
Non-linear Distributed MPC Coordination of Autonomous Vehicles
using Optimality Condition Decomposition

Marc Facerı́as1, Vicenç Puig2 and Alexandru Stancu1,3

Abstract— In this paper, a novel non-linear distributed MPC
coordination scheme for autonomous vehicles based on the Op-
timality Condition Decomposition (OCD) algorithm is proposed.
As result, a local planner for each vehicle is obtained via the
OCD application to the MPC coordination scheme is obtained
for each vehicle, providing realistic paths to be executed in
a collaborative manner. The proposed approach is able to
determine paths that consider both individual goals and the
environment so that agents can collaborate to safely navigate
the studied environment. A case study in a ROS simulation
environment is used to assess the validity of the proposed
approach for real-time implementation.

I. INTRODUCTION

In the last few years, the automotive sector has been
advancing more and more towards automatising transport
systems, with autonomous cars being few years away from
a general public adoption. In the new context of highly
connected autonomous devices it is expected to see a
paradigm shift, from the roads being streams of independent
agents competing with each other to reach their goal to a
flow of interconnected entities that seek to accomplish their
objectives through peer to peer collaboration. Autonomous
driving, and thus collaborative driving, can not be considered
an unique problem, as there exists a wide range of scenarios
that involve different behaviours. Consequently, current re-
search is focused on solving individual sub-problems, such as
intersection management, assistive driving , or lane changes,
among others.

This work focuses on treating the platooning problem in
the domain of autonomous driving. We can differentiate two
trends when studying collaborative navigation, depending on
whether an optimisation problem is solved in a distributed
or decentralised manner. On the one hand, decentralised
techniques separate the systems via either estimations or
relaxations of the coupling behaviours. On the other hand,
distributed techniques rely on mathematical relaxations of
the problem to solve it in a parallel iterative manner.

Regarding distributed approaches, several research tech-
niques are being developed to deal with collaborative navi-
gation. For instance in [1], the alternating direction method
of multipliers (ADMM) algorithm is applied, being the main

1 M. Facerı́as and A. Stancu belong to the Faculty of Elec-
trical Engineering, University of Manchester, The United Kingdom
marc.faceriaspelegri@manchester.ac.uk

2V. Puig belongs to the Institute of Robotics, CSIC-UPC, Barcelona Spain
vicenc.puig@upc.edu

3A. Stancu belongs to Manchester Robotics ltd.
This work has been partially funded by Manchester Robotics ltd. and by

the Spanish State Research Agency (AEI) through the project SaCoAV (ref.
MINECO PID2020-114244RB-I00).

innovation with respect to other approaches the usage of a
spline based characterisation of the environment. In similar
lines of work, [2] presents a platooning ADMM algorithm
with a leader-follower structure and evaluates its performance
in Carla, a high-fidelity simulator for autonomous driving. A
distributed collision avoidance approach is presented in [3],
where simple agents modelled through a double integrator
are coordinated using ADMM and a linear approximation
of the collision avoidance constraints that allow solving the
problem in a simpler manner. Similarly, [4] presented an
ADMM coordination strategy that relies on separating lines
for obstacle avoidance and spline-based trajectory character-
isation, showing how the distributed algorithm improved the
results of its centralised counterpart. Moreover, distributed
coordination strategies allow system reconfiguration in an
ad-hoc manner, preventing local failures to compromise the
whole system. An example of this behaviour can be found in
[5], where a novel online platoon reconfiguration technique
is presented and compared to the current European standards,
with an special focus on the physical limitations that need
to be overcome to implement this family of algorithms.
Following a different path, [6] proposes an ADMM optimal
consensus controller applied to systems of particles. Inter-
estingly, some lines of work do not rely on optimising a
common performance metric to force a collaborative nature.
For instance, in [7], a game theoretic approach based on
Gauss-Seidel iterative method is proposed, allowing agents to
decide whether to compete or collaborate, achieving a more
human-like behaviour while improving their performance
compared with a classic MPC. In a similar line of work
[8] proposes a coordinated graphs and Max-Plus algorithm
to decide high level actions that agents should perform to
rearrange themselves in a lane-free environment.

Alternatively, decentralised algorithms switch the
paradigm and decouple each subsystem by ignoring their
interactions or estimating optimisation variables of the
neighbouring agents. In other words, they effectively
assume that global performance is subject to maximising
the performance of each individual in an isolated manner,
leading to a competitive behaviour which opposes the
collaborative nature of other architectures. For instance,
in [9] presents a decentralised solution for the navigation
in road intersections where each agent acts individually
and a second coordination layer gives priority to each
of them in a centralised manner to minimise the cost
related to its intersection. In another line of work, [10]
presents a platooning algorithm with an special focus on the
physical implementation of the network with a real fleet of

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 705



trucks following a leader. Similarly, [11] presents an urban
navigation network where agents communicate with devices
installed in the streets that assign plans seeking to optimise
the routes in a collaborative manner. Other approaches
rely on estimating the results of coupled sub-problems, as
presented in [12], where an MPC structure is used along
with compatibility constraints to decouple vehicles in shared
environments. In general, this family of strategies tend
to add external devices to the system to avoid degraded
solutions which may appear due to the simplification of
coupled dynamics, as presented in [13].

In this paper, a novel non-linear distributed MPC coordina-
tion scheme for autonomous vehicles based on the Optimality
Condition Decomposition (OCD) algorithm is proposed. As
result, a local planner for each vehicle is obtained via
the OCD application to the MPC coordination scheme is
obtained for each vehicle, providing realistic paths to be
executed in a collaborative manner. The proposed approach
is able to determine paths that consider both individual goals
and the environment so that agents can collaborate to safely
navigate the studied environment. A case study in a ROS
simulation environment is used to assess the validity of the
proposed approach for real-time implementation.

The structure of the paper is the following: Section II
presents the problem statement and the OCD approach.
Section III shows the application of the proposed approach
in the collaborative coordination of autonomous vehicles.
Section IV presents the simulation results in the considered
case study scenario. Finally, Section V draws the main
conclusions and points several future research paths.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

A. Problem statement

The collaborative planning problem can be defined as
the search of suitable paths for a group of autonomous
vehicles (agents) that allow navigating an environment while
satisfying a set of constraints (as e.g. collisions avoidance
or road margins). These constraints vary depending on the
nature of the system, being in this specific scenario the
physical limits of the agents and the safety margins between
them. The main complication associated with this type of
problems is that in order to find a suitable path for each
vehicle we need to embed all the agents of the system
in a single optimisation problem, which may lead to idle
times too big for any real time application. Furthermore,
solving a single optimisation problem implies that the system
needs a central computing unit and a communication network
powerful enough to ensure the propagation of the solutions
and retrieving of all the individual agent data.

The inherent fragility and inefficiency of the centralised
approach motivated the reformulation of the problem in a
distributed manner. Even though there is still a performance
bottleneck related with the latency of the network, we can
solve N optimisation sub-problems locally while achieving
an optimality degree close to the centralised case through the
propagation of local solutions and solving the sub-problems
iteratively until convergence. This approaches tend to present

algorithm with a high computational load. Thus, an alterna-
tive can be found in decentralised optimization approaches,
which are a relaxed version of the original problem that
either ignore the coupling between subsystems or rely on an
approximation of their local variables, leading to a set of N
independent problems. Such structure is specially interesting
for multi-agent systems, as they are physically distributed
systems where using a centralised optimisation algorithm
would imply a huge computational burden.

B. Lagrangian relaxation methods

Lagrangian relaxation methods are techniques applied to
optimisation problems that aim to solve a simplified relaxed
version of the problem through the application of the La-
grange multipliers. In order to illustrate this concept, we will
introduce an arbitrary optimisation problem in

min
x

f(x)

s.t.
h(x) ≤ 0

(1)

We aim to relax Eq.(1) by adding the constraint h(x) to
the cost function through a term λ, known as a Lagrange
multiplier, leading to min

x
f(x) + λh(x).

It can be observed that the problem is enforced to minimise
the term λh(x), which for an appropriate positive value of
λ is equivalent to treating h(x) as a constraint. The same
principle is exploited by several decomposition techniques,
which take advantage of embedding certain coupling con-
straints as part of the cost function to solve the complete
problem in a distributed manner. Even though there is a vast
literature regarding the solution of this distributed problems,
they can be classified as either Lagrangian decomposition
or decentralised solution of the KKT conditions for local
optimality [14]. Two of the most popular techniques are the
ADMM and OCD, which belong to the first and second
approaches, respectively. It can be seen that among the
literature presented in the introduction, ADMM is the most
extended technique and, even though OCD is similar in
essence, the latter presents some advantages that allow a
system topology more convenient for the problem treated
in this paper. As presented in [15], the main advantage of
OCD over ADMM is that the latter does require a central
coordination unit to perform the dual variable update, while
OCD only requires communication with peers that present
coupling with each other. This key difference in the system
structure not only avoids relying on a specific agent but
opens the door to the implementation of security features and
dynamic agent reallocation in a simpler manner. In particular,
ADMM requires a centralised update method, while OCD
updates λ in a peer-to-peer basis. In this way, communication
is only strictly necessary among vehicles sharing a local
constraint.

As mentioned before, OCD is a technique based on the
Lagrangian decomposition method, proposed in [16], that
aims to divide a complex problem into simpler sub-problems

706



by separating the coupled constraints. In this context, con-
sider an optimisation problem with two groups of variables
x = [x1, x2], as follows

min
x1,x2

f(x1, x2)

s.t.
g1(x1) ≤ 0

g2(x2) ≤ 0

h1(x1, x2) ≤ 0

h2(x1, x2) ≤ 0

(2)

In this example, we consider gi separable constraints, which
involve only one subset of states, while hi are constraints that
do not allow a direct decomposition. This can be solved by
fixing a certain subset of variables, leading to two problems
of the following shape

min
x1

f(x1, x̂2)) + λ2h2(x1, x̂2)

s.t.
g1(x1) ≤ 0

h1(x1, x̂2) ≤ 0

(3)

For clarity purposes we will not write the second half of
the distributed problem, as it can be obtained by switching
indexes 1 and 2. By iterating through the update procedure
in Algorithm 1, an approximation of the optimal solution is
computed. It is worth to note that any update policy of α
could be applied to improve the convergence rate of λ, but
for simplicity purposes, a constant positive update rate has
been used in this formulation.

Algorithm 1 Optimal Condition Decomposition
while not convergence do

Collect current xi and set x̂i = xi

Update λn = λn + αh(xk
i , x

k
n)

Compute a step of ith optimisation problem
Forward xn thorough the system

end while

C. Non Linear DMPC formulation

In order to propose a distributed control problem, its
centralised counterpart is going to be presented, which in
this case is equivalent to consider all the vehicles in the
road and their interactions as a single system. The MPC
structure is specially suitable as an optimisation problem
as it provides reasonable estimates for successive problem
while allowing a precise agent representation. This is
specially interesting in its NL case, as by providing a good
initial search point we can limit the number of search steps
and safely assume that the solution will be located close to
a reasonable system state.

min
∆uk

n

J =

H∑
k=0

N∑
n=0

(Jk
n(x

k
n))

s.t. ∀k ∈ [0, H],∀n ∈ [1, N ]

xk+1
n = f(xk

n, u
k
n)

uk
n = uk−1

n +∆uk
n

uk
n ∈ [uk

n, u
k
n]

ekyn
∈ [ekyn

, ekyn
]

∀k ∈ [0, H],∀n ∈ [1, N ],∀j ∈ [1, N ] j ̸= n

g(pkn, p
k
j ) ≡ ∥pkn, pkj ∥2 ≤ Dsf

(4)

where Jk
n(x

k
n) has the following quadratic shape:

Jk
n(x

k
n) = xQx+∆uQu∆u+ qxx+ quu+ qσσ (5)

being x is the vehicle state vector, u the input vector, ekyi

the lateral error and σ a set of slack variables. Qx, Qu, qx,
qu and qσ are weighting factors applied to each variable,
while H and N refer to the planning horizon and num-
ber of agents in the fleet, respectively. Obstacle avoidance
constraints are represented by the term g and formulated
using the Euclidean distance, where Dsf is the minimum
allowed security distance. Finally, the vehicle model is an
arbitrary function f(xk

n, u
k
n), which will be particularised

in further sections of this paper. Applying OCD to Eq.
(4) leads to N subsystems of varying shape depending on
their communication topology. In order to exemplify their
structure we are going to present a simplified case with two
agents a1 and a2. Eq. (6) refers to a1 while in Eq.(7) refers
to a2.

min
uk

J =

H∑
k=0

(Jk
1 (x

k
1) + Jk

2 (x̂
k
2))

s.t. ∀k ∈ [0, H]

xk+1
1 = f(xk

1 , u
k
1)

uk
1 = uk−1

1 +∆u1

uk
1 ∈ [uk

1 , u
k
1 ]

eky1
∈ [eky1

, eky1
]

g(pk1 , p̂
k
2)

(6)

min
∆uk

n

J =

H∑
k=0

(Jk
2 (x

k
2) + Jk

1 (x̂
k
1)) + λk

1,2g(p
k
2 , p̂

k
1)

s.t. ∀k ∈ [0, H]

xk+1
2 = f(xk

2 , u
k
2)

uk
2 = uk−1

2 +∆uk
2

uk
2 ∈ [uk

2 , u
k
2 ]

eky2
∈ [eky2

, eky2
]

(7)

In this minimal example two agents coupled through a
common obstacle avoidance constraint are decoupled through
the addition of a Langrange multiplier to one of the sub-
problems. In this way, the optimal solution can be found

707



via an iterative approach without the need of performing
a centralised optimisation. Note that terms denoted as ·̂
represent information about the fixed subset, e.g the previous
solution of coupled sub-problems, of the term involved. Such
fixed value is updated online in the intermediate steps of
the optimisation and thus its value is shared through the
subsystems accessing it.

As it can be seen, applying this formulation as presented
in Eq. (4) leads to duplicated constraints. Specifically, when
dealing with an arbitrary pair i and j, two equivalent con-
straints are generated, as gk,i,j ≡ gk,j,i. In order to prevent
it, we can apply the following heuristics:

• if i < j, we will consider i as the ego vehicle and
add the constraint g(pki , p̂

k
j ) to its optimisation problem.

Accordingly, λh
1,2g(p̂

k
i , p

k
j ) is added to the neighbouring

agent j.
• if i > j, we will consider j as the ego, treating the

constraints in the same manner already presented, but
inverting the roles of i and j.

Additionally, slack variables σu, σey , σg , σh were added to
the system and introduced in the cost function with appropri-
ate weighting factors. These variables allow the constraints
associated to them to be violated, dramatically increasing
the cost function value. Thus, this will only happen in
situations that otherwise would lead to system deadlocks,
e.g a bottleneck where the only way to advance is by being
closer than Dsf .

III. COORDINATION OF AUTONOMOUS VEHICLES

The proposed approach presented in previous section will
be used to deal with an environment where a group of
N agents enter a highway and rearrange themselves into a
platooning formation. The system is rewarded to traverse the
environment as close as possible to the maximum allowed
velocity while keeping a safety distance between agents and
respecting both the physical limits of the vehicle and the
highway. Each vehicle is modelled after a scaled car and
we consider that all members of the platoon have the same
global path Gp, defined by a set of arc segments of length
l and curvature k, being Gp = [l0, k0, l1, k1, ..., lN , kN ].
Additionally, we consider no lanes present in the track, thus
agents can position themselves in any formation as long as
they remain within the road limits and keep inter-vehicular
safety distance. Finally, each agent is assumed to follow local
plans perfectly. While this assumption is not needed to assess
the viability of the algorithm, it simplifies the experimental
process and decouples possible control errors from the plans
generated, which by design will be suitable for the agents.
It is worth to mention that in strict theory, we could use the
control actions generated by the MPC directly as the input of
each individual in the platoon. However, due to the latency
of the algorithm this would lead to poor performance.

A. Non-linear vehicle model

In this work, we opted to use a dual model, involving
both Frenet frame coordinates and Cartesian coordinates.

ax ey

eth

ax

x0

xn

Cartesian
Reference

Frenet
Reference

Fig. 1. Two equivalent paths represented in both Cartesian and Frenet
frames

Both formulations have particular strengths. However, mod-
els purely based on Frenet coordinates lack representing the
vehicle physical insights necessary in autonomous driving,
which motives proposing a mixed model. In this application,
the variables associated to a Frenet frame are used to embed
of the reference signal into the model via following a
curvilinear reference defined by a curvature k and an arc
length s at which the agent is located. On the other hand,
we will add the terms related with the Cartesian positions and
velocities, as they are adequate for collision checking, which
is strongly related to the geometric disposition of the system.
Furthermore, having access to vx, vy and w is critical from
a performance point of view, as it allows adding comfort
constraints. The Cartesian variables of the car model have
been derived from a bicycle model. A visual representation
of both Frenet and Cartesian frames can be seen in Figure
2. The continuous-time non-linear model is described by the
following set of equations in the Cartesian coordinates

v̇x = a+
−Fyf sin δ − µg

m
+ ωvy

v̇y =
Fyf cos δ + Fyr

m
− ωvx

ω̇ =
Fyf lf cos δ − Fyrlr

I
ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

θ̇ = ω

(8)

where Fyf = Cfαf , Fyr = Crαr, αf = δ −
tan−1

(
vy
vx

− lfω
vx

)
and αr = − tan−1

(
vy
vx

+ lrω
vx

)
. Carte-

sian state variables vx, vy and ω represent the body frame
velocities, i.e. linear in x, linear in y and angular velocities,
respectively. Accordingly, the position is defined by x, y,
θ coordinates with respect to a global reference frame. The
variables δ and a are the steering angle at the front wheels
and the longitudinal acceleration vector on the rear wheels,
respectively, and represent the inputs of the system. Fyf and
Fyr are the lateral forces produced in front and rear tires,
respectively. Front and rear slip angles are represented as αf

and αr, respectively, and Cf and Cr are the front and rear
tire stiffness coefficients. m and I represent the vehicle mass
and inertia and lf and lr are the distances from the vehicle

708



TABLE I
DYNAMIC MODEL PARAMETERS OF THE VEHICLE

Parameter Value Parameter Value
lf 0.125 m lr 0.125 m
m 1.98 kg I 0.06 kg m2

Cf 60 Cr 60
µ 0.05 g 9.81 m

s2

center of mass to the front and rear wheel axes, respectively.
On the other hand, the vehicle dynamics can be repre-

sented in the Frenet frame coordinate set as follows

ṡ =
vxcosθe − vysinθe

1− eyk

ėy = vx sin θe + vy cos θe

θ̇e = ω − vx cos θe − vy sin θe
1− eyκ

κ

(9)

where Frenet state variables are denoted as s, ey and θe and
represent the position of the vehicle along the curve, the
lateral error and the orientation error, respectively. Finally
this model is particularised for a small scale vehicle by
substituting the constants present in Table I.

B. Environment modelling

The reference to be followed by the platoon is modelled
through a set of curvilinear segments of constant curvature
k and a given length l. This is embedded into the model
by the time-varying constant k and the state variables s,
ey and θe. In order to update the parameter k, a greedy
search is performed through the set of curves seeking the
one that encloses the current position of the vehicle, taking
into account the Frenet frame state variables. By considering
the previous position and taking into account that each
segment has a constant curvature, we can perform this search
locally without having a major impact on the algorithm
computational time. Note that the correctness of k is subject
to the precision of the state variable s which in a real scenario
will depend on both the model quality and the onboard
localisation module. In this paper, it is assumed that the
reference curves are computed offline, resembling what could
be a segment of a highway.

IV. RESULTS

The effectiveness of the algorithm proposed in Section II-
C is going to be assessed by applying it under the conditions
presented in Section III. The results of this section were
generated using CASADI and IPOPT as a non-linear solver.
The code was deployed in a ROS network where each
agent acts as an individual computing thread, resembling
a real network of autonomous agents. All the computing
times presented in this section do not include communication
delays. However, they should be taken into consideration
for any practical implementation. Finally, all tests were
carried out in a consumer laptop with 16Gb of RAM, an
i7-13700H CPU and no specific hardware acceleration. It

Fig. 2. Path traversed

is worth to note that solving the non-linear formulation is
a NP-Hard problem. Thus, results are susceptible to the
experimental conditions. However, per definition, OCD will
improve inaccurate solutions iteratively which can mitigate
the workload by using non-optimal solutions of the sub-
problems. The metrics used for the sake of the comparison
are the 2D generated path, the safety limits, the look-ahead
distance and the computational time per iteration. In order to
assess performance, we will use vx and both inter-vehicular
and look-ahead distances. This selection is motivated by
the fact that we aim to know how fast are we going to
reach our goal and how safe is the trajectory going to be.
It is trivial to see that higher linear velocities will lead to
shorter trajectories. The selection of the safety metrics aims
to represent how well can we react to unforeseen scenarios.
Specifically, how far away can a detectable obstacle be to be
considered in the plans and what margin do we have in the
face of events such as an agent losing control of the vehicle
or an animal crossing the road. Firstly, as we can see in
Figure 3, agents maintain a velocity around the road limits,
which in this case is set to 3 m/s. A strict velocity profile may
be enforced through modifying the cost function, but in this
case it was treated as a soft objective. With the proposed set
up the algorithm look-ahead distance is 5 s, with a prediction
horizon of 20 steps, providing a reasonable tradeoff between
length and performance. In terms of platoon performance,
in Figure 2 it can be seen how vehicles rearrange into a
formation that satisfies the minimum distance constraints,
and advance along the center of track, reducing ey . Note
that this particular behaviour is enforced through the design
of the cost function, as there is no other incentive of min-
imising the lateral error other than mimicking the expected
human behaviour. Consequently, other arrangements could be
incentivised through an appropriate cost function. Finally,
in terms of computational time we can see in Fig. 4 how
the overall algorithm can be executed in under 500ms,
which makes it feasible to scale it into a real device. As

709



0 100 200 300 400 500 600 700 800 900 1000
it

1

1.5

2

2.5
V

el
 x

 (
m

/s
)

Agent 1

0 100 200 300 400 500 600 700 800 900 1000
it

1

2

3

V
el

 x
 (

m
/s

)

Agent 2

0 100 200 300 400 500 600 700 800 900 1000
it

1

2

3

V
el

 x
 (

m
/s

)

Agent 3

Fig. 3. Velocity profile

0 200 400 600 800 1000
time (s)

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

co
m

p.
 ti

m
e 

(s
)

mean

Fig. 4. Average computational time per agent

a clarification, Fig. 4 presents the average optimisation time
per agent is presented, in the particular case of 3 agents each
of them would locally solve its local problem derived from
Eqs. (6) (7). Remarkably, due to the equivalent complexity
of each sub-problem individual optimisation times where
similar among agents in the fleet. Note that the first iteration
is remarkably slower due to the computation of Hessian
and Jacobian matrices used by IPOPT with its off-the-shelf
configuration to solve the optimisation problem. However,
this has no impact on the rest of the iterations as the solver
is already warm started with suitable initial conditions, which
are reasonably close to the expected optimal values.

V. CONCLUSIONS

In this work, a novel non-linear distributed MPC coordina-
tion scheme for autonomous vehicles based on the Optimality
Condition Decomposition (OCD) algorithm is proposed and
tested it is viability in a shared environment. Furthermore,
tests were implemented in a distributed manner as a ROS

network, mimicking the physical layout of a platoon of
autonomous vehicles, with agents reaching some sort of
formation and stay in it while traversing the environment
under some safety conditions, in what can be understand to
be non-competitive behaviour. As future work, we aim to
expand this research by apply variations of the planner in a
cascade fashion so that collaborative decisions, which tend
to have an slower occurrence rate can be taken in a higher
level, less constraining both in terms of model accuracy and
computational time, while the local plans are computed by
a faster distributed algorithm with an special focus on the
physical distribution of the agents and its safety.

REFERENCES

[1] R. V. Parys and G. Pipeleers, “Distributed mpc for multi-vehicle
systems moving in formation,” Robotics and Autonomous Systems,
vol. 97, pp. 144–152, 11 2017.

[2] E. Vlachos and A. S. Lalos, “Admm-based cooperative control for
platooning of connected and autonomous vehicles,” vol. 2022-May.
Institute of Electrical and Electronics Engineers Inc., 2022, pp. 4242–
4247.

[3] F. Rey, Z. Pan, A. Hauswirth, and J. Lygeros, “Fully decentralized
admm for coordination and collision avoidance,” in 2018 European
Control Conference (ECC), 2018, pp. 825–830.

[4] R. Van Parys and G. Pipeleers, “Online distributed motion planning for
multi-vehicle systems,” in 2016 European Control Conference (ECC).
IEEE, 2016, pp. 1580–1585.

[5] S. Jeong, Y. Baek, and S. H. Son, “Distributed urban platooning
towards high flexibility, adaptability, and stability,” Sensors, vol. 21,
4 2021.

[6] Q. Wang, Z. Duan, and J. Wang, “Distributed optimal consensus
control algorithm for continuous-time multi-agent systems,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1,
pp. 102–106, 2020.

[7] M. Wang, S. P. Hoogendoorn, W. Daamen, B. van Arem, and
R. Happee, “Game theoretic approach for predictive lane-changing
and car-following control,” Transportation Research Part C: Emerging
Technologies, vol. 58, pp. 73–92, 9 2015.

[8] D. Troullinos, G. Chalkiadakis, I. Papamichail, and M. Papageorgiou,
“Collaborative multiagent decision making for lane-free autonomous
driving,” in Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, 2021, pp. 1335–1343.

[9] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination of
automated vehicles at intersections: Theory and experiments,” IEEE
Transactions on Control Systems Technology, vol. 27, pp. 2510–2525,
11 2019.

[10] Y. Lee, T. Ahn, C. Lee, S. Kim, and K. Park, “A novel path planning
algorithm for truck platooning using v2v communication,” Sensors
(Switzerland), vol. 20, pp. 1–27, 12 2020.

[11] Y. Regragui and N. Moussa, “A real-time path planning for reducing
vehicles traveling time in cooperative-intelligent transportation sys-
tems,” Simulation Modelling Practice and Theory, vol. 123, 2 2023.

[12] F. Mohseni, E. Frisk, and L. Nielsen, “Distributed cooperative mpc for
autonomous driving in different traffic scenarios,” IEEE Transactions
on Intelligent Vehicles, vol. 6, no. 2, pp. 299–309, 2020.

[13] L. Guillaume, “Fast unfolding of communities in large networks,”
Journal Statistical Mechanics: Theory and Experiment, vol. 10, p.
P1008, 2008.

[14] A. Kargarian, J. Mohammadi, J. Guo, S. Chakrabarti, M. Barati,
G. Hug, S. Kar, and R. Baldick, “Toward distributed/decentralized dc
optimal power flow implementation in future electric power systems,”
IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2574–2594, 2016.

[15] P. Segovia, V. Puig, E. Duviella, and L. Etienne, “Distributed model
predictive control using optimality condition decomposition and com-
munity detection,” Journal of Process Control, vol. 99, pp. 54–68, 3
2021.

[16] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand,
Decomposition techniques in mathematical programming: engineering
and science applications. Springer Science & Business Media, 2006.

710


