is described by the errors-in-variables model
[12]. We assume that the pairs (x̃i, ỹi), i = 1, . . . ,m repre-
senting m RADAR detections in the vehicle’s local coordi-
nate frame, are subject to noise with independent Gaussian
distribution, zero mean and variance σ2

xi
= σ2

yi = σ2. Our
objective is to minimize the Sum of Squared Residual (SSR)

Fig. 3. RADAR detections over a full lap at LVMS during IAC @CES
2023.

for both the observations ỹi and x̃i:

SSR =

m∑
i=1

(ỹi − yi)
2 + (x̃i − xi)

2 (1)

where yi and xi are the true (unknown) values. Given the
feature vector Xi = Xi(xi) ∈ Rn, we aim at determining
the parameter vector β and xi that minimize (1) when
yi = X⊤

i β. Thus, we solve a Total Least Square (TLS) [13]
problem that can be written as

min
β,∆X,∆Y

∥[∆X ∆Y ]∥F ,

subj. to Y +∆Y = (X +∆X)β,
(2)

where:

β ∈ Rn - Parameter vector to be estimated,
X ∈ Rm×n - Design matrix of feature vectors,

Y ∈ Rn - Vector of observations yi,
∆X ∈ Rm×n - Correction matrix on X,

∆Y ∈ Rn - Correction vector on Y ,
∥ · ∥F - Frobenius norm operator.

Assuming that X is full rank, the optimization problem (2)
has analytical solution for the parameter vector β̂ which best
fits the data in TLS sense [14]:

β̂ = (X⊤X − σ2
n+1In)

−1X⊤Y. (3)

Here, σn+1 denotes the smallest singular value of the ex-
tended matrix [X Y ] and In ∈ Rn is the identity matrix. In
our case, the rows of the design matrix X , i.e. the feature
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Fig. 4. Barrier distance estimate ey and variance σ2
ey from TLS fitting of

RADAR data over a full lap at LVMS.

vectors, can be expressed as X⊤
i =

[
x2i xi 1

]
. The result

is a quadratic polynomial model y = β̂2x
2 + β̂1x + β̂0

describing the x-y position of the barrier in the local vehicle
reference frame; thus, it is possible to directly compute the
current signed distance from the wall ey , relative heading eψ
and curvature ρ as follows:

ey = −β̂0 (4)

eψ = − tan−1(β̂1) (5)

ρ =
2β̂2

(1 + β̂2
1)

3
2

(6)

Eventually, we obtain the covariance matrix for the estimated
parameter vector through error propagation [15]:

Σ̂β = σ2(X⊤X − σ2
n+1In)

−1 (7)

B. Setpoint generation

In the event of a loss of localization, the car must come
to a safe stop at the road side while avoiding collision with
the track barrier. This objective is accomplished by tracking
a specific safety target distance relative to the wall. Interest-
ingly, it becomes evident that the confidence in the estimated
barrier distance (i.e. the fitting variance on the y-intercept
β̂0) is closely tied to the distance itself. More in detail,
the confidence level increases, meaning that the variance
decreases, as the car draws closer to the wall (Fig. 4). This
behavior finds its explanation in the fact that the number of
RADAR data points residing on the barrier, and subsequently
employed in the Total Least Squares (TLS) fitting, grows as
the car approaches the wall (Fig. 5). Therefore, the target
distance ey,t can be designed as

ey,t = ey,safe + 3σey

= f(ey)
(8)

Fig. 5. Comparison of fitting from different distances to the wall.

where ey,safe represents the desired safety distance, σey
stands for the standard deviation of the wall distance esti-
mate, and 3σey is the 99.73% confidence interval. By shaping
the target distance as in (8) we ensure that:

Pr(ey,t > ey,safe) ≃ 99.73% (9)

The resulting target distance function ey,t = f(ey) does
not have an analytical expression, as σey is the result of
a numerical procedure, yet the following properties:


ey < f(ey) ≤ e∗y if ey ≤ e∗y,

e∗y ≤ f(ey) < ey if ey > e∗y,
∂f

∂ey
≥ 0 ∀ey,

(10)

can be retrieved from experimental data, as showed in Fig. 6,
where e∗y represents the fixed point for f , i.e. f(e∗y) = e∗y ,
and it is, in general, a priori unknown.

III. LATERAL DYNAMICS CONTROL

In this section, we show how the lateral and yaw vehicle
dynamics are controlled by a LQR, such that the vehicle
safely approaches the roadside barriers. The dynamics of the
lateral and heading error with respect to the barrier can be
described by the following LPV model [16]:

ẋ = A(v)x+Buu+Bd(v)d, (11)
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Fig. 6. Reconstruction of the target barrier distance ey,t = f(ey) from
data collected at LVMS. Here, ey,safe = 1 [m]. The gray dashed line
provides an illustrative representation of a potential trend for f .

where, the state, input and disturbance vectors are defined
as:

x =
[
ey ėy eψ ėψ

]⊤
u = δ

d =
[
ψ̇bar sin(θ)

]⊤
ey, epsi - Lateral and heading errors

δ - Front wheel angle

ψ̇bar - "Yaw rate" of the barrier profile: ψ̇bar = vρ

θ - Banking angle

while the matrices A, Bu, Bd are reported in Appendix (27).
Although these matrices depend on the vehicle’s longitudinal
speed v, for the sake of clarity, we omit this dependence and
will address how the proposed results can be extended to
varying velocities in Section IV.

A. State-feedback control

Consider the following feedback/feed-forward control
structure

u = −Kx+ uff , (12)

with the control gain K designed to minimize the following
quadratic cost function over an infinite time horizon:

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt, (13)

where Q ≽ 0, R ≻ 0 are weighting penalizing the
deviation of the state and input vector from the origins of the
state and input spaces, respectively. Under the assumption
that the pair (A,Bu) is stabilizable, the control gain K,
which minimizes the cost (13) subject to the model (11), is
the solution of the infinte-time Linear Quadratic Regulator
(LQR) problem:

K = R−1BTP (14)

where P is the symmetric positive definite solution of the
continuous-time algebraic Riccati equation (CARE):

ATP + PA− (PB)R−1(BTP ) +Q = 0 (15)

The feed-forward input uff is designed such that the tracking
error ϵy = ey − ey,t, where ey,t is the target distance from
the barrier calculated as in (8), is zero at steady state. Thus,
uff is found as solution of the linear system of equations

0 = (A−BuK)xt +Buuff +Bdd (16)

where xt denotes the target setpoint. It can be shown that,
in this case, the target setpoint xt =

[
ey,t 0 eψ,t 0

]⊤
is

a solution of (16), wherein we adopt ey,t = f(ey) as in (8),
while eψ,t is determined by (16) and it depends (linearly)
on the disturbance ψ̇bar only. The closed-loop dynamics
resulting from (12) and (16) are

ẋ = (A−BuK)(x− xt) = ACL(x− xt), (17)

where we introduced ACL ≜ A−BuK.
It is important to note that, according to (8), the target

state xt in (17) is a not completely known nonlinear function
of the system state x. Indeed, while the properties outlined
in (10) are known to hold for the function f , the analytical
expression of this function is unavailable. Hence, the stability
of (17) is to be studied through Lyapunov stability analysis
tools.

B. Closed-loop stability analysis
Let us introduce the change of variables z ≜ x − x∗t ,

where x∗t =
[
e∗y 0 eψ,t 0

]⊤
is the constant setpoint,

generally unknown, that is solution of (16) when ey,t ≡ e∗y .
Consequently, the closed-loop dynamics can be expressed in
terms of z as:

ż = ẋ−��̇x
∗
t = ACL(z + x∗t − xt) = ACL(z − zt), (18)

where zt ≜ xt − x∗t =
[
(ey,t − e∗y) 0 0 0

]⊤
.

Theorem 1 (Sufficient stability condition): Define the ma-
trices:

M ≜


α(z) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 | zt =Mz, (19)

M̄ ≜ I −M, (20)

with I the identity matrix and:

α(z) =


0, if ey = e∗y
zt,1
z1

=
ey,t − e∗y
ey − e∗y

if ey ̸= e∗y,
(21)

where the subscript 1 indicates the first component of the
vectors zt and z. The properties introduced in (10) yields:

α(z) ∈ [0, 1), ∀z. (22)

Given a control gain K, if the matrix ACLM̄ is Hurwitz
∀α ∈ [0, 1), then the state x of the closed-loop system (17)
converges to x∗t as t→ ∞.

Proof: Consider the candidate Lyapunov function
V (z) = z⊤Pz, P ≻ 0. Its time derivative along the
trajectories of the closed-loop system is

V̇ (z) = z⊤P ż + ż⊤Pz

= z⊤P (ACL(z − zt)) + (ACL(z − zt))
⊤Pz,

(23)
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Substituting (19) and (20) into (23) yields:

V̇ (z) = z⊤P (ACL(z −Mz)) + (ACL(z −Mz))⊤Pz

= z⊤P (ACLM̄z) + (ACLM̄z)⊤Pz

= z⊤(P (ACLM̄) + (ACLM̄)⊤P )z.
(24)

By the Lyapunov theorem [17], if the matrix ACLM̄ is
Hurwitz, there exists a positive definite matrix Q satisfying
the Lyapunov equation:

P (ACLM̄) + (ACLM̄)⊤P = −Q, (25)

It follows:

V̇ (z) = −z⊤Qz < 0, ∀ z ̸= 0, (26)

that proves the asymptotic stability of the system (18).
Hence, z converges to the origin, implying that x converges
to x∗t as t→ ∞.

While studying the stability property of the matrix ACLM̄
as α(z) ∈ [0, 1) is not straightforward, Fig. 7 illustrates
how the eigenvalues of ACLM̄ move in the complex plane
as α(z) varies. For the sake of readability, only the eigen-
values closest to the imaginary axis are shown. While for
α = 0 we obtain the case zt = 0 (i.e. ey,t ≡ e∗y) and
closed-loop stability holds, for α > 1 the system becomes
unstable as the target distance ey,t exceeds the current vehicle
distance from the barrier, i.e. the target zt does not align
with the origin. An alternative interpretation of this result
is to consider that α represents the rate of increase in the
standard deviation of the wall distance estimate, with the
distance itself. When α = 0, M̄ transforms into the identity
matrix, ensuring the system’s inherent stability due to the
design of ACL. Consequently, in general, it is reasonable to
anticipate the existence of an upper limit, denoted as αmax,
falling within the interval (0, 1], and such that the system
is stable for α ∈ [0, αmax). Notably, the value of αmax
is intrinsically linked to the performance of the RADAR
sensor and of the detection algorithm in terms of accuracy
of the wall distance estimate, essentially setting a minimum
requirement for guaranteeing system stability.

IV. SIMULATION RESULTS

The emergency controller pipeline (Fig. 2) has been de-
signed and simulated within the Matlab & Simulink en-
vironment. The vehicle model used for closed-loop sim-
ulation consists in a double-track vehicle model, properly
parameterized according to the AV-21 specifications. The
barrier detection module takes (synthetic) RADAR data as
input and furnishes estimates of barrier distance, orientation,
and curvature, along with their respective variances. The
extracted measurements are then utilized to construct the
target wall distance and to estimate the controller’s state
via a Kalman filter. It’s worth noting that, for the sake of
comprehensiveness, we mention that the proposed design can
be seamlessly extended to the discrete-time domain, which
is commonly employed in practical controller deployment.
As previously stated, the system (11) is LPV due to the

Fig. 7. Eigenvalues λi of ACLM̄ closest to the instability region as
function of α. The arrows indicate the direction of increasing α. The dashed
lines denote the eigenvalues for α /∈ [0, 1).

speed-dependent matrices. A control gain-scheduling, speed-
dependent approach [18] can be used, provided that the
stability condition in Section III is imposed as well. Figure 8
shows the results of a closed-loop simulation conducted
on the LVMS track. The vehicle is traveling at 200 kph
while maintaining a distance of approximately 12 meters
from the barrier. At t = 5 seconds, a localization failure
triggers the emergency controller. The latter starts tracking
the target distance, which gradually decreases as the car
approaches the barrier, ultimately stabilizing around a value
e∗y . Simultaneously, the confidence level in the distance
estimate improves, that is the estimation covariance decreases
and reaches its minimum at ey = e∗y . As a result, the car
smoothly decelerates and safely comes to a halt, all while
ensuring a secure distance is maintained from the barrier.

V. CONCLUSIONS

We have presented a LQR controller for lateral dynamics,
specifically designed to safely approach the track barriers,
using only RADAR data, in scenarios that lack precise
localization. Our approach incorporates a Total Least Square
method that fits a quadratic polynomial model to the RADAR
data of the barriers position. The lateral controller is made
aware of the uncertainty of the estimated distance to the bar-
riers by providing the LQR controller with a target distance
that encompasses the “three-sigma" confidence interval. The
stability of the resulting closed-loop dynamics, which is non-
linear, has been studied using the Lyapunov stability theory.
The obtained sufficient stability conditions allow checking
that the designed controller leads to a fixed point distance
to the barriers. Finally, we have successfully deployed and
simulated the entire system, demonstrating the consistency of
our anticipated results. This comprehensive work contributes
valuable insights and a functional solution for enhanced
safety and control in autonomous racing car scenarios, setting
the stage for further advancements in this field. For com-
pleteness, a robustness analysis should be provided to further
validate the system’s performance under varying conditions
and uncertainties. Current limitations include the absence of
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Fig. 8. Closed-loop simulation. At time t = 5 seconds, a localization
failure triggers the emergency controller, which starts tracking the target
distance ey,t while the vehicle smoothly decelerates.

considerations for other vehicles. A potential strategy could
involve adjusting the target distance to the barrier to create a
trajectory that avoids obstacles. As part of our future work,
we plan to conduct preliminary field tests on a passenger car
before progressing to experiments with the AV-21.

APPENDIX

A =


0 1 0 0

0 −Cf + Cr

mv

Cf + Cr

m

−Cf lf + Crlr
mv

0 0 0 1

0 −Cf lf − Crlr
Izv

Cf lf − Crlr
Iz

−
Cf l

2
f + Crl

2
r

Izv



Bu =


0
Cf

m
0

Cf lf
Iz

Bd =


0 0

−Cf lf − Crlr
mv

− v g

0 0

−
Cf l

2
f + Crl

2
r

Izv
0


v - Vehicle speed

Cf , Cr - Front and rear tire cornering stiffness
lf , lr - Front and rear axle distance from the CoG
m, Iz - Vehicle mass and inertia

g - Gravitational acceleration
(27)
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