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Abstract— Multi-energy systems (MESs) involve the syner-
getic operation of different energy vectors, unlocking higher
system flexibility and efficiency. Nonetheless, they suffer from
high model complexity, large-scale dimension, and different
dynamical transient time constants. Moreover, each energy
vector may have its own stakeholder, raising privacy concerns.
In this framework, this article proposes a distributed two-layer
predictive control architecture enabling to solve the mentioned
issues. The lower level consists of decentralized Model Pre-
dictive Control (MPC) regulators considering detailed models,
possibly nonlinear, while the high level exploits a convex and
unified energy modelling of each energy vector using a fully
distributed algorithm named Dual Consensus ADMM (DC-
ADMM). The proposed control architecture is tested on an
extended case study composed of three interconnected energy
vectors i.e., a hydrogen energy system, a district heating
network from the literature, and the IEEE 37-bus power system,
showing promising results.

I. INTRODUCTION

Multi-energy systems (MESs) are a possible solution for
the decarbonization of energy system. MES consists of the
synergetic operation of different energy vectors together,
unlocking higher system flexibility and efficiency [1]. They
achieve these benefits through meaningful energy exchange
among different energy vectors, e.g., electrical, gas, or dis-
trict heating networks. The energy exchanges is enabled by
interface devices availability e.g., heat pumps (electrical-
to-thermal energy), fuel cells (gas-to-electrical energy) or
boilers (gas-to-thermal energy). Nonetheless, the control of
MES is not an easy task due to the model complexity, the
large-scale dimension, and the time constants diversity, e.g.,
fast electrical dynamics and slow thermal ones. Also, the
control approach should deal with privacy concerns as the
subsystems may belong to different system operators.

Recently, the literature worked on finding appropriate con-
trol architectures for multi-energy systems [2]. A common
reference model is the energy hub (EH), a linear and lumped-
element framework to develop new control techniques for
MES [3], e.g., optimal control through model predictive
control (MPC) [4]. Increasing control complexity, mixed-
integer linear models [5], time-varying constraints [6] or
data-driven methods [7], [8] are present in the literature.
Unfortunately, these solutions are based on centralized con-
trols which suffer from scalability issues (i.e., computational
problems related to agents number or complexity growth)
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due to energy vector models’ complexity, and they do not
preserve local confidential information. This complexity led
others to test hierarchical control strategies [9], [10] pushing
the complexity to lower levels trying to achieve lightweight
centralized high level optimization problems. Nonetheless,
scalability issues also affects pure hierarchical approaches.
Distributed control approaches may solve scalability and
privacy issues, but their optimality, convergence and fea-
sibility are guaranteed only in the presence of convexity
[11]. Though, MES are typically characterized by nonconvex
and nonlinear models. Thus, some distributed approaches
present in the literature exploit either linear problems or
MILP formulations resulting in simplified models that are
less optimal in energy vector management, e.g., due to the
inability to utilize networks effects [12], [13].

Given the above discussion, the main goal of this work
is to propose a control architecture that solves scalability
and privacy concerns and exploits the benefits of distributed
algorithms in the presence of nonlinear models to optimally
coordinate MES. This is possible thanks to a novel modelling
technique that exploits low level data to create a high level
problem that is convex and unified across all energy vectors.

The proposed control strategy is based on a distributed
two-layer architecture. The lower level consists of several
local decentralized MPC, each one controlling an energy
vector with a suitable time-rate and nonlinear model. The
local MPC minimizes the local operational costs, while
tracking references on the total energy to be stored and
on the power exchanges among different vectors imposed
by the high-level layer. The latter is based on a distributed
framework of supervising MPC regulators, exploiting the
Dual Consensus ADMM algorithm [11], a fully distributed
scheme with enhanced scalability properties [14]. Addition-
ally, we guarantee the distributed algorithm convergence by
exploiting the generalized energy formulation previously de-
veloped in [10]. This modelling technique unlocks a unified
convex representation of different energy vectors and ensures
distributed control strategies convergency.

We analyze the proposed control architecture perfor-
mances on an extended MES example composed of three
energy vectors: a gas network, a district heating network,
the AROMA [15], and a power system, the IEEE 37bus.
The collected data support the proposed control optimality
and scalability. The work is an evolution of [10], surpassing
its shortcomings in two ways: getting rid of the high-level
centralized layer and its scalability and privacy-related issues,
and ensuring that power exchanges among multi-energy sub-
systems are locally imposed by the local regulators instead
of being imposed by a supervisory layer.
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Notation: We denote the set of real numbers as R.
Moreover, given a matrix A, A ∈ Rn,m represents a real-
valued matrix with n rows and m columns. Considering the
same matrix, we indicate as A′ its transpose. The operator
blkdiag({A}n) defines a block-diagonal matrix with n-times
matrix A as blocks. The same holds for vectors. We denote
as 1 a 1D vector of suitable dimensions which entries are all
1, e.g., [1, . . . , 1]′. The same holds for the vector 0 which
entries equal to 0. Furthermore, the lower and upper bounds
of a vector x ∈ Rn are x ∈ Rn and x̄ ∈ Rn respectively, it
holds x < x̄. Finally, given a set of indexes N = {1, . . . , n}
with cardinality card(N ) and a related sequence of variables
s1, . . . , sn, the vectors s† = [s1, . . . , sn]

′ is written element-
wise as s† = {si}∀i∈N .

II. PROBLEM STATEMENT

Define a multi-energy system S† including M subsystems
S1, . . . ,SM . The generic Si consists of a specific energy
vector with its own generators, loads and storage units, e.g.,
a subsystem Si can represent an electrical grid or a district
heating network. Subsystems may be able to exchange power
among each other through power interfaces which allow the
overall MES S† management optimization. Example of these
interfaces are fuel cells for gas-to-electrical or heat pumps
for electrical-to-thermal energy. It is possible to formalize
MES structure using a directed graph G = (N , E), where
N = {1, . . . ,M} identifies the set of subsystems, while E
denotes the edges’ set modelling the interconnections among
subsystems, i.e., (i, j) ∈ E if the power ptrij can be transferred
between Si and Sj . As a convention, in the following assume
the transferred power ptrij positive if flowing according to
the edge’s orientation, i.e., if transferred from Si to Sj with
(i, j) ∈ E . For each node i ∈ N , the connected nodes set
is Ni = {j ∈ N|(i, j) ∨ (j, i) ∈ E} regardless of the edge
orientation, with ni = card(Ni).

Each subsystem Si can be modelled as a nonlinear system

ẋi(t) = fsi (xi(t), ui(t), d̃i(t)), (1a)

where xi ∈ Rxi represents the local states vector and ui ∈
Rmi is the input vector, locally bounded as

xi ≤ xi(t) ≤ x̄i, (1b)

ui ≤ ui(t) ≤ ūi. (1c)

Furthermore, the exogenous signal vector d̃i(t) in (1a) is

d̃i(t) = [di(t)
′ wi(t)

′]′, (1d)

where di(t) ∈ Rri are the local disturbances of Si, while wi

is the vector of power exchanges of Si with other connected
subsystems. Specifically,

wi(t) = {ptrij (t)}j∈Ni (1e)

where wi(t) ∈ Rni . Additionally, each subsystem Si includes
gi controllable sources and li nondispatchable units. Hence,
each Si controllable power generation is pgi ∈ Rgi and
the nondispatchable power is pli ∈ Rli , and they have the
following expressions

pgi (t) = ϕi(xi(t), ui(t)), (1f)

pli(t) = ψi(xi(t), di(t)). (1g)

Specifically, the power produced by controllable sources de-
pends on local states and inputs, whereas the noncontrollable
power depends on local states and external disturbances. For
the sake of clarity, nondispatchable units relate to either
loads or nondispatchable generators, e.g., renewable energy
sources.

The subsystems’ models (1) can be nonlinear, nonconvex,
and large-scale dimension (e.g., if Si is a thermal energy
network). Thus, it is not suited for efficient MES optimiza-
tion as its implementation in centralized control approaches
would suffer from computational and scalability issues, while
fully distributed architectures would present convergence
and feasibility problems. Hence, a high-level subsystem’s
reduced energy modelling is introduced and discussed in
details in [10]. This model enables the design of a novel
distributed multi-layer control architecture. The formulation
represents each Si with an energy based model independent
of the specific energy vector.

Assumption 1: Consider the i-th subsystem represented as
(1), its total stored energy is

ei = ξi(xi), (2)

where ei ∈ R and ξi : Rni → R. Also, the stored energy
dynamic is

ėi(t) = 1′
gip

g
i (t)− 1′

lip
l
i(t)− 1′

ni
wi(t). (3)

The presented assumption states that the total energy
stored in Si is equal to a function of the local states and
its variation over time depends on Si’s power balance.
This assumption is commonly valid in energy systems, as
shown in [10]. For instance, the energy stored in a district
heating network is a function of the water temperature, while
in a power system it depends on the batteries’ states of
charge. For the sake of clarity, efficiencies related to power
exchanges among different energy vectors are not considered
in (3), but they can be easily included.

III. CONTROL PROBLEM FORMULATION

As discussed in Section I, the control of MES has to satisfy
multiple specifications, i.e., optimize the overall MES S†,
optimize each subsystems Si, ∀i ∈ N , and satisfy operative
constraints. An effective MESs’ control scheme must also
deal with three main challenges: control architecture scala-
bility, control actions at different time rates given the energy
dynamics diversity, and involved energy distributors’ privacy
concerns. The proposed solution involves a two-layer control
architecture, with a distributed coordination scheme at the
high-level and a decentralized predictive control architecture
at the low level. This distributed multi-layer control architec-
ture main functioning is described hereafter with reference
to Figure 1.

The subsystems’ set S† is highlighted in grey. Each Si

has its own local low-level controller named Local-MPCi

highlighted in green in Figure 1. Each L-MPCi runs at a
time rate that suits Si’s dynamical behaviour and considers
the nonlinear model (1). The local controller optimizes its
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Fig. 1: Schematic of the MES distributed hierarchical control.

subsystem with two main goals: operational costs minimiza-
tion and optimal references tracking of the total energy stored
eh∗i and power exchanges ptr h∗

ij coming from the high-level
layer, highlighted in blue in Figure 1. This layer consists
of distributed predictive regulators named High-Level MPCi

(HL-MPCi) which optimize Si’s energy stored and power
exchanges. Additionally, the HL-MPCi implements the re-
duced energy model (3) for its convexity that guarantees
distributed algorithms’ convergence and feasibility. Specif-
ically, the high-level exploits the Dual Consensus ADMM
(DC-ADMM) algorithm [11] for its enhance scalability and
optimality performances.

Before describing the presented control architecture, define
the L-MPCi sampling time as τi, its prediction horizon as
Ti = {ki, . . . , ki+Ni−1}, where Ni are the prediction steps,
while the current step is ki ∈ N, so t = kiτi. Furthermore,
the sampling time of each HL-MPCi is τh, its prediction
horizon is Th = {kh, . . . , kh + Nh − 1}, where Nh are the
prediction steps, while the current step is kh ∈ N, hence
t = khτh. To simplify the notation, assume τh and τi to be
multiples with τh = Hiτi and τh ≥ τi ∀i ∈ N . Finally,
assuming a suitable integration method, the nonlinear model
(1a) becomes

ẋi(k + 1) = f̃si (xi(k), ui(k), d̃i(k)), (4)

where f̃si derives from the discretization of the continuous
time state function fsi . In the same way, the discretized
reduced energy model (3) is

ehi (k + 1)=ehi (k)+τh

pghi (k)−plhi (k)−
∑
j∈Ni

ptr h
ij (k)

.
(5)

A. Local MPC problem formulation
The general L-MPCi optimization problem is

min
ui(·),σi(·)

∑
∀k∈Ti

(
cgi p

g
i (k) + αiσi(k)

)
(6a)

subject ∀k ∈ Ti, to(4) and
xi ≤ xi(k) ≤ x̄i, (6b)
ui ≤ ui(k) ≤ ūi, (6c)

pgi (k) = ϕi(xi(k), ui(k)), (6d)

pg
i
≤ pgi (k) ≤ p̄gi , (6e)

ei(k) = ξi(xi(k)), (6f)

ei(k) ≤ eh∗i

(⌊
k

Hi

⌋
|kh
)

+ σi(k) (6g)

ei(k) ≥ eh∗i

(⌊
k

Hi

⌋
|kh
)
− σi(k) (6h)

ptrij (k) = ptr h∗
ij

(⌊
k

Hi

⌋
|kh
)
∀j ∈ Ni (6i)

σi(k) ≥ 0 (6j)

The two terms of the L-MPCi cost function (6a) are the local
power production cost cgi ∈ Rgi

≥0 and the minimization of
the slack variable σi ∈ R≥0, where αi is an arbitrary weight
and αi ≫ max(cgi ). The slack variable ensures the optimal
high-level energy reference tracking feasibility. Energy and
power reference tracking are enforced by constraints (6f) -
(6i), where given the time rate of the high-level τh, kh =
⌊(ki/Hi)⌋, ∀i ∈ N . Recall that the optimal references eh∗i
and ptr h∗

ij comes from the HL-MPCi.

B. High level MPC problem formulation and distributed
resolution

For the sake of clarity, we firstly present the centralized
optimization problem and distribute it afterwards. Denote
with pghi (kh), plhi (kh) ∈ R the the high level generated
and absorbed power at time kh respectively. Hence, the
centralized high level problem is

min
p
gh
i (·),ptr h

ij (·)

∑
∀i∈N

∑
∀k∈Th

cghi pghi (k) +
∑
j∈Ni

γtr
i ptr h

ij (k)2


+
∑

∀i∈N
βi(e

h
i (kh +Nh)− eh0i )2 (7a)

subject ∀i ∈ N , ∀k ∈ Th, to (5),

ehi ≤ ehi (k) ≤ ēhi , (7b)

pgh
i
≤ pghi (k) ≤ p̄ghi , (7c)

plh
i
≤ plhi (k) ≤ p̄lhi , (7d)

ptr h
ij
≤ ptr h

ij (k) ≤ p̄tr h
ij ∀j ∈ Ni, (7e)

ehi (kh) = ẽhi (kh), (7f)

ptr h
ij (k) + ptr h

ji (k) = 0 ∀j ∈ Ni. (7g)

In the centralized problem (7), upper and lower bounds (7b)-
(7e) on the states and the generation cost cghi in the cost
function (7a) come from a proper aggregation of lower-level
local variables, more details in [10]. Constraints (7f) initialize
the total energy stored to the i-th subsystems’ current energy
state, where ẽhi (kh) is the total stored energy computed
by the L-MPC at time instant kh. Finally, we guarantee
the power exchanges feasibility imposing the reciprocity
constraints (7g). Concerning the cost function (7a), the first
term is the local generation cost, the second one is the trading
interface’s usage cost, and the third is a terminal cost to avoid
unnecessary usage of internal energy. Also, notice that thanks
to the energy model, the resulting centralized problem (7) is
convex. Although the presented formulation (7) is complete,
a more compact representation is introduced to better de-
scribe its distributed resolution. For each Si, define the time
step trading variable vector as ptr h

i (k) = {ptr h
ij (k)}∀j∈Ni

where ptr h
i (k) ∈ RM−1. Then, collect them in a single

vector ptr h
i = {ptr h

i (k)}k=kh,...,kh+Nh−1 ∈ R(M−1)Nh . In
analogy, define ehi = {ehi (k)}k=kh,...,kh+Nh

∈ RNh+1 and
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pgh
i = {pghi (k)}k=kh,...,kh+Nh−1 ∈ RNh collecting variables

influencing only subsystem i. The subsystems’ optimization
variables vector becomes

xh
i =

 ehi
pgh
i

ptr h
i

 ∈ Rxh
i . (8)

Also, define the cost function of each agent fi(xh
i ) as

fi(x
h
i ) =

∑
∀k∈Th

cghi pghi (k) +
∑
j∈Ni

γtri p
h
ij(k)

2


+βi(e

h
i (kh +Nh)− eh0i )2.

Therefore, the centralized cost function (7a) becomes∑
∀i∈N

fi(x
h
i ). (9)

Similarly, define the local constraint set Xi containing (5)-
(7f), they are compactly written as

xh
i ∈ Xi. (10)

The reciprocity constraints (7g) can be compactly written
as ∑

∀i∈N

Ẽi x
h
i = 0 (11)

where the matrix Ẽi = [0 blkdiag({Ei}Nh
)] ∈

R(M−1)Nh, x
h
i and each Ei ∈ RM−1,M−1 is defined as

[Ei]j,j =

1 if
(j ∈ Ni ∧ j < i) ∨
(j + 1 ∈ Ni ∧ j + 1 > i) ,

0 otherwise.
(12)

for j ∈ {1, . . . ,M − 1}. Despite the definition of Ei in
(12) is not intuitive, it enables the reciprocity constraint
expression simplification from (7g) to (11) selecting the
exchanged powers between subsystem Si and its neighbours
in Ni.

In conclusion, the compact form of the centralized prob-
lem (13) is

min
xh
i (·)

∑
∀i∈N

fi(x
h
i ) (13a)

s.t.

xh
i ∈ Xi, ∀i ∈ N (13b)∑

∀i∈N
Ẽi x

h
i = 0 (13c)

We denote as primal problem this optimization problem,
noting that it is convex. The DC-ADMM algorithm allows
direct communication among agents and relies on iterative
solutions that asymptotically converge to the centralized
optimal value [13], [11], [16] in case of connected com-
munication and convex problem. As problem (13) is already
convex, to guarantee connected communications assume that
each agent is able to communicate with at least one other
agent. This assumption is reasonable as no isolated system
would participate in a MES. The first step to implement the
DC-ADMM algorithm is the construction of the Lagrangian
function of problem (13) as

L(xh
1 , . . . , x

h
M ) =

∑
∀i∈N

(
fi(x

h
i ) + λ Ẽi x

h
i

)
(14)

which is the relaxation of the reciprocity constraints (13c)

with the introduction of the global dual variable λ ∈
R(M−1)Nh . Based on the Lagrangian, we can define the dual
problem as

min
λ

∑
∀i∈N

(
− min

xh
i ∈Xi

(
fi(x

h
i ) + λ′ Ẽi x

h
i

))
= min

λ

∑
∀i∈N

ϕi(λ).

(15)

With the given assumptions, define λi the dual variable local
copy for each subsystem i. It holds the equivalence between
(15) and

min
λ1, ...,λM

∑
∀i∈N

ϕi(λi) (16a)

subject to λi = λj ∀i ∈ N , ∀j ∈ Ni. (16b)

Finally, the dual problem formulation (16) is separable and
we can apply a standard consensus ADMM to solve it. The
DC-ADMM algorithm implementation is reported for clarity
in the following, where the superscript (k) indicates the
ADMM iteration.

Algorithm 1 DC-ADMM
1: Choose c > 0. ▷ Tuning parameter
2: Set xh,0

i , λi0 = 0, µ0
i = 0 ∀i ∈ N .

3: k ← 1. ▷ ADMM Iteration counter
4: repeat
5: for all i ∈ N do ▷ Each agent in parallel
6:

µ
(k)
i = µ

(k−1)
i + c

∑
j∈Ni

(
λ
(k−1)
i − λ

(k−1)
j

)
,

7:

x
h,(k+1)
i = argmin

xh
i ∈Xi

(
fi(x

h
i ) +

+
c

4ni

∣∣∣∣∣
∣∣∣∣∣ Ẽix

h
i − µ

(k)
i

c
+
∑
j∈Ni

(
λ
(k−1)
i − λ

(k−1)
j

)∣∣∣∣∣∣
∣∣∣∣∣∣
2)

,

8:

λ
(k)
i =

1

2ni

∑
j∈Ni

(
λ
(k−1)
i − λ

(k−1)
j

)
−µ(k)

i /c +Ẽix
h(k+1)
i /c

)
.

9: Share λk
i with ∀j ∈ Ni

10: k ← k + 1
11: until Tolerances are met

In Algorithm 1, we can see the computational effort,
Steps 6-9, is pushed down to the agents and the solution
is parallelized. Moreover, the goal of distribution is reached
thanks to the communication Step 9, where agents interact
with neighbours and exchange dual informations. At each
iteration, the agents locally update λi (Step 8), their optimal
solution (Step 7) and the dual variable µi (Step 6). The dual
variables µ guarantee the convergence of the variables λ to
the same value. In turn, λ’s convergence ensures the dual
problem solution feasibility.

IV. NUMERICAL EXAMPLE

In this section, we investigate the performance of the
distributed two-layer control architecture applied to a multi-
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energy case study reported in Figure 2 and composed of three
interconnected energy subsystems of different domains: a H2

energy system (depicted in dark blue), a thermal network
(with supply pipelines depicted in red and return ones in
light blue), and a electricity grid (depicted in green). The
electricity grid is based on the IEEE 37-bus system [17]
and the district heating network on the AROMA network
described in [15]. The main parameters of the energy subsys-
tems and their units are reported in Table I. The results relate
to a 24h MES optimization where the control parameters are
also in Table I, and the nondispatchable profiles are reported
in Figure 3 together with power costs. The IEEE 37-bus
systems uses the power flow model to simulate the behaviour
of its elements, while the gas system equations are presented
in [10]. Lastly, the AROMA network simulation runs in
Simscape and its models are based on standard nonlinear
thermo-hydraulic equations as in [15]. The HL-MPC layer
is implemented with a prediction horizon of 24 hours and a
time-rate of τh = 30 min. This is solved relying on the DC-
ADMM procedure reported in Algorithm 1, where parameter
c = 1e−2. The convergence tolerance of the dual variables is
1e−4, and the ADMM cycle takes, on average, 127 s when
executed sequentially. The parallelization of the computation
would significantly drop the ADMM cycle computational
time. In this paper, to keep the explanation concise, only
one dual variable appears.

We use the hierarchical control structure of Figure 1
to optimize one day of operation and obtained the results
reported in Figure 4. Some results are normalized with
respect to their maximum value to display different energy
vectors jointly. The cost of electricity varies during the day.
Since it is the pivotal driver of the HL-MPC economical
optimization, the subsystems’ total energy stored references
and power generation profiles reflect the cost variation, as
in Figure 4. In particular, the MES HL-MPC profiles proves
the effectiveness of the coordination in Figures 4a-4c. The
three subsystems work together to indirectly store electricity
as hydrogen or heat when most convenient and deliver it
back later when energy prices rise. Moreover, we can notice
the limitation of different forms of energy in Figure 4a. The
battery profile (green) is the fastest-changing as batteries are
fast to charge and discharge, whereas the thermal energy
(red) has the slowest delivery time. Additionally, consider
the energy trading between S1 and S2 in Figure 4b. Since
the heat pump is more efficient than the gas boiler, it runs
all day according to electrical energy availability, specifically
at night and in the afternoon, when loads absorb the least
and solar production is highest, respectively. Now, consider
the energy trading between S1 and S3 in Figure 4c. The
hydrogen energy system can store and produce electricity
thanks to an electrolyzer and a fuel cell. These components
activate during one day of operation. Specifically, hydrogen
is produced during electricity low-cost hours, i.e., early in the
morning and at midday, and consumed to produce electricity
at peak cost hours.

Figure 4a reports the profiles of the normalized energy
references dictated by the high-level layer, where energy is

Si S1 S2 S3

τi min 1 30 5

Ti hours 24 24 24

(eh0i , ēhi ) kWh 50 10.4e3 25.4

(ehi , ē
h
i ) kWh (10, 90) (9.4, 12)e3 (3.5, 50.2)

(pgh
i

, p̄ghi ) kW (−500, 500) (0, 700) (0, 78.5)

(ptr h
i1

, p̄tr h
i1 ) kW − (−200, 0) (−250, 250)

(ptr h
i2

, p̄tr h
i2 ) kW (0, 200) − −

(ptr h
i3

, p̄tr h
i2 ) kW (−250, 250) − −

TABLE I: Control parameters of the case study.

stored when most convenient. The L-MPC regulators track
the energy references as shown in Figures 4d-4f. Specifically,
the S1 batteries’ states of charge are depicted in Figure 4d,
the S3 gas density is shown in Figure 4f, whereas Figure 4e
illustrates the S2 pipe temperatures. The latter shows how
the L-MPC2 regulator allows to store energy in pipelines, a
strategy known as packing [18] in thermal energy control.

Fig. 2: Topology of the numerical example network.

V. CONCLUSIONS
In conclusion, the proposed two-layer distributed control

architecture for MES systems solves the issues of scalability
and time rates diversity. This results are possible through
a decentralized framework of MPC regulators at the low
level, locally controlling each energy vector with its detailed
modelling, and a high-level layer of distributed MPC sys-
tems, coordinating MES subsystems. The application of a
distributed algorithm is made possible thanks to a novel con-
vex unified energy modelling. The results showed promising
performances when tested on the large networks presented in
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Fig. 3: (a) Power generation costs: cg1 in green, cg2 in red,
cg3 in blue. (b) Normalized electrical loads. (c) Normalized
thermal loads. (d) Normalized solar panel production.
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Fig. 4: (a) Normalized energy storage of systems S1 (green),
S2 (red), and S3 (blue). (b) Normalized energy exchange be-
tween S1 and S2. (c) Normalized energy exchange between
S1 and S3. (d) Batteries’ state of charge. (e) Temperature of
the water in pipes. (f) Gas density inside the H2 storage.
the case study. Future work will focus on the development
of game-theoretical coordination schemes for multi-energy
systems, enabling negotiation mechanisms among operators
of different energy vectors, so as to agree the optimal multi-
energy power exchanges.
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