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Abstract— To justify the use of two single-input single-output
(SISO) control loops instead of more complex multi-input multi-
output (MIMO) control, the axes in a wind turbine’s pitch
control system should be fully decoupled using the multi-blade
coordinate transform. To achieve that, usually, an azimuth
offset is required, correcting for phase lags originating from,
e.g., actuator delays and blade flexibility. In wind turbine
simulations, this parameter is commonly obtained by analysis
of the linearized turbine models. This work, however, demon-
strates that analyzing linearized turbine models is not sufficient
for correcting the full phase lag when coupling wind turbine
simulation tools to large-eddy simulators (LES), since additional
phase lags may arise. Instead, this work proposes deriving the
azimuth offset using data-driven modelling directly in coupled
LES, where data is generated by exciting the structure with
pseudo-random binary noise. Using this approach it was found
that the optimal azimuth offset is three degrees higher than
when using the linearized model, which demonstrates that
deriving the optimal azimuth offset from linearized models is
not suitable for coupled simulations.

I. INTRODUCTION

Over the past decades, wind turbines have experienced
significant growth with a visible trend for offshore instal-
lations [1]. Building bigger turbines pays off since doubling
rotor diameter theoretically quadruples the power capacity of
the machine thanks to their quadratic relation [2]. However, a
considerable challenge comes with larger rotors, namely the
increasing asymmetric loads, arising from the spatiotemporal
variability in the wind, such as turbulence, wind shear, tower
shadow, yaw misalignment, and wake overlap imposed by
upstream turbines [3]. As a blade slices through the varying
wind field at the rotor frequency (once-per-revolution/1P),
the blade fatigue damage is exacerbated at this frequency
and its harmonics (2P, 3P, etc.), whereas the fixed struc-
ture experiences that of 0P, 3P, 6P, etc. for a three-bladed
wind turbine. Such loading accelerates the degradation of a
turbine’s structural integrity, thereby shortening its lifetime.
Although structural reinforcements can be done, these might
be cost-prohibitive, which motivates the resort to control
solutions, such as individual pitch control (IPC).

Conventional IPC relies on the blade moments projection
from the rotating frame into the tilt and yaw axes in the fixed
frame, accomplished by the azimuth-dependent multi-blade
coordinate (MBC) transformation [3]. Therein, a diagonal

1A.A.W. van Vondelen, A.K. Pamososuryo, and J.W. van Wingerden are
with the Delft Center for Systems and Control, Delft University of Tech-
nology, 2628 CD Delft, The Netherlands {A.A.W.vanVondelen,
A.K.Pamososuryo, J.W.vanWingerden}@tudelft.nl

2S.T. Navalkar is with Siemens Gamesa Renewable Energy B.V.,
Prinses Beatrixlaan 800, 2595 BN The Hague, The Netherlands
Sachin.Navalkar@siemensgamesa.com

single-input single-output (SISO) control structure could be
designed, assuming that the two control channels are fully
decoupled. The resulting control inputs are then projected
back by the inverse transformation, yielding individual pitch
signals counteracting the 1P loading. In reality, however,
the decoupled channel assumption does not always hold,
for instance, due to pitch actuator delays and/or blade flex-
ibility. As a remedy, an azimuth offset is required in the
MBC transformation, whose optimal value can decouple both
channels, thereby justifying simple SISO control designs, and
preventing degradation of the load control performance [4],
[5]. Mulders et al. [4] provide a comprehensive study on this
offset, including derivation of its analytical expression. They
have shown the existence of a sensitivity peak surrounding
the 1P frequency, which may amplify unwanted frequencies
surrounding the 1P frequency if not corrected by the azimuth
offset.

For determining such an optimal offset, a system model is
commonly available, e.g., through the linearization routine
of mid-fidelity wind turbine simulation tools based on the
blade-element momentum (BEM) theory. One example of
such a tool is the National Renewable Energy Laboratory’s
(NREL) OpenFAST [6]. Nevertheless, for wind farm wake
and wake interaction studies, these simulators need to be
coupled with high-fidelity large-eddy-simulator (LES) tools,
such as AMR-Wind [7]. This enables the computation of
more complex wind flow structures not only for more reliable
advanced controller validation and load analysis but also
for optimization of wind farm layout design, turbulence
effects investigation, and study of the overall performance
and efficiency of wind energy systems.

The LES codes, however, commonly utilize actuator line
or disk methods [8] for their aerodynamic solvers and are run
at much lower simulation frequency than the wind turbine
simulation tools due to the high computational expense.
Thus, to make coupled simulations computationally feasible,
they are often run by substepping1 the wind turbine simulator
with respect to the LES code and interpolating the data
points [9]. However, the discrepancies between these coupled
tools might invalidate the optimal azimuth offset found solely
on the linearized model, as some degree of coupling between
the control axes may remain.

Since the azimuth offset may be sensitive to the above
uncertainties, it can be argued that identifying a model in
the coupled LES and wind turbine simulator code is more
straightforward, and reduces the analyst’s need to identify

1That is, both software are run at different timescales.
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the required compensation for the introduced phase lags in
the coupled simulation. The main contribution of this paper
is hence threefold:

• Demonstration of the discrepancy between the optimal
azimuth offset derived from linearized models and the
actual optimal azimuth offset in coupled LES simula-
tions.

• Provision of a data-driven modelling framework for
deriving the optimal azimuth offset in coupled LES
simulations.

• Quantification of the optimal azimuth offset in a coupled
LES simulation for the International Energy Agency
(IEA) 15-MW reference wind turbine [10].

The remainder of this paper is organized as follows.
The next section introduces the methodology used in this
study, including descriptions of the control system, simula-
tion setup, and system identification procedures. Section III
presents the results obtained from the system identification,
and analyzes these results by subjecting them to various met-
rics. In Section IV, conclusions are drawn and a recommen-
dation is provided for robust azimuth offset quantification.

II. METHODOLOGY

This section introduces the methodology used in this study.
First, a brief overview of the conventional IPC with the
azimuth offset inclusion is given, after which the simula-
tion setup is presented. Following, the system identification
framework is described, including the quantification proce-
dure of the optimal azimuth offset using the relative gain
array.

A. Conventional IPC with Azimuth Offset

A conventional IPC makes use of the individual blade root
bending moments measured by strain gauges in the rotating
reference frame. These moments are then mapped into the
fixed frame, resulting in the orthogonal collective, tilt, and
yaw axes/channels, by the forward MBC transformation
TMBC as followsMcol

Mtilt
Myaw

=
2
3

 1/2 1/2 1/2
cos(ψ1) cos(ψ2) cos(ψ3)
sin(ψ1) sin(ψ2) sin(ψ3)


︸ ︷︷ ︸

TMBC(ψ)

M1
M2
M3

 , (1)

for a three-bladed wind turbine, as considered in this work.
In (1), the notation Mi represents the i-th blade root bending
moment, where i ∈ {1,2,3}, Mcol, Mtilt, and Myaw denote the
collective, tilt, and yaw moments. The i-th blade azimuth is
denoted ψi = ψ +2(i−1)π/3, in which ψ =

∫
ωr dt is the

first blade’s azimuth with ωr as the rotor frequency (1P) and
where t represents time. Note that, as the Mcol is unused for
the IPC design, this component is dropped from the following
derivations.

The 1P component in the blade load is now mapped as
DC components in the tilt and yaw axes and is subject to
cancellation by the controller. This is done by a pair of
identical SISO compensators, e.g., integrators, assuming that

Fig. 1. Schematic of the conventional individual pitch controller with
azimuth offset.

these channels are decoupled. In the frequency domain, this
is represented as follows[

βtilt(s)
βyaw(s)

]
=

[
C(s) 0

0 C(s)

][
Mtilt(s)
Myaw(s)

]
, (2)

where C(s) = k/s, in which s denotes the Laplace variable.
The constant gain k is chosen depending on the desired
controller bandwidth.

The exerted tilt and yaw pitch control actions, βtilt and
βyaw, respectively, can then easily be translated to their
rotating frame representation using the inverse MBC trans-
formationβ1

β2
β3

=

1 cos(ψ1 +ψ0) sin(ψ1 +ψ0)
1 cos(ψ2 +ψ0) sin(ψ2 +ψ0)
1 cos(ψ3 +ψ0) sin(ψ3 +ψ0)


︸ ︷︷ ︸

T−1
MBC(ψ+ψ0)

βcol
βtilt
βyaw

 , (3)

with the collective pitch contribution βcol provided externally.
The notation βi represents the individual blade pitch angle.
The inverse transformation T−1

MBC also includes the azimuth
offset ψ0, the optimal value of which decouples the tilt and
yaw channels and justifies the SISO control design in (2) [4].
A schematic overview of the conventional IPC controller
is given in Fig. 1. Note that for simplicity, pitch actuator
dynamics are neglected in this paper. Nevertheless, tilt-yaw
cross-coupling may still exist, for instance, due to blade
dynamics.

B. Simulation setup

In this work, a toolchain of NREL codes is used. First, the
considered turbine is the IEA 15-MW reference fixed-bottom
offshore wind turbine [10], of which relevant parameters
are highlighted in Table I. Second, the turbine is simulated
in OpenFAST, a well-established mid-fidelity wind turbine
simulation tool, which can be run standalone with a BEM
aerodynamics module, or coupled, as in our case, to LES,
such as AMR-Wind. AMR-Wind relies on the AMReX
framework, which features block-structured adaptive mesh
refinement and efficient parallelism techniques [11].

The turbine is controlled using the reference open-source
controller (ROSCO) [12]. This controller leverages modern
control features such as a wind speed estimator, tip speed
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TABLE I
KEY PARAMETERS OF THE IEA 15 MW.

Parameter Value Unit
Rated power 15 MW
Hub height 150 m
Rotor diameter 240 m
Cut-in wind speed 3 m/s
Cut-out wind speed 25 m/s
Rated wind speed 10.59 m/s
Min. rotor speed 5 rpm
Max. rotor speed 7.56 rpm

Fig. 2. Schematic of the system identification setup, including the coupling
of the individual pitch controller in OpenFAST with AMR-Wind.

ratio tracking controller, and 1P and 2P IPCs. Besides these
modules, ROSCO allows overriding the control setpoints
with user-defined setpoints, which can be communicated
through a protocol known as ZeroMQ [13]. By parsing mes-
sages and effectively bypassing the baseline pitch controller,
the setpoints can more easily be generated in a higher-level
scripting language, such as Python. From this environment, it
is straightforward to generate a pseudo-random binary noise
(PRBN) excitation signal and feed it to the pitch actuators.

Simulations are carried out in a coupled OpenFAST AMR-
Wind environment. Earlier work that employed this coupling
approach can be found in the work of Taschner et al. [14].
OpenFAST operates with a time step of 0.005 seconds, while
AMR-Wind simulates the free stream flow using a 10 times
larger time step of 0.05 seconds. Data exchange between
AMR-Wind and OpenFAST is achieved through interpolation
and leverages an actuator line model [15].

In the current investigation, laminar inflow conditions are
employed to ensure precise system identification around the
desired operating point of 9 m/s. The simulation extends over
a duration of 1500 seconds, where the initial 250 seconds of
simulation are discarded to account for startup effects.

The computational domain measures 4160 meters in the
x-direction, 3200 meters in the y-direction, and 1600 meters
in the z-direction. The wind turbine is located at coordinates
(x = 1200 meters, y = 1600 meters). Throughout the domain,
a spatial discretization of 10 meters is applied. However,
within a smaller region starting 4.5 times the rotor diameter
away before the turbine, a higher spatial resolution of 5
meters is utilized. This region has dimensions (x = 3840
meters, y = 960 meters, z = 600 meters).

C. Data-driven modelling

The OpenFAST linearized model is obtained by following
the procedure described in [16]. IPC, as mentioned in Sec-
tion II-A, operates in the azimuth-independent fixed frame.
To obtain a model in that reference frame, a total of 36
models are obtained by linearizing the nonlinear equations
as soon as the turbine reaches a periodic steady state after
start-up. Consequently, these models represent the turbine
dynamics at a different azimuthal position in the rotating
frame, spaced equally by 10 degrees. Upon transforming
these using the MBC transform and subsequently averaging
them, the azimuthal dependence is removed and the model
covers the linear dynamics averaged across the full rotor disk
in the turbine’s fixed coordinate frame around the desired
operating point. Although matrix averaging is performed,
as recommended in [16], other more suitable averaging
approaches may provide better results, as shown in [17].

Black box system identification in the coupled Open-
FAST AMR-Wind environment is performed using a method
called optimized predictor-based subspace identification
(PBSIDopt) [18], a variation of the well-known stochastic
subspace identification method (see e.g. [19] for an overview
of subspace identification methods). This method relies on
input/output data for identification, which is obtained by
exciting the system with a sufficiently persistently exciting
excitation signal, usually composed of a noise sequence
covering a broad spectrum of frequencies.

Using both identification approaches, a linear-time in-
variant model is obtained, which, generally, for nonlinear
systems such as wind turbines, is only valid for a limited
operating range. If IPC is desired for a range of wind
speeds, the models and their optimal azimuth offsets must
be determined for each case separately.

The system is excited and measured in the fixed coordinate
frame, which heavily simplifies the identification process.
As an excitation signal, PRBN is chosen. This signal is
preferred because its amplitude can be constrained, unlike
with random noise. The frequency content of the excitation
signal is limited to 8 Hz, covering the full actuator bandwidth
and sufficiently exciting the relevant dynamics. A schematic
overview of the identification setup is given in Fig. 2.

Once a system is identified, the degree of coupling can
be studied by analyzing the relative gain array (RGA) (see,
e.g., [20]), which indicates the relative gain between inputs
and outputs:

RGA(A)≜ A⊙ (A†)T , (4)

where A ∈ Rl×n is the frequency response function of the
system; ⊙ denotes the element-wise multiplication, and †
denotes the pseudo-inverse. The RGA is usually computed
as a function of frequency and then averaged to obtain a
single matrix. In our case, we compute the RGA between
0.1 and 1 rad/s.

Since the objective is system decoupling, the gain between
the tilt command and tilt moment should approach 1, whereas
the gain between the tilt command and yaw moment should
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Fig. 3. Singular value plot of the first 45 singular values.

approach 0, and vice-versa. In other words, the RGA should
approach identity I. By incrementing a phase offset in the
inverse MBC transformation (3), the RGA should approach
I, upon which the optimal azimuth offset can be selected.

III. RESULTS

After introducing the framework in the previous section,
this section discusses the results obtained after applying
the framework to the IEA 15-MW in AMR-Wind coupled
with OpenFAST. First, the system identification results are
discussed in detail, and several metrics are presented which
are used to analyse the identification performance. Second,
the optimal azimuth estimation is done on the identified
model by analysing the RGA, upon which the found optimal
azimuth offset is compared against the azimuth offset ob-
tained from linearized models using the sensitivity function.

A. System identification

As a preprocessing step for model identification using
PBSIDopt, singular values can be extracted from the in-
put/output data (for details regarding this step, see [21]). By
assessing their magnitudes, one can intuitively decide which
to include. Opting for a too-high order might lead to overfit-
ting, while selecting a too-low order may exclude important
dynamics. Typically, this process is tackled iteratively.

The singular value plot resulting from the obtained in-
put/output data for identification is shown in Fig. 3. Only the
first 45 singular values are included in this figure, which is
more than sufficient for identification. An immediate starting
point for selecting the identification order is order 2, which
includes the two largest singular values. Increasing the order
beyond 11 will most likely not improve the identification
results as the differences between the singular values become
negligible.

Upon selecting orders 2 until 11, the identification is
performed, which yields a state-space representation. The
validity of this model can be further assessed by comparison
with the linearized model from OpenFAST and a spectral

average of the input-output data for the frequency range of
interest. Figure 4 shows the Bode plots of the diagonal,
tilt command to tilt moment, and the off-diagonal transfer
function, tilt command to yaw moment, for a system of
order 10. From this figure, it can be observed that the
estimated model, the OpenFAST model, and the spectral
average, closely follow the same trend for the diagonal
transfer between tilt command and tilt moment, whereas their
correspondence is slightly lesser for the off-diagonal transfer
possibly due to the coupling.

To further assess the performance of the identified model,
500 seconds of the collected data was excluded from identi-
fication and reserved for validation. The validation is per-
formed using a metric known as variance accounted for
(VAF), which compares the response of the identified model
to input data with the output data from the LES simulation:

VAF =

(
1− var(y− yest)

var(y)

)
·100%, (5)

where var denotes the variance, y is the actual response,
and yest is the response from the identified model. The VAF
yields a value of 97.7% for both output channels, implying
excellent performance. Figure 5 displays the VAFs obtained
for the other selected system orders. Orders 6 to 11 are
subsequently selected for RGA analysis since they display
the highest VAF.

B. Relative gain array

Now that several models have been identified, it is time to
quantify the RGA for a range of azimuth offsets. The RGA
is computed from the frequency response of the PBSIDopt-
identified and OpenFAST model by adding an azimuth
offset in the inverse MBC transformation up to 20 degrees.
Subsequently, the off-diagonal component is analyzed and
the offset with the lowest off-diagonal element, implying the
least coupling, is selected as the optimal offset. In Fig. 6,
this analysis is displayed, which yields an optimal azimuth
offset of 14 degrees for the linearized model obtained from
OpenFAST. Interestingly, for all orders 6-11 of the PBSIDopt-
identified model, an optimal offset of 17 degrees is found,
a consistent 3-degree difference with the azimuth offset
obtained from the linearized models in OpenFAST. The
required azimuth correction for the phase loss as a result
of substepping can be approximated by multiplying the
difference in timestep with the rotor speed:

(δ t2 −δ t1)ωr ≈ ψss, (6)

where δ t2 is the timestep of AMR-wind, δ t1 is the timestep
of OpenFAST, ωr is the rotational velocity in rad/s, and
ψss is the azimuth correction required for substepping. In
our case, this correction amounts to 1.82 degrees, which
only partly explains the 3-degree correction. Further detailed
studies should be conducted to fully unravel the composition
of the additional azimuth compensation.
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C. Sensitivity function

The multivariable sensitivity function is studied here to
analyze the effect of the IPC with optimal azimuth offset.
In an optimal case, the IPC attenuates the 1P frequency,
which is mapped to the DC gain in the fixed frame, while not
affecting other frequencies too much. It is further desired that
the magnitude difference between the largest and smallest
singular value is minimal, such that directionality is reduced.
In case of an incorrect azimuth offset, the directionality is
large, while for the optimal azimuth offset, it is minimal.
The sensitivity function is defined as:

S(jω) = (I +L(jω))−1, (7)

with L(jω), where ω indicating frequency, denoting the loop
transfer defined as:

L(s) = P(s)C(s). (8)

In the above equation, P(s) is the plant, the PBSIDopt-
identified model in our case. In the multivariable case, the
control performance is provided by the bounded ratio:

σmin(S(jω))≤ ||y(ω)||2
||v(ω)||2

≤ σmax(S(jω)), (9)

where σmin and σmax denote the smallest and largest singular
value, respectively; y(ω) and v(ω) denote the output and
measurement signals, respectively.

The multivariable sensitivity function is thus obtained by
taking the singular values of the sensitivity functions of the
identified system incorporating the azimuth offsets 0, 14, and
17 degrees. Figure 7 shows the largest and smallest singular
values, of the three cases. Therein, it can be seen that the
system without azimuth offset yields a large magnitude gap
between both singular values, including a sensitivity peak
above 0 dB for the frequency range between 10−1−100 rad/s,
implying an undesired amplification of that region. The 14-
degree case is able to remove this sensitivity peak and some
of the directionality; however, the 17-degree case displays the
smallest difference between the largest and smallest singular
value in the sensitivity function from which we derive that it
is indeed optimal. Note that the singular values of the optimal
azimuth of 17 degrees do not overlap implying directionality
is not fully resolved. However, further increasing the offset
causes slightly more convergence for low frequencies but
divergence for higher frequencies, reaching a less optimal
state as confirmed earlier by the RGA.

IV. CONCLUSIONS

In conclusion, this work studied the quantification of the
optimal azimuth offset required for individual pitch control.
It shed light on the additional phase lags that must be
compensated for to justify the use of two SISO control
loops for IPC when coupling aeroelastic codes to high-
fidelity flow solvers. To tackle this challenge, the authors
propose the approach of exciting the structure using PRBN
directly in coupled simulations and quantifying the azimuth
offset by using black box system identification. The offset
derived using this framework directly corrects the additional
phase lags and ensures full decoupling of the individual pitch
control system.
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