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Abstract— Finite-state abstractions are widely studied for
the automated synthesis of correct-by-construction controllers
for stochastic dynamical systems. However, existing abstraction
methods often lead to prohibitively large finite-state models.
To address this issue, we propose a novel abstraction scheme
for stochastic linear systems that exploits the system’s stability
to obtain significantly smaller abstract models. As a unique
feature, we first stabilize the open-loop dynamics using a linear
feedback gain. We then use a model-based approach to abstract
a known part of the stabilized dynamics while using a data-
driven method to account for the stochastic uncertainty. We
formalize abstractions as Markov decision processes (MDPs)
with intervals of transition probabilities. By stabilizing the
dynamics, we can further constrain the control input modeled
in the abstraction, which leads to smaller abstract models while
retaining the correctness of controllers. Moreover, when the
stabilizing feedback controller is aligned with the property of
interest, then a good trade-off is achieved between the reduction
in the abstraction size and the performance loss. The experiments
show that our approach can reduce the size of the graph of
abstractions by up to 90% with negligible performance loss.

I. INTRODUCTION

The automated synthesis of correct-by-construction con-
trollers for stochastic dynamical systems is crucial for their
deployment in safety-critical scenarios. Synthesizing such
controllers is challenging due to continuous and stochastic
dynamics and the complexity of control tasks [1]. One
solution is to abstract the system into a finite-state (also called
symbolic) model [2]–[4]. Under an appropriate behavioral
relation (e.g., a feedback refinement relation [5]), trajectories
of the abstraction are related to those of the dynamical system.
Thus, a controller (i.e., policy) in the abstraction can, by
construction, be refined to a controller for the original system.

Conventional abstraction methods, however, rely on a
precise mathematical model of the system. In relaxing this
assumption, data-driven abstractions have recently gained
momentum [6]–[13]. These methods take a black-box (or
sometimes a gray-box, e.g., [10]) perspective and construct
abstractions from sampled system trajectories. Several pa-
pers provide probably approximately correct (PAC) guaran-
tees [7,12], whereas others return controllers with hard (non-
statistical) guarantees [6,8,11]. However, except from [13],
none of these methods can handle stochastic systems.
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Fig. 1: A single-layer abstraction (a), versus our two-layer
feedback design framework, which combines a stabilizing
controller (linear feedback gain) with a symbolic controller
(obtained from the abstraction). We impose constraints on
both the total input −Kx+u′ ∈ U and on the input u′ ∈ U ′.

In this paper, we take a middle route between these model-
based and data-driven abstraction methods. Specifically, we
consider control problems for linear systems with known
deterministic dynamics but stochastic noise of an unknown
distribution. This hybrid setting is similar to [14,15], which de-
velop a method to construct abstractions with PAC guarantees
by sampling of the noise. However, due to their exhaustive
discretization of the state space, the application to large-scale,
industrial and realistic systems remains elusive.

A promising way to improve scalability is to exploit classi-
cal system properties, such as stability [16]. For example, [17]
shows that for any stable discrete-time linear system with
input constraints, there exists an approximately bismilar
finite abstraction of any desired precision. Similar results
hold for incrementally stable continuous-time switched [18]
and nonlinear systems [19,20]. A related notion is that
of incremental forward completeness, which enables the
abstraction of nonlinear discrete-time systems [21]. We
observe that these results guarantee the existence of a certain
type of abstraction if the system is stable. However, we
postulate that stability may also be beneficial to construct
finite-state abstractions with smaller underlying graphs.

Thus, the question central to this paper is: “How can
the stability of a stochastic dynamical system be exploited
to synthesize controllers via finite-state abstractions with
smaller underlying graphs?” Our approach builds upon the
hybrid abstraction technique for discrete-time stochastic linear
systems developed in [14]. We consider tasks as reach-avoid
properties, i.e., reach a set of goal states while always avoiding
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unsafe states. The control objective is to design a feedback
controller such that the closed-loop system satisfies the reach-
avoid task with at least a desired threshold probability.

Inspired by [14], we create an abstraction for discrete-time
stochastic linear systems into an interval Markov decision
process (iMDP) with PAC intervals of transition probabilities,
which we compute using data-driven techniques for scenario
programs with discarded constraints [22,23]. A defining
characteristic of this abstraction is that each abstract action
is associated with a fixed distribution over (continuous)
successor states. By contrast, other abstractions typically
associate each abstract action with a fixed control input, such
that the distribution over successor states depends on the
precise continuous state where the abstract action is chosen.
With our approach, we avoid this issue at the cost of more
restrictive assumptions on the dynamics (Assumption 1).

Instead of abstracting the open-loop dynamics directly
(as in Fig. 1a), we propose the two-layer feedback control
design framework in Fig. 1b. In this framework, we first
stabilize the system with a linear feedback gain and then
abstract the stabilized dynamics. This approach delegates part
of the control effort to the stabilizing controller, which allows
us to further constrain the control input synthesized in the
abstraction. Especially if the stabilizing controller contributes
to satisfying the reach-avoid task, we can reduce the number
of edges in the graph of the abstraction significantly (by up
to 90%; see Sect. V) with negligible performance loss.

Contributions: As our main contribution, we extend the
abstraction method from [14] to the two-layer abstraction
in Fig. 1b and show that this new scheme can be used to
construct abstractions with smaller underlying graphs. We
show that the formal relation induced by the abstraction
from [14] carries over to our setting. Our experiments
exemplify the conditions necessary for a good trade-off
between abstraction size and controller performance.

II. PRELIMINARIES

A probability space (Ω,F ,P) consists of an uncertainty
space Ω, a σ-algebra F , and a probability measure P : F →
[0, 1]. A random variable x is a measurable function x : Ω →
Rn for some n ∈ N, which takes value x(ω) ∈ Rn for ω ∈ Ω.
We denote the set of all distributions for both a continuous
and discrete set X by P(X). The convex hull of a set of
points {v1, . . . , vm} in Rn is conv(v1, . . . , vn). We denote
the interior of V ⊂ Rn by int(V) and the pseudoinverse
of matrix B by B†. The indicator function 1V (x) for a set
V ⊂ Rn is one if x ∈ V and zero otherwise. The Cartesian
product of an interval is written as [a, b]n, for a ≤ b, n ∈ N.

A. Stochastic dynamical systems

Consider a discrete-time, stochastic linear dynamical sys-
tem S where the state space variable xk ∈ Rn evolves as

S : xk+1 = Axk +Buk + ηk, x0 = x̄, (1)

where x̄ ∈ Rn is the initial condition, uk ∈ Rp is the control
input, and ηk ∈ Rn is a stochastic noise. Matrices A and
B have the appropriate dimensions. The control input is

constrained to a convex polytope U = {u ∈ Rp : Gu ≤ g} ⊂
Rp called the admissible control input, where G ∈ Rq×p

and g ∈ Rq . Moreover, (ηk)k∈N0 is a discrete-time stochastic
process defined on a probability space (Ω,F ,P), with its
natural filtration (see [24] for details). Thus, (xk)k∈N0

is also
a stochastic process in the same probability space.

Assumption 1 (Non-singular and controllable). Matrix A ∈
Rn×n is non-singular, and the pair (A,B) is controllable.

Assumption 2 (Noise distribution). For all (x, u) ∈ Rn ×
U and all (Borel measurable [25]) sets V ⊂ Rn, let
µk(V ;x, u) = P{ω ∈ Ω : Ax + Bu + ηk(ω) ∈ V } ∈ [0, 1]
be the conditional probability that the next state belongs to
V , given the current state-input pair. Then we have that:

• (identically distributed): µk(V ;x, u) is time-invariant;
hence, we may drop the time index and write µ(V ;x, v);

• (independence): For any finite collection V1, . . . , Vm ⊂
Rn and state-action pairs {(xi, ui)}mi=1, we have that

P{ω ∈ Ω :

m⋂
i=1

Axi +Bui + η(ω) ∈ Vi} =

m∏
i=1

µ(Vi;xi, ui);

• (density): The Radon-Nikodym derivative of µ(V ;x, u)
exists for all pairs (x, u), and µ(V ′;x, u) is a measur-
able function from Rn × U to [0, 1] for all V ′ ⊂ Rn.
However (and importantly), the density µ is unknown.

Assumption 2 requires process (ηk)k∈N to be i.i.d. and to
possess a well-defined probability density. However, we do
not assume knowledge of its density. Under Assumption 2,
system (1) can be equivalently expressed using the stochastic
kernel (see [26, Chapter 7] for details) T : Rn×U → P(Rn),
which maps each state-input pair to a distribution over states:

xk+1 ∼ T (· | xk, uk), x0 = x̄. (2)

For example, if ηk ∼ N (µ,Σ), k ∈ N is Gaussian, the
stochastic kernel is given by T (· | xk, uk) = N (Axk +
Buk+µ,Σ). A time-varying feedback controller chooses the
inputs uk ∈ U by measuring the current state.

Definition 1. A time-varying feedback controller is a measur-
able function c : Rn × N0 → U , which maps a state x ∈ Rn

and a time step k ∈ N0 to a control input u ∈ U .

B. Problem statement

Given a system as in (1), our goal is to find a time-varying
controller c such that the closed-loop system with uk =
c(xk, k), for all k ∈ N, satisfies some objective. Specifically,
we consider the objective of reaching a desired region XG

of the state space while always avoiding unsafe states XU .

Definition 2 (Reach-avoid property). A reach-avoid property
is a tuple (XG, XU , H) of a set of goal states XG and unsafe
states XU (such that XG ∩XU = ∅), and horizon H ∈ N.

For system S in (1), we consider XG, XU ⊂ Rn as com-
pact subsets of Rn and use the notation φ = (XG, XU , H)
for this reach-avoid property. A trajectory x0, x1, . . . , xH

of length H for system S satisfies φ if there exists a
k ∈ {0, . . . ,H} such that xk ∈ XG and xk′ /∈ XU for all
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k′ ∈ {0, . . . , k}. Under a fixed controller, system S induces
a stochastic process (xk)k∈N0 for which we can reason over
the probability of satisfying a reach-avoid property [26].

Definition 3 (Satisfaction of φ). For a fixed time-varying
feedback controller c : Rn × N → U and a given initial
condition x̄, the satisfaction probability of φ is denoted by

PrcS(x̄ |= φ) := P
{
ω ∈ Ω : ∃k ∈ {0, . . . ,H}, xk(ω) ∈ XG,

xk′(ω) /∈ XU ∀k′ ∈ {0, . . . , k}, (3)

x0 = x̄, xk+1 ∼ T (· | xk, c(xk, k))
}
.

We are now able to describe our control objective.

Problem 1. Given a linear stochastic system S as in (1), with
initial state x̄, a reach-avoid property φ as in Definition 2,
and a desired threshold probability ρ ∈ [0, 1], design a time-
varying feedback controller c such that PrcS(x̄ |= φ) ≥ ρ.

C. Markov decision processes

Our approach for solving Problem 1 is to create a discrete
abstraction of system S into an MDP with imprecise transition
probabilities. To distinguish from system S , we call abstract
states locations and a controller for the abstraction a policy.

Definition 4. An interval MDP (iMDP) I is defined as a
tuple I := (S, s̄,A, P̌, P̂ ), where

• S is a finite set of locations, with initial condition s̄ ∈ S,
• A is a finite set of actions, with A(s) ⊂ A denoting the

actions enabled in location s ∈ S, and
• P : S × A ⇒ P(S) maps each pair (s, a) to a set of

distributions defined by P̌ (s, a), P̂ (s, a) ∈ [0, 1]|S| as

P (s, a) =
{
p ∈ [0, 1]|S| : P̌s′(s, a) ≤ ps′ ≤ P̂s′(s, a),

∀s′ ∈ S,
∑
s′∈S

ps′ = 1
}
. (4)

For any iMDP, we require that P̌s′(s, a) ≤ P̂s′(s, a) for
all s, s′ ∈ S, a ∈ A(s), and that

∑
s′∈S P̌s′(s, a) ≤ 1 ≤∑

s′∈S P̂s′(s, a) for all s ∈ S, a ∈ A(s); otherwise, the set (4)
may be empty. An adversary fixes a probability P ′(s, a)(s′) ∈
P (s, a) for all pairs (s, a) ∈ S×A. Importantly, a different P ′

can be chosen every time the same pair (s, a) is encountered.
For brevity, we overload notation and use P ′ ∈ P to denote
choosing an adversary in the set of all adversaries.

Actions are chosen by a time-varying policy π : S×N0 →
P(A), which maps every location s ∈ S and time k ∈ N0 to
an action a ∈ A.1 The set of all admissible policies2 is

Π =
{
π : S × N0 → P(A) | π(s, k)(a) > 0 =⇒ a ∈ A(s)

}
.

Thus, any policy π ∈ Π requires that for all k ∈ N and s ∈ S,
the support of the distribution π(s, k) is contained in A(s).

For an iMDP, a reach-avoid property φ′ = (SG, SU , H)
(cf. Def. 2) is defined over the locations, i.e., SG, SU ⊆ S.

1Time-varying policies are needed to attain optimal values for the time-
bounded properties we consider [27, Ch. 10.6]. An equivalent approach is to
encode the time step explicitly in the iMDP by defining the set of locations
S′ = S × {0, . . . , H} and using memoryless policies π : S′ → A instead.

2The policy class Π suffices to obtain optimal policies for iMDP [28].

The semantics over trajectories s0, s1, . . . , sH are the same
as for system S. Similar to Def. 3, for any policy π ∈ Π
and transition function P ′ ∈ P , we denote the probability of
satisfying φ′ by PrπP ′(s̄ |= φ′).3 An optimal (robust) policy
π⋆ ∈ Π optimizes the next min-max problem:

π∗ ∈ argmax
π∈Π

min
P ′∈P

PrπP ′(s̄ |= φ′). (5)

Remark 1. We can alternatively express reach-avoid proper-
ties by extending the iMDP with a reward function R : S →
R≥0 defined as R(s) = 1SG

(s), and making all locations
s ∈ SU absorbing, i.e., P̌ (s, a, s) = P̂ (s, a, s) = 1∀s ∈ SU ,
a ∈ A(s). For details, we refer to [27, Def. 10.71].

III. ABSTRACTION-BASED CONTROLLER SYNTHESIS

We formally relate the dynamics in (1) to a finite iMDP,
using a probabilistic variant of a feedback refinement rela-
tion [5]. Then, we establish that the abstraction proposed
by [14] induces this relation. A measurable set R ⊆ Rn × S
is called a binary relation, for which we use notations R(x) =
{s ∈ S : (x, s) ∈ R} and R−1(s) = {x ∈ Rn : (x, s) ∈ R}.

Definition 5 ([15]). A binary relation R ⊂ Rn × S is a
probabilistic feedback refinement relation from iMDP I =
(S, s̄,A, P̌, P̂ ) to system S defined by (2) if

1) for the initial state-location, we have (x̄, s̄) ∈ R, and
2) for all (x, s) ∈ R and a ∈ A(s), there exists a u ∈ U

such that for all s′ ∈ S, it holds that

P̌s′(s, a) ≤
∫
Rn

1R−1(s′)(ξ)T (dξ | x, u) (6)

= P
{
ω ∈ Ω : Ax+Bu+ η(ω) ∈ R−1(s′)

}
≤ P̂s′(s, a).

Similar to [5], we denote a probabilistic feedback refine-
ment relation R from I to S by I ⪯R S . Moreover, we also
use the relation R in Def. 5 to relate reach-avoid properties
between system S and an iMDP.

Definition 6. A pair of reach-avoid properties φ =
(XG, XU , H) and φ′ = (SG, SU , H) is consistent under a
relation R ⊂ Rn × S, denoted by φ′ ⪯R φ if

SG = {s ∈ S : R−1(s) ⊆ XG}, (7)

SU = {s ∈ S : R−1(s) ∩XU ̸= ∅}. (8)

Intuitively, given an iMDP path s0, s1, . . . , sH that satisfies
φ′, the relation φ′ ⪯R φ implies that all related trajectories
x0, x1, . . . , xH , i.e., trajectories for which (xi, si) ∈ R for
all i = 0, . . . ,H , must satisfy φ. The following result, which
is proven in [15], shows that Def. 5 and 6 can be used to
synthesize correct-by-construction controllers for system S.

Theorem 1 ([15]). Consider a system S as in Eq. (1), an
iMDP as in Def. 4, and a relation R ⊂ Rn × S such that
I ⪯R S. Also let properties φ = (XG, XU , H) and φ′ =
(SG, SU , H) be such that φ′ ⪯R φ. Then, for any policy
π ∈ Π, there exists a controller c as in Def. 1 such that

PrcS(x̄ |= φ) ≥ min
P ′∈P

PrπP ′(s̄ |= φ′). (9)

3Fixing a policy π ∈ Π and an adversary with P ′ ∈ P induces a Markov
chain with probability measure PrπP ′ ; see [27, Def. 10.10] for details.
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The proof of Theorem 1 uses that, for MDPs, the relation
R preserves the satisfaction of probabilistic computation
tree logic (PCTL), in which the reach-avoid property in
Def. 2 can be expressed [29]. For iMDPs, this preservation
of probabilistic satisfaction leads to the inequality in (9). In
fact, Theorem 1 can be extended to any PCTL formula; see,
e.g., [30]. However, since our contributions are unrelated to
the property, we focus on reach-avoid properties for simplicity.

A. Abstraction procedure

We revisit the abstraction developed in [14,15], which
first uses a model-based approach to compute the abstract
locations and actions. Second, a data-driven approach is used
to capture the stochastic uncertainty into intervals of transition
probabilities. The resulting abstraction is an iMDP that creates
a relation as in Def. 6 with a pre-defined confidence level.

1) Model-based locations and actions: The locations of the
abstraction are given by a polyhedral partition of a bounded
portion X ⊂ Rn of the state space of system S:

Definition 7. A polyhedral partition of X ⊂ Rn is a finite
collection of sets {V1, . . . , VL,Rn \ X} such that

1) Each Vi is a convex polytope, i.e., Vi = {x ∈ Rn :
Hix ≤ hi} for Hi ∈ Rpi×n, hi ∈ Rpi , and pi ∈ N;

2) X =
⋃L

i=1 Vi;
3) int(Vi)

⋂
int(Vj) = ∅, ∀i, j ∈ {1, . . . , L}, i ̸= j.

Adding the final element Rn \ X ensures that the partition
covers Rn. A partition creates an equivalence relation [31].

Remark 2 (Equivalence relation). A polyhedral partition of
X ⊂ Rn creates an equivalence relation ∼ ⊂ Rn×Rn, such
that [x]∼ := {x′ ∈ Rn | x ∼ x′} is the equivalence class of
state x ∈ Rn, where x ∼ x′ denotes that (x, x′) ∈ ∼. The
set of all equivalence classes Rn/∼ = {[x]∼ | x ∈ Rn} =
{V1, . . . ,VL, Rn \ X} is the partition itself.

The locations of the abstraction are the equivalence classes
of the partition, i.e., S := Rn/∼. Next, the set of actions is
A := {a1, . . . , aq}, q ∈ N, where each a ∈ A is associated
with a target point da ∈ Rn in the state space of S . For each
point da, for a ∈ A, we define the backward reachable set as

R−1(da) = {x ∈ Rn : da = Ax+Bu, u ∈ U}
= conv

(
A−1(da −Bvi) : i = 1, . . . , q

)
,

(10)

where the second equality follows from Assumption 1. The
set A(s) ⊆ A of actions enabled in location s ∈ S is

A(s) =
{
a ∈ A | s ⊆ R−1(da)

}
. (11)

Thus, action a ∈ A is enabled in location s ∈ S only if the
equivalence class s is contained in the backward reachable
set R−1(da). Choosing abstract action a ∈ A is defined such
that da = Ax+Bu, which implies that u = B†(da −Ax).4

Since the noise is additive, the successor state is da+η, which
is a random variable with distribution T (· | x,B†(da −Ax)).

4Action a is only enabled in equivalence classes that are a subset of the
backward reachable set R−1(da). Thus, we have u = B†(da −Ax) ∈ U
by construction for any state x ∈

⋃{
s ∈ S | a ∈ A(s)

}
⊂ Rn.

Remark 3. Other abstraction methods typically associate
each a ∈ A with a fixed input û ∈ U . Thus, the distribution
T (· | x, û) over successor states associated with choosing
action a depends on the precise state x ∈ Rn. By contrast, we
associate each abstract action a ∈ A with a fixed distribution
T (· | x,B†(da−Ax)) over successor states. Since Ax+Bu+
η = Ax+BB†(da −Ax) + η = da + η, this distribution is
the same for any state x ∈ Rn for which a ∈ A([x]), i.e.,
where abstract actions a is enabled.

2) Data-driven transition probabilities: As the distribution
of the noise is unknown, we use a finite set of samples of ηk
to compute an interval on the probability of reaching each
location s ∈ S. Formally, let {δ1, . . . , δN} ∈ ΩN , where N ∈
N is the number of samples5 of ηk. For each pair s, s′ ∈ S and
enabled action a ∈ A(s), the interval [P̌s′(s, a), P̂s′(s, a)] is
computed such that the exact probability is contained with at
least a desired probability of 1− β, with β ∈ (0, 1):

PN
{
P̌s′(s, a) ≤

∫
Rn

1s′(ξ)T (dξ | x, [B†(da −Ax)])

≤ P̂s′(s, a)
}
≥ 1− β, (12)

where x is such that [x] = s, state s′ ∈ S = Rn/∼ is
interpreted as a subset of Rn, and the outer probability is taken
w.r.t. the upper bound P̂s′(s, a) and lower bound P̌s′(s, a) of
the interval, which are random variables in the space ΩN .

In practice, we compute these intervals using the method
from [15], which leverages the scenario approach [22].
This method implicitly solves a set of 2N convex scenario
programs with discarded constraints [32] and uses [23]
to compute tight bounds on the probability of constraint
violation for each of these programs. By construction, one of
these 2N probabilities of constraint violations lower bounds
the transition probability in Eq. (12), and another one is
an upper bound. By choosing the confidence level on the
probability of constraint violation for each scenario program
as 1− β

2N , we obtain a probability interval such that Eq. (12)
holds. It is shown in [15] that these scenario programs can
be solved analytically based on its geometry, making the
approach highly efficient. Due to space restrictions, we refer
to [15, Theorem 1] for formal details.

3) Complete abstraction: Putting all elements together, we
define the iMDP abstraction (S, s̄,A, P̌, P̂ ), with

• Set of locations S = Rn/∼, with s̄ = [x̄];
• Actions A = {a1, . . . , aq}, for q ∈ N, with the enabled

actions A(s) defined by (11) for all s ∈ S;
• For each s, s′ ∈ S and a ∈ A(s), the lower and upper

bound probabilities P̌s′(s, a) and P̂s′(s, a) are such that
(12) holds for a desired value of β ∈ (0, 1).

B. Controller synthesis

We show that the equivalence relation ∼ ⊂ Rn×S created
by the partition (cf. Remark 2) is (with a certain probability)
a probabilistic feedback refinement relation R from iMDP I
to system S , as defined by the conditions in Def. 5.

5Since (1) is time-invariant and has additive noise, we can obtain these
samples from a single trajectory of length N starting at an arbitrary state x̄.
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Theorem 2 ([15, Thm. 2]). For a given polyhedral partition
that creates an equivalence relation ∼, let I be the iMDP
abstraction for system S with β ∈ (0, 1). Then, it holds that
PN{I ⪯∼ S} ≥ 1− β · |A| · |S|.

Proof. The iMDP has at most |A| · |S| unique probability
intervals (see [15] for details). We have that I ⪯∼ S if all
of these intervals contain the exact probability, which (by
applying the union bound) is satisfied with a probability of
at least 1− β · |A| · |S|. Thus, the claim follows.

Under Assumption 1, we can refine any policy for the
abstract iMDP into a controller of the form in Def. 1.

Definition 8 (Controller refinement). Let π ∈ Π be any iMDP
policy. The refined controller c : Rn × {0, . . . ,H} → U is
piece-wise affine in x ∈ Rn and is defined for all x ∈ Rn as

c(x, k) = B†(da −Ax), a ∈ π(s, k) ∈ A(s), (13)

where s ∈ S is the iMDP location such that [x]∼ ∈ s.6

Finally, we obtain the following key result for the iMDP
abstraction and the refined controller defined above.

Theorem 3. Let S be a stochastic linear system S, φ a
reach-avoid property, and ∼ the equivalence relation for a
polyhedral partition. Then, for the iMDP abstraction I, a
reach-avoid property φI such that φI ⪯∼ φ, and any policy
π ∈ ΠI with refined controller c (as per Def. 8), it holds that

PN
{
PrcS(x0 |= φ) ≥ min

P∈P
PrπI[P ](s̄ |= φI)

}
≥ 1−β·|A|·|S|.

Thus, the satisfaction probability on the iMDP is a lower
bound on the satisfaction probability for system S under the
refined controller, with probability at least 1− β · |A| · |S|.

IV. EXPLOITING STABILITY IN ABSTRACTION

The size of the iMDP abstraction (which can be expressed
by the number of edges, or transitions, in the underlying
graph) from Sect. III grows exponentially with the dimension
of the state space. In this section, we develop an extension to
the method from [14] to create smaller abstractions. As our
key contribution, we leverage the two-layer control design
framework in Fig. 1b, which first stabilizes the dynamics
and then creates an abstraction of the closed-loop dynamics.
Specifically, we use the feedback control law given by

uk = −Kxk + u′
k, (14)

where the gain matrix K ∈ Rm×n represents a stabilizing
control law, and u′ is the control input captured by the
abstraction. In this paper, we obtain the feedback gain matrix
by solving an instance of a linear quadratic regulator (LQR)
[16] control problem. Applying the feedback control law in
(14) to system (1) yields the closed-loop dynamics given by

xk+1 = Aclxk +Bu′
k + ηk, (15)

where Acl = A−BK. We assume that the feedback gain K
satisfies the input constraints in the following way.

6If x ∈ Rn is on the boundary of multiple partition elements, the refined
controller can select any location s = [x]∼ ∈ S.

Assumption 3. The gain matrix K ∈ Rm×n is such that
−Kx ∈ U for all x ∈ X and the matrix Acl is non-singular.

A. Backward reachable set for stabilized dynamics

We show how the iMDP abstraction described in Sect. III
can be employed together with the two-layer feedback control
law in (14). The key step is that we modify the backward
reachable set computation in (10), replacing it by

R−1
cl (da, U

′) =
{
x ∈ Rn : da = Aclx+Bu′, (16)

−Kx+ u′ ∈ U, u′ ∈ U ′},
where the constraint −Kx+ u′ ∈ U = {u ∈ Rm : Gu ≤ h}
enforces that the total input u is admissible, and the constraint
u′ ∈ U ′ = {u ∈ Rm : G′u ≤ h′} controls the size of the
abstraction. Matrices G and G′ and vectors h and h′ define the
admissible control inputs; their sizes are omitted for brevity.

Assumption 4. The set U ′ contains the origin, i.e., 0 ∈ U ′.

Observe that Eq. (16) is of the same form as Eq. (10)
(despite imposing additional constraints) and can thus be
computed similarly, as shown by the following lemma.

Lemma 1. Under Assumptions 3 and 4, the following holds:
i) For any da ∈ Rn, the set R−1

cl (da, U
′) is non-empty;

ii) R−1
cl (da, U

′) = {x ∈ Rn | da = Aclx + Bu′, u′ ∈ Ũ},
where Ũ ⊂ Rm is a convex polytope defined as

Ũ =
{
u ∈ Rm : G(α+ βu) ≤ h, G′u ≤ h′}, (17)

with α = −KA−1
cl da and β = I + KA−1

cl B, where I
the identity matrix of appropriate size.

Proof. Item i): We will show that the point x̃ = A−1
cl da ∈

R−1
cl (da, U

′). Note that this point x̃ is obtained for u′ = 0
in (16), which is an admissible input due to Assumption 4.
Moreover, due to Assumption 3, we have that −Kx ∈ U ,
and thus, it holds that x̃ ∈ R−1

cl (da, U
′), which concludes the

proof of item i). Item ii): Solving the equality constraint in
(16) for x yields x = A−1

cl (da −Bu), so the input constraint
−Kx+ u′ ∈ U can be written as

−KA−1
cl da + (I +KA−1

cl B)u′ = α+ βu′ ∈ U. (18)

Thus, we have two convex polyhedral constraints on u, given
by α+βu′ ∈ U = {u ∈ Rm : Gu ≤ h} and u′ ∈ U ′ = {u ∈
Rm : G′u ≤ h′}. The intersection of the feasible sets for u
is the set Ũ in (17), concluding the proof of item ii).

Observe that, while we can compute R−1
cl (da, U

′) similarly
as in Sect. III, the number of vertices to consider is generally
higher due to the additional input constraint u′ ∈ U ′.

B. Constructing smaller abstractions

We can use the modified backward reachable set in (16)
to construct abstractions with fewer enabled actions, as
illustrated by the following lemma.

Lemma 2. Consider the backward sets defined by (10) and
(16). If U ′ = Rp in (16), then we have that R−1

cl (da, U
′) =

R−1(da). Moreover, for any two subsets U ′′ ⊂ U ′ ⊆ Rp, it
holds that R−1

cl (da, U
′′) ⊆ R−1

cl (da, U
′).
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Proof. Letting U ′ = Rp and Acl = A−BK in (16) gives

R−1
cl (da, U

′) =
{
x ∈ Rn : da = Ax+B(−Kx+ u′),

−Kx+ u′ ∈ U
}

=
{
x ∈ Rn : da = Ax+Bu, u ∈ U

}
= R−1(da),

thus proving the first claim. For U ′′ ⊂ U ′, observe from (16)
that u′ ∈ U ′′ ⊂ U ′. Thus, we obtain that R−1

cl (da, U
′′) ⊆

R−1
cl (da, U

′), which proves the second claim.

Recall from Sect. III that an action a ∈ A is enabled in
location s ∈ S if and only if the corresponding partition
element is contained in the backward reachable set R−1(da).
In the modified backward reachability set in (16), we can
control the size of R−1

cl (da) through U ′. In fact, Lemma 2
shows that by shrinking the set U ′, we may reduce the number
of enabled actions at each state and, consequently, the size
of the graph of the iMDP. In the next section, we show how
suitable choices for the feedback gain K and input constraint
U ′ may lead to significantly smaller iMDP abstractions.

V. NUMERICAL EXPERIMENTS

We implement our method in a Python tool, which is avail-
able at https://github.com/LAVA-LAB/DynAbs.
We use the model checker PRISM [33] to compute optimal
policies as per (5) for iMDPs. In all experiments, we apply
Theorem 3 with an overall confidence of 1−β ·|A|·|S| = 0.99.
For simplicity, we use partitions into rectangular regions.

A. Double integrator
Consider a stochastic system with dynamics given as

xk+1 =

[
1
ρ2

1+ρ
+

1

0 1

]
xk +

[
0.5+ρ

ρ
0.5

1 1

]
(−Kxk + u′

k) + ηk,

where we apply the control law given in (14), and the noise
ηk ∼ N (0, I2) has a standard normal distribution and satisfies
the conditions in Assumption 2. We select ρ = 2 to render the
system unstable when a trivial control of −Kxk + u′

k = 0 is
applied. The reach-avoid task is to reach a state x ∈ [−3, 3]2

while avoiding states x /∈ [−41, 41]2 within H = 16 steps.7

We partition the set X = [−41, 41]2 into 41 by 41 rectangular
regions of width two. The input constraint is U = [−60, 60]2.

Baseline: As a baseline, we set K = 0 and construct the
single-layer iMDP abstraction (as outlined in Sect. III) with
input constraint U = [−60, 60]2. The resulting iMDP has 39.8
million transitions, and the lower bounds on the satisfaction
probabilities (obtained from Theorem 3) are shown in Fig. 2
for a range of initial states x̄ = (x1, 0) for x1 ∈ [−41, 41].

Stabilizing controller: We now use our two-layer abstrac-
tion scheme, where we compute the gain K with an LQR
with cost matrices Q = R = I2, yielding (A−BK) having
eigenvalues of λ = 0.178± 0.136i. We construct the iMDP
for the different sets U and U ′ shown in Table I, presenting
the lower bound satisfaction probabilities for two cases in
Fig. 2. With our method, we construct significantly smaller

7The correctness of our iMDP abstraction is independent of the horizon.
For numerical experiments with an infinite time horizon, we refer to [15].
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Fig. 2: Lower bound satisfaction probabilities (obtained
from Theorem 3) for the integrator experiment with initial
conditions x̄ = (x1, 0) for all −41 ≤ x1 ≤ 41.

TABLE I: Number of iMDP transitions for the integrator
experiment. The highlighted rows are those shown in Fig. 2.

Stabilized? U U ′ iMDP transitions

No (baseline) [−60, 60]2 n.a. 39 773 745
No [−40, 40]2 n.a. 21 289 058
No [−20, 20]2 n.a. 5 219 518

Yes [−60, 60]2 [−30, 30]2 25 671 576
Yes [−60, 60]2 [−20, 20]2 15 757 546
Yes [−60, 60]2 [−10, 10]2 3 996 029
Yes [−40, 40]2 [−20, 20]2 11 691 267
Yes [−40, 40]2 [−10, 10]2 2 895 878
Yes [−20, 20]2 [−10, 10]2 1 034 996

abstractions with little loss in probabilistic guarantee. For
example, with |U | = 60, |U ′| = 20, the number of iMDP
transitions is reduced from 39.8 to 15.8 million at negligible
loss in probabilistic guarantee. Shrinking the set U ′ further
reduces the iMDP size; however, at the cost of a considerable
reduction in probabilistic guarantee, as shown in Fig. 2a.

B. Spacecraft docking

We consider the spacecraft docking problem from [34],
with x ∈ R4 modeling the position and velocity in two
dimensions (see [34] for the full model). We illustrate that
our method generally works well if the stabilizing feedback
controller is aligned with the reach-avoid property. That is, the
stabilizing controller should steer the state x towards the goal
region XG ⊂ R4, while steering clear from the unsafe states
XU ⊂ R4. We consider the two reach-avoid problems shown
in Fig. 3 (only the position state variables are shown). As a
baseline, we construct the abstraction with a partition into
3 200 elements and an input constraint U = [−0.1, 0.1]2. For
the reach-avoid problem in Fig. 3a, the resulting iMDP has
1.6 million transitions and leads to a lower bound satisfaction
probability of 0.80 in Theorem 3. Similarly, for the problem
in Fig. 3b, the iMDP has 2.1 million transitions and leads to
a lower bound satisfaction probability of 0.86.

Now, we apply our method with U ′ = [−0.08, 0.08]2,
resulting in iMDPs with 280 and 330 thousand transitions
(reductions of 79% and 85% respectively). For the problem
in Fig. 3a, the lower bound on the satisfaction probability is
0.79 (only 0.01 below the baseline). However, for Fig. 3b,
the bound drops to 0.0072, i.e., almost zero. To explain this
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Fig. 3: Simulated trajectories and stabilized vector fields
(A−BK)x for both reach-avoid properties considered in the
spacecraft problem (goal states in green; unsafe states in red).
Case (a) is aligned, while case (b) is not.

severe performance loss, we show simulated trajectories under
the refined controller (as per Def. 8) in Fig. 3. Moreover, the
arrows show the vector field under the stabilized dynamics,
i.e., (A−BK)x for different x ∈ Rn. In Fig. 3a, the vector
field points to the goal region and away from unsafe states,
and is thus aligned with the property. By contrast, the vector
field in Fig. 3b is not aligned since it steers the system into
unsafe states, causing a performance loss of the controller.

VI. CONCLUSION

In this paper, we have developed a novel formal abstraction
method for stochastic linear dynamical systems that exploits
stability to generate smaller abstract models. By stabilizing
the dynamics with a linear feedback gain first, we have shown
that we can reduce the size of abstractions (in terms of the
number of edges in the underlying graph) significantly. Our
experiments have shown that, when the feedback gain steers
the system toward the goal states (and away from the unsafe
states), we can reduce the number of transitions by up to
90% with negligible performance loss.

However, if the stabilizing controller is not aligned with
the control task (as in Fig. 3b), the controller performance
degrades significantly. One possible solution is to use a piece-
wise affine trajectory-tracking controller, which selects differ-
ent gains in different regions of the state space. Exploring
this latter approach will be the next step of our research.
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