
Towards the analytical computation of time-optimal trajectories for
unicycle robots in corridor environments

Sonia De Santis1∗, Alejandro Astudillo1∗, Wilm Decré1 and Jan Swevers1

Abstract— This paper presents an analytical formulation
for the time-optimal trajectory planning problem for unicycle
robots in structured environments. We describe the environ-
ment as a sequence of rectangular corridors and compute the
trajectory as a sequence of time-optimal motion primitives
defined according to Pontryagin’s minimum principle. The
proposed approach uses a heuristic to place the center of arc
maneuvers and, in certain situations, uses a turn on-the-spot
primitive as initial or final maneuver to achieve time-optimality
and obstacle avoidance. The computation of the trajectory
within each corridor is decoupled and, therefore, the results
can be applied to an arbitrarily long sequence of corridors
while allowing parallel computations. The effectiveness of the
approach is demonstrated by means of an example and Monte
Carlo simulation: the suboptimality of the analytic motion is
less than 1%, while the solution time is two orders of magnitude
less than that of an optimal control problem formulation.

I. INTRODUCTION

The use of autonomous mobile robots (AMR) has been the
subject of increasing interest in modern society. Applications
with AMRs have expanded from industrial environments to
the fields of, e.g., medicine, agriculture, space, and logistics.
Some AMRs – including differential drive and synchro drive
robots – can be represented by the nonholonomic kinematic
model of one steerable drive wheel, and are referred to as
unicycle robots [1]. This model can be used as a low-fidelity
model for complex systems [2], [3], [4] to rapidly plan safe
trajectories to, e.g., initialize numerical algorithms. In this
paper, the problem of analytically computing minimal motion
time trajectories for unicycle robots moving in structured
environments is addressed. This study is motivated by the
fact that many AMR applications take place in structured
environments whose free space can be represented as a set
of rectangular corridors, e.g., crop inspection in greenhouses
[5], last-mile urban goods transportation along sidewalks [6],
service robotics in hospital hallways [7], or logistics in ware-
houses [8]. Such applications require to find the time-optimal
trajectory from an initial pose to a desired final pose while
considering environment- and robot-specific constraints, e.g.,
obstacle avoidance or minimum and maximum speeds.

For unicycle robots subject to a minimum turning radius
(maximum curvature) constraint and constant positive trans-
lational velocity v, Dubins [9] proposed the use of a sequence

1MECO Research Team, Dept. of Mechanical Engineering, KU Leuven
and Flanders Make@KU Leuven, 3001 Leuven, Belgium.
{sonia.desantis, alejandro.astudillovigoya,
wilm.decre, jan.swevers}@kuleuven.be

This work has been carried out within the framework of the Flanders
Make SBO project ARENA: Agile and Reliable Navigation. Flanders Make
is the Flemish strategic research centre for the manufacturing industry.

∗S. De Santis and A. Astudillo are equal contributors to this work.

of straight lines and arcs with maximum curvature to achieve
the shortest path between two poses in free space. These
paths, known as Dubins paths, were proven to be distance-
optimal by using Pontryagin’s minimum principle [10], [11],
and are used in applications ranging from intercepting mov-
ing targets [12] to extensions with aerial vehicles in three-
dimensional environments [13], [14].

While Dubins paths can be used to define distance-
optimal trajectories, these paths do not aim to achieve time-
optimality, especially when being applied to unicycle models
that have a minimum turning radius equal to zero and can,
therefore, rotate on-the-spot. Moreover, additional constraints
have to be introduced to find a path that belongs to the
free space delimited by rectangular corridors. This kind of
problem can be formulated as an optimal control problem
(OCP) that accounts for the total time of the trajectory in
its performance objective. For real-time motion planning,
however, the OCP approach may not be adequate due to
high computation time, unpredictable solutions in case of
bad initialization and local minima, or nonconvergence of
the solution. Due to all these limitations, this work aims at
finding a formulation of this time-optimal trajectory planning
that (i) is near to optimality, (ii) requires a deterministic
computation time that is orders of magnitude faster than OCP
solutions and hence allows real-time implementations, and
(iii) delivers predictable solutions. Note that the problem of
finding a feasible sequence of rectangular corridors is not
tackled in this work.

The main contributions of this work are as follows: (i) it
proposes a sequence of maneuvers that describe the time-
optimal motion of a unicycle robot to reach a point that lays
on a given circumference, (ii) it analytically computes near
time-optimal motions of unicycle robots within a sequence
of rectangular corridors while allowing decoupling the com-
putation of trajectories within each corridor of the sequence,
and (iii) it extensively validates the proposed approach via
numerical experiments.

The remaining of this paper is organized as follows. Sec-
tion II introduces the problem formulation and preliminary
concepts on optimal motion of unicycle robots. In Section III,
the proposed approach is described in detail. Numerical
experiments that show the effectiveness of the proposed
method are presented in Section IV. Finally, Section V closes
the paper with concluding remarks.

A. Notation

Let us define a point as p := [x, y]⊤ with homogeneous
representation ph := [x, y, 1]⊤, and the equation of a line on

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3232

a plane as wxj
x+wyjy+wdj = 0 or, compactly, w⊤

j ph = 0,
where wj := [wxj

, wyj , wdj]
⊤ with wxj

, wyj , wdj ∈ R.
Then, a rectangular area, referred to as corridor, can be
defined as C := {p : w⊤

j ph ≤ 0, j ∈ [1, 4]}, where the
subscript j is associated with each of the four lines to which
the edges of the rectangle belong. The j-th edge of a corridor
C is defined as eCj := {p : w⊤

j ph = 0, p ∈ C}, where the
index j ∈ [1, 4] is assigned starting from the top edge of the
corridor and proceeding clockwise (see Fig. 1).

A sequence of nC ∈ N corridors is represented as SC :=
{Ci}i∈[1,nC]. A shrunken corridor C̄i ⊂ Ci is defined as
a corridor whose center and orientation coincide with the
original corridor Ci, but its width and length have been
reduced by ϵ ∈ R>0. A circumference Oi is defined as Oi :=
{(x, y) : (x − xci)

2 + (y − yci)
2 = R2

ci}, where (xci , yci)
and Rci are the center and radius of the circumference. For a
maneuver involving a rotation, let us define a turn direction
τ ∈ {−1, 1} determined by the sign of the angular velocity
ω. The operator δθ(a, b) represents the smallest signed angle
between angles a and b.

II. PROBLEM FORMULATION

This section describes the preliminary aspects of the
considered problem. First, formal descriptions of the uni-
cycle kinematics and of the environment are given. Then,
a description of the motion planning problem is detailed.
Finally, the formulation of the motion planning problem as
a time-optimal control problem is presented.

A. Robot kinematics

The unicycle pose is described by the state vector x :=
[x, y, θ]⊤ ∈ X ⊂ SE(2), where SE(2) is the Special
Euclidean Group in 2 dimensions, [x, y]⊤ ∈ R2 corresponds
to position coordinates and θ ∈ S1 is the heading of the
robot. Assuming a control vector u := [v, ω]⊤ ∈ U :=
[vmin, vmax]× [−ωmax, ωmax], where v is the robot’s transla-
tional velocity in direction θ, and ω is the robot’s rotational
velocity, the kinematics of the unicycle robot are expressed
by the following motion equations

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω. (1)

The considered unicycle robot is characterized by a circular
footprint with radius r ∈ R>0, as illustrated in Fig. 1.

B. Model of the environment

The environment considered in this work is structured and
uncluttered. The free space is modeled as a sequence of
rectangular frames – referred to as corridors – within which
the robot can navigate (see Fig. 1). We assume that a suitable
sequence of nC corridors SC is given a priori, such that a
feasible trajectory exists to steer the robot from a given initial
pose to a given final pose. Each corridor Ci ∈ SC is fully
specified by the following set of parameters: the center point
(cxi , cyi) ∈ R2, the orientation ψi ∈ [0, 2π) with respect to
the x-axis, the width wi ∈ R>0 and the length li ∈ R>0.
Figure 1 shows an example of a sequence of two corridors
C1, C2 with their shrunken version C̄1, C̄2, and reports the

four edges eC1
j , j ∈ [1, 4] of C1. The amount by which the

corridors are shrunken can be set depending on the robot’s
footprint and accounting on an additional safety margin. In
this way, by constraining the (x, y) coordinates of the robot
to be within the shrunken corridors, no collision with any
wall will occur. Each pair of subsequent shrunken corridors
has an overlapping area C̄i ∩ C̄i+1 such that the robot is able
to move from one corridor to the other.

Fig. 1: Representation of two subsequent corridors C1, C2 and
a unicycle robot with a circular footprint of radius r.

C. Problem statement

Having introduced the description of the robot and the
environment, we now move on to describe the details of
the motion planning problem addressed in this work. Let us
define a unicycle robot with kinematics defined by (1). We
aim to propose a solution to the following problem:

Problem 1: Find the time-optimal trajectory for such uni-
cycle robot from a given initial pose x̄0 := [x0, y0, θ0]

⊤ to a
given final pose x̄f := [xf , yf , θf]

⊤ within a sequence of nC
corridors SC – as defined in Section II-B – while keeping a
safety distance r from the lateral walls of Ci ∀i ∈ [1, nC].

Assumption 2.1: The dimensions of the corridors are such
that wi, li > 2r ∀i ∈ [1, nC], and [x0, y0]

⊤ ∈ C1 and
[xf , yf]

⊤ ∈ CnC . The unicycle can only have nonnegative
translational speed in its direction θ – i.e., vmin = 0,
U := [0, vmax]× [−ωmax, ωmax].

For the sake of simplicity, but without loss of generality,
we formulate the problem with only two corridors – i.e.,
SC := {C1, C2}. However, the results presented herein can
be extended to an arbitrarily long sequence of corridors, as
shown in Section III.

D. Formulation as an optimal control problem

The motion problem described in Section II-C can be
formulated as an OCP, as this methodology provides optimal
solutions with respect to a specific performance objective
while easily embedding the dynamics of the robot and
constraints due to actuation limits and collision avoidance.

We formulate this problem as a multi-stage OCP with nC
stages, where every corridor Ci ∈ SC spatially defines each

3233

stage, similarly to the approach in [15]. For the case of nC =
2, such OCP is defined as the following finite-dimensional
problem:

min
x

[i]
k ,u

[i]
k ,Ti

T :=

nC=2∑
i=1

T i (2a)

s.t. x
[1]
0 = x̄0, (2b)

x
[1]
k+1 = F (x

[1]
k ,u

[1]
k ,T 1), k∈[0,N1−1], (2c)

p
[1]
k ∈ C̄1, k∈[0,N1−1], (2d)

u
[1]
k ∈ U , k∈[0,N1−1], (2e)

x
[2]
0 = x

[1]
N1
, (2f)

x
[2]
k+1 = F (x

[2]
k ,u

[2]
k ,T 2), k∈[0,N2−1], (2g)

p
[2]
k ∈ C̄2, k∈[0,N2−1], (2h)

u
[2]
k ∈ U , k∈[0,N2−1], (2i)

x
[2]
N2

= x̄f , (2j)

where, for the i-th stage, T i ∈ R≥0 in the objective
function (2a) denotes the motion time, Ni denotes the
prediction horizon, and the superscript [i] refers to the stage
to which a variable belongs, ∀i ∈ {1, 2}. The constraints (2b)
and (2j) set the initial and terminal poses to be the desired
poses x̄0 and x̄f ; function F in (2c) and (2g) represents a
discretized version of (1) using a numerical integrator – e.g.,
forward Euler or fourth-order Runge-Kutta – transcribed by
using a multiple-shooting scheme; the constraints (2d) and
(2h) restrict the position of the center of the unicycle robot
to be inside the i-th shrunken corridor, whose width and
length have been reduced by 2r with respect to the original
corridors. Finally, (2f) is a stitching constraint that links
together the two stages.

Although the OCP formulation in (2) actively accounts for
system- and task-related constraints while minimizing the
total time of the trajectory, the numerical solution of such
OCP has a high computational complexity – complicating or
restricting its use in real-time applications –, can converge
to infeasible points (or not converge at all), does not provide
guarantees on the time required to deliver a solution, and
may return suboptimal and unpredictable solutions due to bad
initialization or local minima. Moreover, as will be explained
in Section III-A, the solution of the OCP (2) requires the
use of a nonuniform time grid – i.e., the Ni control points
in each stage are not equally distributed along the time grid.
This adds computational complexity to the solution of (2).

III. PROPOSED APPROACH

Having discussed the formulation of the problem, this sec-
tion describes the proposed approach that aims at analytically
computing time-optimal trajectories for unicycle robots in
corridor environments. This approach is based on the use
of time-optimal motion primitives defined by Pontryagin’s
minimum principle [10], and on heuristic rules to compute
the center of the arc maneuvers appearing in the optimal
sequence of primitives. The heuristic presented herein was

defined based on extensive simulations and assessment of
the solution of Problem 1 by using OCP (2). The proposed
approach relies on (i) the computation of the time-optimal
motion to reach a point on a circumference from a given pose
x̄• ∈ X , and (ii) the decoupled computation of a sequence
of primitives for each corridor Ci ∈ SC – from an initial pose
x̄0 and final pose x̄f to an arc that is part of a circumference
Oc such that (Oc∩(Ci∩Ci+1)) ̸= ∅, i.e., part of Oc is located
in a region where corridor Ci intersects corridor Ci+1.

A. Time-optimal motion primitives

As explained in detail in [2], Pontryagin’s minimum prin-
ciple can be used to find candidate time-optimal trajectory
primitives for the unicycle robot moving in free space. By
minimizing the Hamiltonian of the unicycle model while
accounting for the constraint u ∈ U , the optimal control
inputs u will correspond to (i) the vertices of the set U , (ii)
the singular control with v = 0 and ω = ±ωmax, or (iii)
the singular control with ω = 0 and v = vmax, leading
to a bang-bang control since both inputs should abruptly
switch among these optimal values. These control inputs
lead to five specific motion primitives: a linear segment
S, a circular arc describing a counter-clockwise turn C+,
a circular arc describing a clockwise turn C−, a counter-
clockwise turn on-the-spot T+, and a clockwise turn on-
the-spot T−. Recall that the turn direction τ ∈ {−1, 1}
is determined by the sign of ω. Such sign determines the
superscript of the primitives where ω ̸= 0. The description
of each primitive is summarized in Table I.

TABLE I: Time optimal motion primitives
Symbol v(t) ω(t) τ

S vmax 0 −
C+ vmax ωmax 1
C− vmax −ωmax −1
T+ 0 ωmax 1
T− 0 −ωmax −1

Note that, the control inputs defining the primitives C•,
i.e., (v(t) = vmax, ω(t) = ±ωmax), make the resulting path
correspond to an arc with radius R = vmax/ωmax.

Computing the time-optimal trajectory from any given
start pose x̄0 to a final pose x̄f in free space requires finding
a proper sequence of the primitives shown in Table I. We
describe a sequence of primitives SP by concatenating their
symbols – e.g., T−C−SC+ represents a trajectory composed
of a clockwise turn on-the-spot, a clockwise turn along a
circular arc, a linear segment, and a final counter-clockwise
turn along a circular arc, in that specific order.

As a final remark, since the control trajectory correspond-
ing to a sequence of time-optimal primitives presents a bang-
bang shape, to effectively formulate a time-optimal motion
planning OCP for unicycle robots a nonuniform time grid
must be employed, as it allows to freely select the time
instants where to switch from one primitive to another and,
therefore, retain the bang-bang control.

3234

B. Time-optimal motion to reach a point on a circumference

In this section an important preliminary result is described
that forms the basis for the proposed approach to solve
Problem 1. Let us first address the following problem:

Problem 2: For a unicycle robot, find the time-optimal
trajectory in free space from an initial pose x̄0 :=
[x0, y0, θ0]

⊤ to a final pose x̄t := [xt, yt, θt]
⊤, where (xt, yt)

belongs to a given target circumference O2 with center
(xc2 , yc2) and radius R = vmax/ωmax, and θt represents
an orientation tangential to O2 according to a (clockwise or
counter-clockwise) turn direction τ2 ∈ {−1, 1}.

The solution to Problem 2 entails the proper selection of a
sequence SP of time-optimal motion primitives of the types
described in Section III-A. The shape of the solution will
depend on the turn directions of the selected primitives, as
shown in Fig. 2.

Fig. 2: Overview of a trajectory computed when τ1 = 1
(counter-clockwise initial turn) and τ2 = −1 (clockwise final
turn). SP is the sequence T+C+SC−.

Assumption 3.1: Since (xt, yt) ∈ O2 and θt is an orien-
tation tangential to O2, we assume that the final primitive in
the sequence SP is an arc C+ if τ2 = 1 or C− if τ2 = −1.

Requiring an initial turn on-the-spot: By using Dubins
paths, the solution to Problem 2 would require a sequence
C•1SC•2 , where •1, •2 ∈ {+,−} depend on initial and final
turn directions τ1 and τ2 [16]. However, this solution can
be generalized to include an initial turn on-the-spot with
same turn direction as C•1 , in case needed to achieve time-
optimality, as stated in the following proposition.

Proposition 3.1: The time-optimal trajectory that solves
Problem 2 is composed of a sequence SP of motion primi-
tives being either T •1C•1SC•2 or C•1SC•2 .
This proposition is directly proved for the case where the
initial and final turn directions are equal (τ1 = τ2) by the

following lemma.
Let α0 := arctan(yc2−y0/xc2−x0) describe the direction

from (x0, y0) to (xc2 , yc2) (see also Fig. 2).
Lemma 3.1: When the initial and final turn directions are

equal (τ1 = τ2), if |δθ(θ0, α0)| > π
2 , then the first primitive

of SP is a turn on-the-spot T •1 and the arc described in
the subsequent primitive C•1 has a center (xc1 , yc1) with
xc1 = x0 + R cos(γ1) and yc1 = y0 + R sin(γ1), where
γ1 = α0.

Proof: Refer to the proof in the Appendix.
For the case where the initial and final turn directions are

different (τ1 ̸= τ2), Proposition 3.1 relies on the following
heuristic:

Heuristic 1: When the initial and final turn directions
are different (τ1 ̸= τ2), if |δθ(θ0, α0 + τ1

π
6)| >

π
2 , then

the first primitive of SP is a turn on-the-spot T •1 and
the arc described in the subsequent primitive C•1 has a
center (xc1 , yc1) with xc1 = x0 + R cos(γ1) and yc1 =
y0 +R sin(γ1), where γ1 = α0 + τ1

π
6 , as depicted in Fig. 2.

Computation of the motion primitives: Based on the
aforementioned proposition, we now illustrate how to com-
pute each primitive in SP . Each primitive is characterized
by its starting pose xsi = [xsi , y

s
i , θ

s
i]

⊤ and ending pose
xei = [xei , y

e
i , θ

e
i]

⊤, where i is the position of the primitive
in SP . Note that xsi+1 = xei , ∀i ∈ [1, nSP − 1], where nSP

is the number of primitives in SP .
The initial turn direction τ1 is determined depending on

the initial orientation of the robot θ0, the target circumference
O2 and the turn direction τ2, through a procedure denoted
as τ1 = turn direction(τ2, O2, θ0). Specifically, by
denoting with t+ and t− the two lines passing through
(x0, y0) and tangent to O2, and with t(α0) the line passing
through (x0, y0) and (xc2 , yc2), as shown in Fig. 3, then:

• when τ2 = 1, then τ1 = 1 if θ0 lies on the region to
the right of the half plane identified by the lines t+ and
t(α0) (green area in Fig. 3a), otherwise τ1 = −1 (orange
area in Fig. 3a).

• when τ2 = −1, then τ1 = −1 if θ0 lies on the region to
the left of the half plane identified by the lines t− and
t(α0) (orange area in Fig. 3b), otherwise τ1 = 1 (green
area in Fig. 3b).

Once τ1 is computed, starting from xs1 = x̄0, the compu-
tation of each primitive in SP is performed as follows:

1) Turn on-the-spot T •1 : The initial turn on-the-spot
is required if the condition described in Lemma 3.1 or
Heuristic 1 holds. This primitive involves a rotation by an
angle ∆θ, computed as ∆θ = δθ(θ0, α0 − τ1

π
2) if τ1 = τ2,

or ∆θ = δθ(θ0, α0 − τ1
π
2 + τ1

π
6) if τ1 ̸= τ2. Since this

primitive does not involve any translation, its final pose is
xei = [xsi , y

s
i , θ

s
i +∆θ]

⊤.
2) Arc C•1 : This arc belongs to a circumference O1

with radius R and center (xO1
, yO1

) = (x0 + R cos(θsi +
τ1
π
2), y0 + R sin(θsi + τ1

π
2)), where θsi either corresponds

to the final orientation of the previous primitive T •1 , i.e.,
θsi = θei−1, or θsi = θ0 if no turn on-the-spot is performed
beforehand. The end pose is determined by computing the
intersection point between O1 and the line t•1,•2 tangent

3235

(a) τ2 = 1. (b) τ2 = −1.

Fig. 3: Selection of τ1, depending on θ0, τ2 and O2.

to O1 and O2, where •1, •2 refer to the sign of τ1, τ2,
respectively.

3) Segment S: This segment belongs to the line t•1,•2 ,
with start pose corresponding to the final pose of the previous
arc C•1 , and with the end point being the intersection point
between t•1,•2 and O2.

4) Arc C•2 : This arc belongs to the circumference O2,
starting from the final pose of the previous primitive S, and
ending on the arbitrary pose xt.

Remark 1: In the following, without loss of generality, the
time-optimal sequence solution to Problem 2 will be always
denoted as the sequence of four primitives T •1C•1SC•2 .
When an initial turn on-the-spot is not required, T •1 is
assigned with a zero rotation ∆θ = 0, i.e., θs1 = θe1.

Remark 2: Since the computation of SP involves the
computation of tangent lines between circumferences, we
assume that the distance between the center of every pair
of subsequent circumferences is always bigger than 2R.

C. Trajectory within a sequence of corridors

In view of the previous result, the problem of navigating
through a sequence of corridors (Problem 1) is addressed
by reformulating it as the problem of reaching predefined
intermediate circumferences that are strategically placed at
the intersection between each pair of subsequent corridors.

Trajectory within two corridors: As an example, con-
sider that the sequence of corridors SC := {C1, C2} is
provided. In this case, it is possible to divide the problem
of finding a trajectory from an initial configuration x̄0 ∈
C1 to a final configuration x̄f ∈ C2 in two parts. This
division is achieved by properly positioning an intermediate
circumference O2 such that (O2 ∩ (C1 ∩ C2)) ̸= ∅, and
constructing the overall trajectory as the connection of the
optimal sequences (i) T •

1C
•
1S1C

•
2 from x̄0 to O2 (as in

Problem 2), and (ii) C•
2S2C

•
3T

•
2 from O2 to x̄f .

Note that the latter sequence is obtained by first computing
the sequence T̃ •

2 C̃
•
3 S̃2C̃

•
2 from the inverted final pose x̃f :=

[xf , yf , θf + π]⊤ (with a modified final orientation) to O2

– where •̃ represents an alternative primitive that is later in-
verted according to Remark 3 –, and then inverting the result-
ing sequence through an operator denoted as invert seq
such that C•

2S2C
•
3T

•
2 = invert seq(T̃ •

2 C̃
•
3 S̃2C̃

•
2).

Remark 3: The inversion of a sequence of primitives
through the operator invert seq involves inverting the
order of the primitives and for each primitive (i) inverting
the sign of ω and, therefore, τ , (ii) switching the initial and
final poses xsi and xei , (iii) rotating θsi and θei by π.

Since both the final pose of S [1]
P := T •

1C
•
1S1C

•
2 and

the initial pose of S [2]
P := C•

2S2C
•
3T

•
2 are arbitrary poses

located on O2, it is possible to select them as the final
pose of S2 and the final pose of S1, respectively. By
doing so, C•

2 can be redefined as the arc connecting S1

and S2 via the circumference O2, ensuring the continuity
of the trajectory. As a result, SP := T •

1C
•
1S1C

•
2S2C

•
3T

•
2

represents a candidate solution for Problem 1. However, the
effectiveness of the approach resides in the selection of the
location of O2, which is performed according to the heuristic
explained in the following.

Recall that the intermediate circumference O2 is defined
by its center (xc2 , yc2) and its radius R = vmax/ωmax. The
turn direction τ2 is selected based on the relative orientation
between the two corridors. Let v1 = [cos(ψ1), sin(ψ1), 0]

⊤

and v2 = [cos(ψ2), sin(ψ2), 0]⊤ be the unit vectors in
three-dimensional space representing the orientation of C1
and C2, respectively. The turn direction τ2 is computed as
the sign of the third element of the cross product v1 ×
v2, as it determines whether a counter-clockwise turn (if
τ2 = 1) or a clockwise turn (if τ2 = −1) is needed
to align C1 with C2. This procedure is denoted as τ2 =
main turn direction(C1, C2).

The center (xc2 , yc2) of O2 is placed according to the
following heuristic, which was determined following the
assessment of extensive simulation results obtained by using
OCP (2) to solve Problem 1:

Heuristic 2: We place (xc2 , yc2) at a distance R− r from
one of the intersection points between the edges of the two
corridors, which is selected based on τ2. By expressing the
coordinates of the intersection points between the edges of
the two corridors relatively to a frame attached at the center
of (and aligned with) C1, the leftmost intersection point is
selected if τ2 = 1 (characterized by the lower relative x
coordinate), or the rightmost intersection point is selected if
τ2 = −1 (characterized by the larger relative x coordinate).
The coordinates of the selected intersection point in the world
frame are denoted as (xint, yint) ∈ X (see Fig. 1 for an
example). After finding (xint, yint), the center of the circle
(xc2 , yc2) is placed at a distance R − r from it, along the
bisector of the convex angle defined by the two edges to
which the intersection point belongs (see also Fig. 4). This
procedure is denoted as O2 = circ center(τ2, R, r, C1,
C2).

Avoiding collisions with corridor walls: Once O2 is in
place, the sequence SP := T •

1C
•
1S1C

•
2S2C

•
3T

•
2 could be

computed as described earlier in this section.
However, this sequence could cross the edges of the

3236

Algorithm 1 Computation of trajectory within corridors
Inputs: SC := {Ci}i∈[1,nC], x̄0, x̄f , r, R = vmax/ωmax

1: SP ← ∅
2: for all i ∈ [2, nC] do in parallel
3: τi ← main turn direction(Ci−1, Ci)
4: Oi ← circ center(τi, R, r, Ci−1, Ci)
5: end for
6: τ1 ← turn direction(τ2,O2, θ0)

7: SP0
← get subseq(C1,x0, R, r,O2, τ1, τ2)

8: τnC+1 ← turn direction(τnC ,OnC , θf)

9: S̃Pf
← get subseq(CnC ,xf , R, r,OnC , τnC , τnC+1)

10: SPf
← invert seq(S̃Pf

)

11: for all i ∈ [2, nC − 1] do in parallel
12: Si ← compute tangent(Oi,Oi+1, τi, τi+1)

13: end for
14: for all i ∈ [2, nC] do in parallel
15: C•

i ← compute arc(Si, Si+1,Oi+1)

16: end for
17: Append SP0 to SP
18: for all i ∈ [1, nC − 1] do
19: Append C•

i+1Si+1 to SP
20: end for
21: Append CnC to SP
22: Append SPf

to SP
23: return SP

shrunken corridors C̄1 and C̄2, leading to a collision between
the robot and the corridor walls. In particular, the primitives
C•

1 and C•
3 could cross the lateral edges of C̄1 and C̄2,

respectively. Therefore, it is necessary to check whether there
are intersection points between (i) the path corresponding to
C•

1 and the edges eC̄1
2 , eC̄1

4 and (ii) the path corresponding
to C•

3 and the edges eC̄2
2 , eC̄2

4 .
If an intersection is detected, a turn on-the-spot primitive

is required in such a way that the robot reaches an orientation
that allows the remaining primitives to entirely lie within the
corridors. In the case that this rotation for collision avoidance
is required, O1 is tangent to the edge with which the collision
was detected. If a turn on-the-spot primitive was already
required in the original sequence, the additional rotation for
collision avoidance just results in a prolonged turn on-the-
spot. For the sake of clarity, consider an example where an
intersection point is detected between the arc C•

1 and the
edge eC̄1

4 . In this case, an additional ∆θ is required such that
O1 touches eC̄1

4 . Note that there exist two circumferences
tangent to a given line and passing through a given point.
The selected one is the closest to O2.

Note that the solution to avoid collisions with a corridor
wall is not to decrease the radius of O1 to fit the shrunken
corridor, as it would imply a solution that is not time-optimal
since an arc motion primitive with a decreased radius would
not be part of the optimal selection presented in Table I.

Complete algorithm: The procedure to build a trajectory
in a sequence of nC corridors is described in Algorithm 1,
which performs the subroutines explained in the following.

After initializing the sequence SP in Line 1, the algo-
rithm computes the turn direction τi and the corresponding

intermediate circumference Oi for all pairs of subsequent
corridors Ci−1, Ci, i ∈ [2, nC] in Lines 2-5. Then, it com-
putes the initial turn direction τ1 in Line 6 and the motion
primitives SP0

:= T •
1C

•
1S1 required to reach O2 from x̄0 in

Line 7 with the function get subseq. Next, it computes
the final turn direction τnC+1 and the sequence of primitives
SPf

:= SnCC
•
nC+1T

•
2 required to reach the final pose

x̄f from OnC in Lines 8-10. Since all the circumferences
Oi are known, the algorithm proceeds by computing all
segments Si, i ∈ [2, nC − 1], in Lines 11-13, by using the
procedure compute tangent, which computes the line
segment t•i•i+1 tangent to both Oi and Oi+1 according to
the desired turn directions τi and τi+1, i ∈ [2, nC − 1].

Then, in Lines 14-16, the arc maneuvers C•
i , i ∈ [2, nC]

are computed by using the procedure compute arc to
connect together the two segments Si and Si+1 through
the circumference Oi+1. Finally, the overall trajectory is
obtained by properly appending the computed primitives in
Lines 17-23.

Note that, the for-loops starting in Lines 2, 11 and 14 can
each be executed in parallel since their internal computations
are independent and decoupled from each other. In fact, such
decoupling allows the replanning of time-optimal motions by
simply updating relevant subsequences – e.g., the initial se-
quence from the robot’s current pose to the first intermediate
circumference – while keeping the remaining elements in the
the sequence untouched.

IV. NUMERICAL EXPERIMENTS

In this section we demonstrate the effectiveness of the
approach presented in Section III by means of two numer-
ical experiments: an illustrative example and an extensive
evaluation of the optimality of the approach by using Monte
Carlo simulation.

A. Illustrative example

The considered scenario is that of a unicycle robot moving
within two corridors. We consider a Clearpath Jackal differ-
ential drive robot with vmax = 0.5 m/s, ωmax = 0.5 rad/s,
r = 0.215 m. The two corridors are defined as: (i) C1 with
ψ1 = π

2 , l1 = 5, w1 = 2, center (0, 2.5), and (ii) C2 with
ψ2 = π

6 , l2 = 5, w2 = 2, center (2.165, 6.25). The shrunken
corridors C̄1 and C̄2 are characterized by a length l̄i = li−2r
and width w̄i = wi − 2r, with i = 1, 2. The time-optimal
trajectories computed by using the proposed approach and
OCP (2) are shown in Fig. 4, while their corresponding
control inputs are shown in Fig. 5.

As shown in Fig. 5, and as anticipated in Section III-A,
the required control inputs to achieve time-optimality have
a bang-bang behaviour. Note that, an initial turn on-the-spot
is required. As a consequence, v = 0 for the first 1.37 s
and the center of O1 is along the direction identified by
γ1 = α0 + τ1π/6, according to Heuristic 1, since τ1 ̸= τ2.

The analytical solution is extremely close to the time-
optimal solution, with a motion time difference between
the two of only 0.03%. Nevertheless, the introduced sub-
optimality represents only a small disadvantage, especially

3237

0 2 4 6

0

2

4

6

8

Corridors

Shrunken corridors

Analytical path

Optimal path

Fig. 4: Spatial trajectories computed for the scenario consid-
ered in the illustrative example.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time [s]

−0.4

−0.2

0.0

0.2

0.4

Optimal forward velocity

Optimal angular velocity

Analytical forward velocity

Analytical angular velocity

Fig. 5: Control input trajectories for the considered scenario.

considering the low computational time of the analytical
planner with respect to the computational time of the optimal
planner, which in this case are 1.64 ms and 139.72 ms,
respectively.

B. Monte Carlo simulation

A Monte Carlo simulation was performed to evaluate the
proposed approach under a wide range of scenarios involving
the computation of a trajectory for a unicycle robot with
r = 0.215 m from a given initial pose to a final one within
a sequence of two corridors.

To perform this simulation, a large number of problems
were set up, each one defined by a different set of parameters,
and then the solution to the problem was obtained by
(i) solving an OCP formulated as in (2) and (ii) running
Algorithm 1. The resulting trajectories are compared in terms
of total motion time and time required to compute the
solution. In the tested problems, vmax and ωmax are set such
that R = vmax/ωmax = 1. Without loss of generality, the
orientation of C1 is fixed at ψ1 = π

2 . The parameters used
to define the motion problems and their domain are reported
in Table II. Then, with the set of parameters presented in
Table II, a trajectory planning problem is defined in the
following way. First, the two corridors, C1 and C2, are
constructed using two consecutive vectors, vi, i ∈ [1, 2],

TABLE II: Parameters Monte Carlo simulation

Variable Symbol Value Unit
Corridor length l 10 m
Corridor width w [0.3l, 0.6l] m

Tilt of C2 ψ2 [π
6
, 5π

6
] rad

Max speed vmax [0.5, 2] m/s

x0 relative to C1 xrel0 [−0.5 w̄
2
, 0.5 w̄

2
] m

y0 relative to C1 yrel0 [−0.7 l̄
2
, −0.2 l̄

2
] m

θ0 relative to C1 θrel0 [π
3
, 5π

6
] rad

xf relative to C2 xrelf [−0.5 w̄
2
, 0.5 w̄

2
] m

yf relative to C2 yrelf [0.2 l̄
2
, 0.7 l̄

2
] m

θf relative to C2 θrelf [π
3
, 5π

6
] rad

which are determined by the coordinates of their tail (xti, y
t
i)

and their head (xhi , y
h
i), defined as (xt1, y

t
1) = (0, 0),

(xh1 , y
h
1) = (l cos(ψ1), l sin(ψ1)), (xt2, y

t
2) = (xh1 , y

h
1), and

(xh2 , y
h
2) = (xt2+l cos(ψ2), y

t
2+l sin(ψ2)). Then, the centers

of the two corridors correspond to the midpoints of v1 and
v2, respectively. Their widths w1, w2 are both equal to w, and
their lengths are augmented by a quantity equal to the width
w to account for the necessary overlapping area between the
two corridors, thus l1, l2 = l+w. The shrunken corridors C̄1
and C̄2 are then computed, with l̄i = li−2r and w̄i = wi−2r,
with i = 1, 2. The initial pose x̄0 = [x0, y0, θ0]

T is computed
by evaluating the relative pose [xrel0 , yrel0 , θrel0]⊤ with respect
to a reference frame centered in (cx1 , cy1) and rotated by
ψ1 clockwise, while the final pose x̄f = [xf , yf , θf]

T is
computed by evaluating the relative pose [xrelf , y

rel
f , θrelf]⊤

with respect to a reference frame centered in (cx2
, cy2) and

rotated by ψ2 clockwise. With the remaining parameters it is
possible to instantiate a unicycle robot, and start a simulation.
Denoting as np the number of varying parameters, the total
number of simulations is given by 4np = 49 = 262144.

Analytical solution OCP solution
10−3

10−2

10−1

C
om

p
u
ta
ti
on

ti
m
e
[s
]

Fig. 6: Comparison of the time required to solve the motion
problems within the Monte Carlo simulation.

As can be seen in Fig. 6, the proposed approach –
labeled in the figure as Analytical Solution – is about two
orders of magnitude faster than the numerical optimization-
based approach. In fact, the analytical solution has a mean
computation time of 1.29 ms with a standard deviation
of 2.05 × 10−2 ms, while the OCP solution has a mean
computation time of 174.19 ms with a standard deviation of

3238

49.01 ms. Due to its numerical behaviour, the OCP solution
has high variability in its computation time, as shown by
its high standard deviation. On the other side, the analytical
solution has low variability in its computation time due to
the limited number of operations it requires.

In terms of optimality of the solution, the results of the
Monte Carlo simulation showed that the difference between
the motion time of the OCP-based solution and that of
the proposed approach is less than 1% in 97.43% of the
cases, having a maximum difference of 3.46% after 262144
simulations. An explanation for this larger difference might
be the use of Heuristics 1 and 2 to position the center of the
first arc (when τ1 ̸= τ2) and the center of O2, respectively.

V. CONCLUSIONS AND OUTLOOK

In this paper we presented an analytical approach that
aims to compute time-optimal solutions to motion prob-
lems of unicycle robots moving in corridor environments.
The approach relies on time-optimal motion primitives and
heuristics to position such primitives. The results of this
study indicate that, under certain conditions, reaching time-
optimality and satisfying obstacle avoidance require a turn
on-the-spot maneuver, in addition to the arc and straight line
maneuvers used in Dubins paths. The proposed approach was
shown to be only 1% away from optimality in 97.43% of the
simulated cases while being two orders of magnitude faster
than a numerical optimization-based approach.

The presented heuristics exclude the scenarios where the
time-optimal trajectory within a pair of corridors does not in-
volve an arc maneuver along an intermediate circumference.
Considering such scenarios is subject of future work, as well
as extending the heuristics such that a nearly optimal solution
can be provided for a wider range of parameters in the
problem formulation. For this reason, additional Monte Carlo
simulations should be performed to validate the approach in
an extended domain of scenarios, including large sequences
of corridors.

APPENDIX

A. Proof of Lemma 3.1

Proof: The time TP required to move along a primitive
P ∈ {S,C+, C−, T+, T−} is given by: (i) T S = ci

vmax

where di is the Euclidean distance between the starting point
(xsi , y

s
i) and the ending point (xei , y

e
i), (ii) TC• = ιiR

vmax
, and

(iii) T T• = ϕi

ωmax
. Let us denote with the superscript •∗ the

variables corresponding to a solution that is assumed to be
time-optimal. The total motion time without a turn on-the-
spot maneuver is given by T := ι1R

vmax
+ c

vmax
+ ι2R

vmax
, while

the time-optimal motion time is given by T ∗ :=
ψ∗

0R
vmax

+
ι∗1R
vmax

+ c∗

vmax
+ ι∗2R

vmax
. We want to prove that T > T ∗ when

the conditions proposed in Lemma 3.1 hold, meaning that
a turn on-the-spot is required for time-optimality. Proving
this inequality is equivalent to prove that ι1R + c + ι2R >
ψ0R+ ι∗1R+ c∗ + ι∗2R which, in turn, is equivalent to

τ1α1R+ c− τ2α1R > τ1α
∗
1R+ c∗ − τ2α

∗
1R, (3)

since, based on simple geometry, ι1 = τ1(α1 − θ0), ι2 =
τ2(θf − α1), ψ∗

0 + ι∗1 = τ1(α
∗
1 − θ0), and ι∗2 = τ2(θf − α∗

1).
Recall that α0 := arctan(yc2 − y0/xc2 − x0), xc1 = x0 +
R cos(γ1), yc1 = y0 + R sin(γ1), and c2 = (xc2 − xc1)

2 +
(yc2 − yc1)

2. Without loss of generality assume (x0, y0) =
(0, 0).

If τ1 = τ2, Inequality (3) leads to the inequality c > c∗.
Since c, c∗ ∈ R>0, c > c∗ ≡ c2 > c∗2. As we assume
that γ∗1 = α0 if τ1 = τ2 and |δθ(θ0, α0)| > π/2, in this
case the center (xc2 , yc2) of O2 can be described as xc2 =
(R+ c∗) cos(γ∗1) and yc2 = (R+ c∗) sin(γ∗1).

Thus, c2 > c∗2 ≡ (R + c∗)(1 − cos(γ) cos(α0) −
sin(γ) sin(α0)) > 0. Since R + c∗ > 0, c2 > c∗2 holds
if cos(γ) cos(α0) + sin(γ) sin(α0) < 1, leading to c >
c∗ ∀γ ̸= α0. Therefore, γ1 = α0 leads to a time-optimal
trajectory with an initial turn on-the-spot maneuver, and an
arc maneuver with ι∗1 = π/2.

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics.
Springer London, 2009.

[2] J. Z. Ben-Asher and E. D. Rimon, “Time optimal trajectories for a
car-like mobile robot,” IEEE Transactions on Robotics, vol. 38, no. 1,
pp. 421–432, Feb. 2022.

[3] S. Kousik, S. Vaskov, M. Johnson-Roberson, and R. Vasudevan, “Safe
trajectory synthesis for autonomous driving in unforeseen environ-
ments,” in ASME 2017 Dynamic Systems and Control Conference.
American Society of Mechanical Engineers, Oct. 2017.

[4] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, Jun. 2017.

[5] D. Mengoli, “A robotic platform for precision agriculture and appli-
cations,” Ph.D. dissertation, Università di Bologna, Jun. 2023.

[6] M. Reske, M. Daher, M. Hötter, and C. Brockmeier, “Last-mile robot
for urban goods transport,” ATZ worldwide, vol. 123, no. 12, pp. 42–
47, Nov. 2021.

[7] X. Huang, Q. Cao, and X. Zhu, “Mixed path planning for multi-robots
in structured hospital environment,” The Journal of Engineering, vol.
2019, no. 14, pp. 512–516, Feb. 2019.

[8] P. Prabhu and A. R. Chowdhury, “Feasibility study of multi au-
tonomous mobile robots (AMRs) motion planning in smart warehouse
environment,” in 2021 18th International Conference on Ubiquitous
Robots (UR). IEEE, Jul. 2021.

[9] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, p.
497, Jul. 1957.

[10] L. Pontryagin, Mathematical Theory of Optimal Processes, ser. Clas-
sics of Soviet Mathematics. Taylor & Francis, 1987.

[11] H. H. Johnson, “An application of the maximum principle to the
geometry of plane curves,” Proceedings of the American Mathematical
Society, vol. 44, no. 2, pp. 432–435, 1974.

[12] Y. Zheng, Z. Chen, X. Shao, and W. Zhao, “Time-optimal guidance
for intercepting moving targets by dubins vehicles,” Automatica, vol.
128, p. 109557, Jun. 2021.

[13] Z. Fathi, B. Bidabad, and M. Najafpour, “Time optimal control in
presence of moving obstacles for a dubins airplane,” 2019.

[14] K. Kučerová, P. Váň, and J. Faigl, “On finding time-efficient tra-
jectories for fixed-wing aircraft using dubins paths with multiple
radii,” in Proceedings of the 35th Annual ACM Symposium on Applied
Computing. ACM, Mar. 2020.

[15] T. Mercy, E. Hostens, and G. Pipeleers, “Online motion planning
for autonomous vehicles in vast environments,” in 2018 IEEE 15th
International Workshop on Advanced Motion Control (AMC). IEEE,
Mar. 2018.

[16] S. G. Manyam, D. Casbeer, A. L. V. Moll, and Z. Fuchs, “Shortest
dubins path to a circle,” in AIAA Scitech 2019 Forum. American
Institute of Aeronautics and Astronautics, Jan. 2019.

3239

