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Abstract— The integration of a large share of renewable
generation poses growing challenges to the safe and reliable
operation of modern energy systems. Utilizing large scale energy
storage is an effective way to accommodate high penetration
of renewable energy. Compared with other large-scale energy
storage technologies, such as pumped storage hydropower
and compressed air energy storage, pumped thermal energy
storage (PTES) has significantly higher energy density and less
space requirements. Furthermore, PTES is able to integrate
multiple energy networks, e.g., electric and heating, which is
an additional source of flexibility. In this paper, the use of a
PTES to provide simultaneous peak shaving and voltage control
in multi-energy systems (MES) is explored and an operation op-
timization framework is developed. In the proposed framework,
the operating characteristics of the PTES are linearized, and the
dynamics of the PTES are handled by a model predictive control
(MPC) scheme. The overall optimization problem is formulated
as a mixed-integer nonlinear problem. The performance of the
proposed optimization framework is verified through realistic
case studies and the potential benefits of the PTES to support
more sustainable grid operation is demonstrated.

I. INTRODUCTION

In recent years, to achieve the ambition of net-zero carbon
emissions, the share of renewable energy sources (RES) is
growing rapidly in today’s energy pattern [1]. Compared with
traditional fossil fuels, the RES are high intermittent and
unstable, posing great challenges to the safe and reliable
operation of power grid [2].

Multi-energy system (MES) is one of the effective solu-
tions to overcome the above challenges [3]. By coordinating
and co-optimizing the electric power grid with other energy
networks, e.g., heating and cooling, MES can leverage the
flexibility between different energy vectors. Within this con-
text, the fifth-generation district heating and cooling (5G-
DHC) networks have received growing attention due to the
advantages of more efficiently meeting both heating and
cooling demands. Heat losses is significantly reduced in 5G-
DHC network, as it can operate at temperature close to
surroundings [4].

The deployment of large scale energy storage systems to
provide grid services is another effective solution to accom-
modate high penetration of RES [5]. Typical technologies
include pumped storage hydropower (PSH) and compressed
air energy storage (CAES). However, these technologies have
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high requirement on geographical space, and the energy
density is relatively low [6].

An emerging technology to overcome the above limita-
tions is pumped thermal energy storage (PTES) [7]. PTES
uses low-cost excess electricity to operate as a heat pump
that charges a hot storage and/or extract heat from a cold
storage. Then, the stored thermal energy is discharged to
drive a thermodynamic heat engine to generate electricity
when there is high demand [8]. In addition, PTES can be
used as multi-energy thermally-integrated PTES (mTIPTES)
to improve the whole system efficiency. Even though several
studies on the operation of PTES or mTIPTES are available,
they focus on thermodynamic analysis and modeling, and
on the device level. Therefore, the optimal use of a PTES,
and the resulting potential benefits, to provide grid services
has not been explored yet. Furthermore, the interaction of a
PTES with a MES is seldom reflected in current research [9]
[10] [11] [12].

Peak shaving and voltage support are two fundamental
electric grid services to ensure reliable operation of power
grid. Peak shaving is needed in order to flatten the load
profile as much as possible, by reducing the peak electric
load and shift it to times of lower electric power demand,
typically by using energy storage systems or demand side
management strategies [13]. Peak shaving can help improve
power quality, ensure efficient energy utilization and reduce
energy cost. As to voltage regulation, the main objective is
to maintain the network feeder voltages within the allowed
range by scheduling voltage regulation devices, e.g. on-load
tap changers (OLTCs), capacitor banks (CBs) or the reactive
power output of DG inverters [14].

Conventionally, peak shaving and voltage regulation are
usually performed separately (see [13] and [14]). However,
recent studies reveal that these two grid services have mutual
impacts on each other. For instance, reshaping load curves
have influence on voltage profile, especially for low-voltage
feeders with high R/X ratio, and regulating voltages also
results in reduction of peak load [15] [16]. Very few studies
explored the co-operation of peak shaving and voltage con-
trol [16] [17], but these works focus only on the electric
power grid and utilize traditional battery energy storage
systems, instead of the new PTES technology and multiple
energy networks within a MES scenario.

In this paper, a contribution to fill this gap is provided,
by exploring the utilization of PTES to provide both peak
shaving and voltage control within a MES. Compared with
previous work, the main contributions of this paper are
summarized as follows,

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1098



• A co-optimization framework is proposed to use a PTES
as a mTIPTES to provide peak shaving and voltage
control in MES. This framework aims at minimizing
the overall operation cost while satisfying operation
constraints, including the ones of the MES and PTES
devices.

• The operating characteristics of mTIPTES are linearized
and the overall optimization framework is formulated as
a mixed-integer nonlinear programming (MINLP) prob-
lem. The dynamics of mTIPTES device are controlled
by using an MPC scheme.

• For additional network flexibility, the system level in-
teraction between mTIPTES and MES is captured and
optimally managed by the proposed framework.

The remainder of this paper is organized as follows. The
modeling of studied system is provided in Section II while
the formulation of the optimization framework is given in
Section III. Case studies are provided in Section IV and
finally Section V concludes the paper.

II. SYSTEM MODELING
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Fig. 1. Multi-energy Framework

The diagram of a typical MES consisting of a distribution
network (DN) and 5G-DHC network is shown in Fig. 1. The
main components of the 5G-DHC network include cold and
warm bidirectional pipes, water source heat pumps (WSHP)
and an energy hub. The WSHP consumes electric energy to
provide heating or cooling to end users and the energy hub is
responsible for maintaining the network energy balance. In
the following content of this section, the detailed modeling
of DN and 5G-DHC network are introduced in detail.

A. Modeling of DN
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Fig. 2. Topology of DN.

The topology of a typical radial DN is shown in Fig. 2,
which is represented by G = (N ,L), where N :=
{0, 1, ..., N} denotes the set of buses, while L := {1, ..., N}
denotes the set of branches. For each bus i ∈ N , let
si = pi + iqi denote its complex power injection. For each

branch (i, j) ∈ L, let zij = rij + ixij denote its impedance
and Sij = Pij+iQij be the complex power flowing from bus
i to j. The power flow can be described by the well-known
and widely used linear Distflow equations [18]

Pij =
∑
k∈Cj

Pjk − pj , (1a)

Qij =
∑
k∈Cj

Qjk − qj , (1b)

vi − vj = 2 (rijPij + xijQij) , (1c)

where vi represents the squared voltage magnitude of bus
i and Cj represents the set of the downstream buses of bus
j. The linear DistFlow equations assume the voltage drops
and line power flows to be approximately linearly related to
power injections, and their approximation accuracy depends
on the loading conditions; however, any alternative convex
relaxation of the power flow equations can be used in the
proposed framework.

B. Modeling of 5G-DHC Network
The 5G-HDC modeling approach adopted in this paper

is inspired to the one presented in [19], which allows the
operation of 5G-DHC network to be convexified by linear
programming (LP), hence to be efficiently handled. The 5G-
DHC network is modeled by two sets of energy balancing
equations, the node energy balance equation and the network
energy balance equation. In addition, the interactions among
the DN, the mTIPTES and the 5G-DHC network are also
captured. In this section, the modeling of the 5G-HDC and
its main components is described.

1) WSHP: The WSHP generates heating or cooling by
consuming electricity. The performance for heating or cool-
ing performance is given by a coefficient of performance
(COP) or an energy efficiency ratio (EER), respectively

Qh,hp = COPhp · Php, (2a)

Qh,hp ⩽ Qh,hp, (2b)
Qc,hp = EERhp · Php, (2c)

Qc,hp ⩽ Qc,hp, (2d)

where Qh,hp/Qc,hp represents the heating/cooling energy
generated by the WSHP, Qh,hp/Qc,hp is the nominal heat-
ing/cooling capacity of the WSHP. Php is the electric power
consumed by the WSHP. In this paper, we can assume
constant COP/EER, which is a reasonable assumption for
the considered the WSHP operational range [19] [20].

2) Pipes: The operating temperature of the 5G-DHC
network is close to the one of the surroundings, therefore
pipes in the 5G-DHC network are usually not insulated.
The thermal losses of the warm and cold pipes through the
surrounding soil can be approximated with the following
group of linear equations [19]

Qh,loss = (kA) (Th − Tsoil) , (3a)
Qc,loss = (kA) (Tsoil − Tc) , (3b)

where Qh,loss and Qc,loss represent the thermal losses in
the warm and cold pipe, respectively. (kA) denotes the
thermal transmittance including all heat transfer resistances
from the fluid to the soil. Th, Tc and Tsoil represent the
temperature of the warm pipe, cold pipe and the surrounding
soil respectively.
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Fig. 3. Energy hub configuration.

3) Energy Hub: The configuration of an energy hub is
shown in Fig. 3, where an mTIPTES, an electric boiler and
a chiller are included. The energy hub takes electric and
heating as inputs while providing electric, heating and cool-
ing as outputs. In this paper, a hot mTIPTES is considered,
which can take both electric and heating as both inputs and
outputs [12]. In addition, the electric boiler and chiller can
provide additional heating or cooling when needed, so that
the network heating and cooling energy can be balanced.

The electric boiler consumes electricity to generate heating
energy; the relationship between the thermal output Qh,eb
and the electric input Peb is given as

Qh,eb = Pebηeb, (4a)

Qh,eb ⩽ Qh,eb, (4b)

where Qeb is the nominal capacity of the electric boiler and
ηeb is the thermal efficiency, which is assumed to be constant.

On the other hand, cold is provided by an electric chiller,
whose equations are expressed as

Qc,cc = COPcc · Pcc, (5a)

Qc,cc ⩽ Qcc, (5b)

where Qc,cc and Pcc are the cooling output and the electric
input of the electric chiller, respectively. Qcc is the electric
chiller’s nominal capacity.

In the hot mTIPTES, the key components are the high-
temperature heat pump (HTHP), the organic Rankine cycle
(ORC) and the hot thermal energy storage (HTES) using
Phase Change Materials (PCMs). The HTHP converts electri-
cal energy into thermal energy, which is stored in the HTES,
while the ORC transforms the stored thermal energy into
electric power when needed. The HTHP and the ORC can
be modeled by using the following equations [21]

Qh,z = gz (·)Pz, (6a)

kzαzP z ⩽ Pz ⩽ kzP z, (6b)

Qh,z ⩽ kzQh,z, (6c)

where z represents either the HTHP or the ORC, Qh,z
and Pz are the thermal energy and electric energy of the
components, while Qh,z and P z are their nominal values.
gz (·) represents the non-linear operating characteristics of
the corresponding components, which is the COP for the
HTHP and the reciprocal of the efficiency ηORC for the
ORC. kz is a binary variable that represents the on/off status

of the components. The linear approximations of the non-
linear characteristics for the HTHP and the ORC are given
as

Qh,z

Qh,z

⩽ az,j
Pz

P z

+ bz,j − bz,j (1− kz) , (7a)

Qh,z

Qh,z

⩾ az,j
Pz

P z

+ bz,j − bz,j (1− kz) , (7b)

where (7a) is the linear approximation for the HTHP and
(7b) for the ORC.

The modelling equations for the HTES are given as

Qch
HTES ⩽ γchQ

ch

HTES , (8a)

Qdis
HTES ⩽ γdisQ

dis

HTES , (8b)
γch + γdis ⩽ kHTES , (8c)

SOC (t) = SOC (t− 1) +
∆t

Cz

[
Qch

HTES (t)−Qdis
HTES (t)

]
,

(8d)
SOCmin ⩽ SOC ⩽ SOCmax, (8e)

where Qch
HTES and Qdis

HTES represent the charg-
ing/discharging heat flows of the HTES, Q

ch

HTES and
Q

dis

HTES are their nominal value. γch and γdis are binary
variables indicating the charging/discharging status of the
HTES; (8c) imposes that charging and discharging do not
occur simultaneously. SOCmin and SOCmax denote the
min/max state of charge (SOC) levels of the HTES.

The charging/discharging heat flow rate for the PCM
thermal storage is a non-linear function of the amount of
melted/solidified material. This non-linear function of the
HTES can be linearized as [21]

Qch
HTES ⩽ ach

HTES · SOC + bchHTES , (9a)

Qdis
HTES ⩽ adis

HTES · SOC + bdisHTES . (9b)

The linear approximation above allow for a computa-
tionally efficient way to model the non-linear operating
characteristics of the HTHP, ORC and HTES, since only a
limited number of linear constraints are added to the problem
formulation [21] [22]. In this paper, the data for these linear
approximations is obtained from [21].

The thermal energy stored in the HTES can also be used
to provide direct heating to the 5G-DHC network. When the
HTES directly heats the 5G-DHC network, the following
equation is to be considered

Qh,PTES ⩽ Qh,PTES , (10)

where Qh,PTES is the heating energy flow from the
mTIPTES to the 5G-DHC network, and Qh,PTES is the
maximum heat energy flow rate.

4) Energy balance equations: In this section, the energy
balance equations for each thermal node and the whole
MES network are introduced. For each thermal node i, the
balancing equations for heating and cooling are expressed as

Qh,hp,i +Qh,eb,i +Qh,PTES,i = Qhl,i +Qch
HTES,i, (11a)

Qc,cc,i +Qc,hp,i = Qcl,i, (11b)

where Qhl,i and Qcl,i are the heating and cooling demands
at node i, respectively.
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The residual thermal demand should be met by the overall
5G-DHC network. The residual thermal demand at node i is
given as

Qres,i = Qh,hp,i(1− COP−1
hp,i)−Qc,hp,i(1 + EER−1

hp,i)

−Qc,cc,i(1 + COP−1
cc,i). (12)

The residual thermal demand can take positive or negative
values. A positive demand means that heat flows from the
network to the building, and a negative residual thermal de-
mand indicates a heat flowing from building to the network.

In order to balance the network temperature, the energy
hub should cover the residual thermal demand in the whole
network and the thermal losses, i.e.,

Qeh,i =
∑
i∈H

Qres,i +Qh,loss,i −Qc,loss,i, (13)

where H represents the set of all thermal nodes in the 5G-
DHC network.

Further, (13) can be rewritten as

Qh,eb +Qh,PTES −Qch
h,HTHP −Qc,cc

=
∑
i∈H

Qres,i +Qh,loss −Qc,loss. (14)

For the coupling of the DN and the 5G-DHC network, the
electric demand at node i in the 5G-DHC network should be
met by the DN

Pi = Peb,i + Php,i + Pcc,i + PHTHP,i − PORC,i. (15)

III. MPC-BASED OPERATION OPTIMIZATION
FRAMEWORK

In this section, the formulation of the optimization
framework to utilize the mTIPTES for simultaneous peak
shaving and voltage regulation is introduced. The overall
objective is to minimize the operation cost of the whole
MES while respecting operational and technical constraints,
including constraints on the DN operation, on the 5G-DHC
network operation, as well as on the mTIPTES operation.
The optimization problem is formulated as an MINLP, and
it is embedded into an MPC scheme, so as to take advantage
of available forecasts of load demands and energy prices
and the inherent feedback mechanism of the MPC, which
allows to re-optimize at each appropriate sampling period,
over a shifted prediction horizon and with updated forecasts.

A. Objective Function

The proposed framework aims at minimizing the operation
cost of the whole MES, which is also the cost of the electric
energy purchase. The objective function is expressed as

f =

T∑
t=1

celPel (t) ·∆t, (16)

where cel is the electric energy price and Pel is the feed-in
power from the substation, ∆t is the sampling period.

B. DN Operation Constraints
The DN operation constraints include the DN power flow

and the DG inverter operation constraints. In this paper, the
DG inverters are assumed to operate at maximum power
point tracking mode (MPPT). Thus, the voltage regulation is
achieved by the dispatch of reactive power output of the DG
inverters as well as the charging/discharging of the mTIPTES
system. The overall operation constraint for DN operation at
time instant t is expressed as

Pij (t) =
∑
k∈Cj

Pjk (t)− pj (t) , (17a)

pi = pg,i (t)− pl,i (t)− Pi (t) , (17b)

Qij (t) =
∑
k∈Cj

Qjk (t)− qj (t) , (17c)

qi (t) = qg,i (t)− ql,i (t) , (17d)
vi (t)− vj (t) = 2 (rijPij (t) + xijQij (t)) , (17e)

v ⩽ vi (t) ⩽ v, (17f)

qg,i (t) = −q
g,i

(t) =
√

S2
g (t)− p2g,i (t), (17g)

q
g,i

(t) ⩽ qg,i (t) ⩽ qg,i (t) , (17h)

Pel (t) = P01 (t) , (17i)

where pg,i and qg,i are the real and reactive power outputs
from DG inverters, pl,i and ql,i are the real and reactive
electric load demands in the DN, respectively. v and v denote
the upper/lower voltage limits, Sg is the nominal capacity of
DG inverters.

In addition, to achieve peak shaving, a hard constraint is
added to the DN peak load

pel (t) ⩽ Ppeak, (18a)

where Ppeak is the allowed peak. The peak shaving is
achieved by the joint operation of the HTHP and the ORC.
The excess electric power can be stored in the HTES
as thermal energy and the stored thermal energy can be
transformed back into electric power to support the peak
load. In this way, the network peak load is reduced.

C. Remark on Uncertainty Handling

The operation of a mTIPTES inevitably involves uncer-
tainty, e.g., net-load forecast errors because of uncertainty
in RES generation and energy demands. A stochastic MPC
(SMPC) approach, which incorporates a probabilistic de-
scription of uncertainties and resulting probabilistic con-
straints, i.e., chance constraints, can be adopted so as to
obtain a more robust control of the mTIPTES operation. A
major issue of SMPC is the non-convexity brought by the
probabilistic constraints, making the quest for an exact so-
lution computationally intractable. In this regard, a possible
approach to be adopted is scenario-based MPC (SBMPC),
which is a data-driven approach to optimization under un-
certainty, able to approximate the SMPC problem using a
finite number of scenarios. It is fundamental to compute
a number of scenarios sufficient to obtain an approximate
solution that is a feasible solution of the original chance-
constrained problem at a required level of confidence. Rel-
evant theoretical results on the needed scenario sample size
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are available also for non-convex problems in [23], including
mixed-integer problems. In [23], an algorithm to determine
a minimal number of scenarios to consider is provided,
which can be computationally intensive. However, often a
computationally feasible support sample can be found a pos-
teriori, by adjusting the allowed violation levels considering a
reasonable trade-off between computational and performance
requirements. Furthermore, the uncertain constraints in the
formulated MPC problem would be linear or affine, hence
it would suffice replacing each chance constraint with one
single deterministic approximate constraint. This will lead
to a tractable SBMPC problem. This is currently being
explored, as part of future works.

IV. CASE STUDIES

A. System Configuration

The effectiveness of the proposed optimization framework
is verified on a MES with 33-bus DN and 12-node 5G-
DHC network. The configuration of the studied system is
shown in Fig. 4. The DN parameters are taken from IEEE-
33 bus system [24] and the 5G-DHC network parameters are
obtained from [4] [19]. The allowed upper/lower bounds on
voltage magnitudes in DN is set as 0.95 pu and 1.05 pu,
respectively. The normalized renewable generation and load
as well heating load in the 5G-DHC network are obtained
from the National Renewable Energy Laboratory (NREL)
Renewable Resource Data Center and Pecan Street dataset
[25] [26]. These profiles are provided in Appendix, Fig.
7. The parameters for simulation setup are given in the
Appendix, Table I. Case studies are performed in MATLAB
with YALMIP toolbox [24] and the optimization problem is
solved by Gurobi [27]. The prediction horizon for the case
studies is 24 with a sampling period of 1 h. The average
computational time for each MPC iteration is 4.45 s, on an
Intel i5-12500H CPU (2.5 GHz clock frequency and 16GB
RAM).
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Fig. 4. Configuration of the studied system

B. Performance of Voltage Control

The voltage regulation capabilities of the proposed control
framework with and without PTES are compared and the
corresponding results are shown in Fig. 5a and Fig. 5b.
Over-voltage issues occur in Fig. 5a, and highest voltage
magnitude reaches 1.063 pu at 13:00 when there is high
renewable generation. By contrast, the bus voltages are
always regulated within the allowed range in Fig. 5b when
the PTES is utilized.
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Fig. 5. Performance of voltage control

C. Performance of Peak Shaving

The network peak load is also analyzed with and without
PTES. The results are shown in Fig. 6a, where negative load
denotes power flow from the DN to the substation. The peak
load occurs at 20:00, and it is equal to 5.57 MW when the
PTES is not used. The peak is 5.37 MW with PTES, hence
it is reduced by 3.59%. The SOC of the mTIPTES is shown
in Fig. 6b. The initial SOC level is set as 0.5. As it can been
seen in Fig. 6b, when there is high load demand but low
generation, the mTIPTES discharges to support the network
load. The mTIPTES is charged to absorb excess electricity
when there is high generation but low demand, as shown
between 9:00 and 14:00 in Fig. 6b.

Over the 24-hour period, the total operational cost for the
case without PTES amounts to $2092.39. With PTES integra-
tion, the operational cost decreases to $1911.50, yielding an
improvement of approximately 8.65%. It is important to note
the significance of this improvement. When contextualized
in realistic scenarios with higher number of nodes and larger
PTES capacity, it can lead to more impactful outcomes and
significant peak and cost savingss.
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Fig. 6. Performance of peak shaving.

V. CONCLUSIONS

This paper proposed an optimization framework to use
a PTES to provide simultaneous peak shaving and voltage
control in MES. In the proposed framework, the operating
characteristics of the PTES are linearized, and the dynamics
of the PTES are handled by an MPC scheme. The overall
optimization problem is formulated as a mixed-integer non-
linear problem, which can be solved by off-the-shelf solvers.
The results in the case studies show that an optimal use of a
PTES integrated into a MES can lead to a reduced peak load
as well as a reduction of the total operation cost, while the
voltage is kept within the allowed limits. This demonstrates
the promising potential of the PTES technology to support
power networks with high penetration of renewable sources.
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VI. APPENDIX

TABLE I
KEY PARAMETERS FOR SIMULATION SETUP

Parameter Value
DN

DG Capacity 1.2 MW
Electric Boiler

Capacity 1500 kW
Efficiency 0.92

Electric Chiller
Capacity 1000 kW
COP 5

5G-DHC Network
WSHP COP 3.5
WSHP EER 4.0
WSHP Nominal Capacity 1300 kW
Warm Temperature 18 ◦C
Cold Temperature 12 ◦C
kA Value 2.5 W/mK

mTIPTES
HTES Capacity 1600 kWh
Charging Time 4 h
Discharging Time 4 h
HTHP COP 5.9
ORC Efficiency 0.14
Minimum Load Level 0.4
Minimum/Maximum SOC Level 0.1/0.9
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Fig. 7. Generation/load Profiles.
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“Pumped thermal energy storage (PTES) as smart sector-coupling
technology for heat and electricity,” Energy, vol. 183, pp. 185–190,
2019.

[7] W. Tian and H. Xi, “Comparative analysis and optimization of pumped
thermal energy storage systems based on different power cycles,”
Energy Conversion and Management, vol. 259, p. 115581, 2022.

[8] J. Martinek, J. Jorgenson, and J. D. McTigue, “On the operational
characteristics and economic value of pumped thermal energy storage,”
Journal of Energy Storage, vol. 52, p. 105005, 2022.

[9] J. D. McTigue, P. Farres-Antunez, C. N. Markides, A. J. White, et al.,
“Techno-economic analysis of recuperated joule-brayton pumped ther-
mal energy storage,” Energy Conversion and Management, vol. 252,
p. 115016, 2022.

[10] H. Yang, J. Li, Z. Ge, L. Yang, and X. Du, “Dynamic performance
for discharging process of pumped thermal electricity storage with
reversible brayton cycle,” Energy, vol. 263, p. 125930, 2023.

[11] H. Zhang, L. Wang, X. Lin, and H. Chen, “Combined cooling, heating,
and power generation performance of pumped thermal electricity
storage system based on brayton cycle,” Applied Energy, vol. 278,
p. 115607, 2020.

[12] G. F. Frate, L. Ferrari, P. Sdringola, U. Desideri, and A. Sciacovelli,
“Thermally integrated pumped thermal energy storage for multi-
energy districts: Integrated modelling, assessment and comparison
with batteries,” Journal of Energy Storage, vol. 61, p. 106734, 2023.

[13] M. Uddin, M. F. Romlie, M. F. Abdullah, S. Abd Halim, T. C. Kwang,
et al., “A review on peak load shaving strategies,” Renewable and
Sustainable Energy Reviews, vol. 82, pp. 3323–3332, 2018.

[14] H. Sun, Q. Guo, J. Qi, V. Ajjarapu, R. Bravo, J. Chow, Z. Li, R. Moghe,
E. Nasr-Azadani, U. Tamrakar, et al., “Review of challenges and
research opportunities for voltage control in smart grids,” IEEE
Transactions on Power Systems, vol. 34, no. 4, pp. 2790–2801, 2019.

[15] J. Carden and D. Popovic, “Closed-loop volt\/var optimization: ad-
dressing peak load reduction,” IEEE Power and Energy Magazine,
vol. 16, no. 2, pp. 67–75, 2018.

[16] Y. Guo, Q. Zhang, and Z. Wang, “Cooperative peak shaving and volt-
age regulation in unbalanced distribution feeders,” IEEE Transactions
on Power Systems, vol. 36, no. 6, pp. 5235–5244, 2021.

[17] H. T. Nguyen and D.-H. Choi, “Three-stage inverter-based peak
shaving and volt-var control in active distribution networks using
online safe deep reinforcement learning,” IEEE Transactions on Smart
Grid, vol. 13, no. 4, pp. 3266–3277, 2022.

[18] M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial
distribution systems,” IEEE Transactions on Power Delivery, vol. 4,
no. 1, pp. 725–734, 1989.

[19] M. Wirtz, L. Kivilip, P. Remmen, and D. Müller, “5th generation
district heating: A novel design approach based on mathematical
optimization,” Applied Energy, vol. 260, p. 114158, 2020.

[20] F. Bünning, M. Wetter, M. Fuchs, and D. Müller, “Bidirectional
low temperature district energy systems with agent-based control:
Performance comparison and operation optimization,” Applied Energy,
vol. 209, pp. 502–515, 2018.

[21] X. Xue, Y. Zhao, and C. Zhao, “Multi-criteria thermodynamic analysis
of pumped-thermal electricity storage with thermal integration and
application in electric peak shaving of coal-fired power plant,” Energy
Conversion and Management, vol. 258, p. 115502, 2022.
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