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Abstract— This work considers the problem of robots with
challenging dynamics having to solve motion tasks that consist
in transitioning from an initial state to a goal state in an
environment that is obstructed by obstacles. We propose a
novel combination of methods from motion planning and
iterative learning control to solve these motion tasks. The
proposed method only requires an approximate, linear model
of the nonlinear, possibly underactuated robot dynamics. The
proposed method employs the approximate, linear model in
a kinodynamic rapidly exploring random tree to plan a state
trajectory that solves the motion task. Based on the distance
to the obstacles, the most relevant samples of the planned
trajectory are selected as reference points. Lastly, point-to-point
iterative learning control is employed to learn a feedforward
input trajectory that leads to the state trajectory precisely
tracking the reference points despite the robot’s nonlinear real-
world dynamics. The proposed method is validated in real-
world experiments on a two-wheeled inverted pendulum robot
that has to solve a motion task that requires the robot to
perform an agile motion to dive beneath an obstacle.

I. INTRODUCTION

Motion tasks are a common occurrence in a variety of
application domains, such as production systems [1], mobile
robotics [2], traffic systems [3] or biomedical engineering
[4]. Motion tasks are characterized by the problem of
transitioning a dynamic system from an initial state to a
desired target state while maneuvering through an environ-
ment. Solving a motion task usually involves two steps: (1)
planning the motion to get from the initial to the desired
state and (2) executing the planned motion by exciting the
inputs of the dynamic system. Often times these two steps
can be approached separately and in some applications one
of the steps is almost trivial to solve: In the first case, if the
environment and the dynamics are simple, planning a motion
is trivial (e.g. driving a car in a straight line from point A to
B). In the second case, if the dynamics are simple and fully
actuated or the planned motion is slow, the execution part is
simple and can be done via trivial feed-forward control or
by using feedback control.

However, if the environment is complex or the dynamics
are constrained, finding a suitable path from the initial state
to the desired state is not trivial, e.g. navigating a car through
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an obstacle course. To solve such a motion planning problem,
a variety of approaches have been proposed, which can
generally be categorized into two groups: First, there are
optimization-based approaches as, e.g., in [5] the Graphs of
Convex Sets algorithm was proposed to solve kinodynamic
planning problems using convex optimization and applied
to a robotic manipulator grasping and placing objects on
a shelf. Second, there are sampling-based approaches, as,
e.g., in [6] kinodynamic RRT∗ was proposed and applied to
quadrotors navigating an environment occupied by obstacles.
These approaches have in common that the planning process
usually either considers simple dynamics of the underlying
system or requires extensive model knowledge. To overcome
the problem, where the real-world dynamics differ from the
dynamics used for planning, typically feedback control is
used to execute the desired motion [7]. However, feedback
control is inherently limited when it comes to performing
fast and agile motions [8].

Consequently, if the planned motion is fast or the dynam-
ics are complex, finding the correct input to the underly-
ing dynamic system to execute the desired motion is not
straightforward and feedback control might not be suitable.
In cases where a desired trajectory is known (either by
design or by a motion planning algorithm), a learning-
based control algorithm can be used to learn the correct
input to the dynamic system to perform the desired motion.
One commonly used learning algorithm is Iterative Learning
Control (ILC) [9]. ILC has been successfully applied to solve
a variety of challenging reference tracking tasks in real-world
applications, such as, e.g., controlling a neuroprothesis for
a droop foot [4] or quadrotors performing high-speed ma-
neuvers [10]. However, ILC-based methods require a-priori
knowledge of the desired trajectory, i.e. not making them
suitable stand-alone methods for solving motion tasks. Only
a few exceptions such as, e.g., [11] or [12] have extended
ILC to be capable of optimizing motions w.r.t., e.g., time or
energy efficiency. However, these methods cannot be applied
to systems that are affected by sampling-based constraints
as is the case for robots that move in environments that are
occupied by obstacles.

Motion tasks involving constrained environments and
complex dynamics might require the use of both steps, i.e.
planning a possible motion and learning the corresponding
input on the real system to perform the desired motion.
Especially if the system’s dynamics are underactuated, i.e.
the dynamic system has fewer inputs than outputs, solving
any motion problem is a challenge: Planning a motion is
difficult, because only a subset of output trajectories is
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Fig. 1. In this work, we consider robots with challenging dynamics that have to solve motion tasks in environments that are constrained by obstacles. In
the example of the two-wheeled inverted pendulum robot (TWIPR), the robot has underactuated, nonlinear dynamics and has to perform a dynamic diving
motion in order to transition from the initial state to the goal state without colliding with the obstacle.

feasible, i.e. not every output trajectory can physically be
tracked by the dynamic system, so the planning process
must already consider the underlying dynamics. Furthermore,
executing the planned motion on the real-world system will
usually require some adaptation, because planning employs
a model of the dynamics which generally deviates from the
real-world dynamics.

In this paper, we propose a hybrid method that com-
bines sampling-based motion planning and ILC to solve
complex motion tasks in real-world environments. The pro-
posed method employs an approximate, linear model of the
underlying (possibly nonlinear, non-minimum phase and/or
underactuated) dynamics in a kinodynamic rapidly exploring
random tree (RRT) to find a feasible state trajectory. A subset
of samples of the planned state trajectory are extracted as
reference points and point-to-point iterative learning control
is employed to learn an input trajectory that leads to the
actual state trajectory tracking the reference points. The
method is validated by real-world experiments on a two-
wheeled inverted pendulum robot (TWIPR) that has to per-
form a motion task that requires the robot to dive beneath
an obstacle (see Fig. 1). The robot’s dynamics are nonlinear,
underactuated, and non-minimum phase and the task requires
a swift and complex motion to be solved. We show that the
proposed method is able to combine both steps of solving
motion tasks successfully, making it a suited candidate for
a standalone approach for solving motion tasks, even for
underactuated systems.

II. PROBLEM FORMULATION

Consider a dynamic system with state x ∈ Rn and
configuration y ∈ Rm, which, on each time step k ∈ N
and trial j ∈ N, relate to one another according to

yj(k) = Cxj(k) . (1)

We assume the dynamics to be discrete-time, nonlinear, and
repetitive, i.e.,

xj(k + 1) = f(xj(k),uj(k)) , (2)

where u ∈ Rr is the input, and the input and state are con-
strained to convex sets, i.e., x ∈ X and u ∈ U . We assume
that the dynamical system corresponds to a robot moving
in an either two- or three-dimensional real-world which is
occupied by obstacles. The robot’s position and orientation
in the real-world is determined by its configuration y, and
the space of admissible configurations, i.e., configurations
that do not lead to collisions with obstacles, is denoted by
C.

To define the motion task, let

ū :=
[
u⊤(1) u⊤(2) . . . u⊤(N)

]⊤
(3)

denote an input trajectory and let

x̄ :=
[
x⊤(1) x⊤(2) . . . x⊤(N)

]⊤
(4)

denote the state trajectory that results from applying the input
trajectory ū to the dynamics (2) with x(1) = xI. Now, the
motion task consists in finding an input trajectory ū that
leads to a state trajectory x̄ that ends in the goal state, i.e.,
x(N) = xG, and all of the corresponding configurations are
admissible, i.e., ∀k, y(k) ∈ C. To learn the desired motion
in the real world without obstacle collisions, we assume that
the robot also has access to a practice environment which is
free of obstacles. Once the desired motion has been learned,
the result can then be transferred to the environment with
obstacles.

We further assume that the dynamics are possibly under-
actuated, i.e., the dimension of the configuration is larger
than the number of inputs, r ≤ n, and we assume that the
nonlinear state dynamics function is not precisely known, but
only an approximate linear model of the form

∀j ∈ N, k ∈ N, xj(k + 1) = Axj(k) +Buj(k) (5)

is known, where A ∈ Rn×n and B ∈ Rn×r.

III. PROPOSED METHOD

To solve the given problem we propose the following
method that consists of three major components, see Figure
2: First, we employ kinodynamic motion planning using
the linear model to determine a state trajectory that solves
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Fig. 2. We propose to combine kinodynamic motion planning and iterative learning control to solve motion tasks despite challenging dynamics. First,
a kinodynamic RRT uses an approximate, linear model to find a state trajectory that solves the motion task. Second, the planned trajectories samples are
weighted and selected as reference based on their distance to the obstacle. Third, iterative learning control is employed to learn to track the weighted
reference trajectory under the real-world dynamics and conditions.

the motion task. Second, the most relevant samples of the
planned state trajectory are extracted and used as reference.
Third, we employ point-to-point iterative learning control to
learn to track the extracted reference points in the real-world
environment to solve the motion task.

To solve the motion planning, we employ kinodynamic
RRT, whereby the main parameters are the distance function
between two states and the local motion planning procedure.
In order to measure the distance between two state samples
x1, x2 ∈ X , we employ the Euclidean distance

d(x1,x2) =

√
(x1 − x2)

⊤
(x1 − x2) . (6)

For the local motion planning, we employ a procedure to
compute a time-suboptimal solution for connecting two states
x1 and x2 in an efficient manor. For this purpose, assume
that at time step k the state equals x1, then according to the
linear dynamics (5), the state at time step k+ n is given by

x(k + n) = Anx(k) +Gnūn , (7)

where Gn is the matrix

Gn =
[
B AB . . . An−1B

]
(8)

and ūn is the input trajectory

ūn =
[
u⊤(n+ k) u⊤(n+ k − 1) . . . u⊤(k)

]⊤
. (9)

If we want the state on sample k + n to equal x2, the
corresponding input trajectory is computed by

un = G†
n (x2 −Anx1) , (10)

where G†
n is the pseudo-inverse of Gn. To now compute a

time-suboptimal input trajectory that connects x1 and x2,
we iteratively compute un for n ∈ [1, 2, ...] and check,
whether the corresponding state and input trajectory violate
the constraints. For the first n, in which no constraints are
violated, we return ūn as the solution to the local motion
planning.

The RRT plans an input trajectory ū∗ that, if applied to the
linear dynamics (5) starting from the initial state xI, leads to
the planned state trajectory x̄∗ which ends in the goal state
xG. However, if the planned input trajectory was applied
to the real-world dynamics (2), a state trajectory different
from x̄∗ would result and, hence, the motion task may not
be solved.

To find an input trajectory ū that also solves the motion
task under the real-world dynamics (2), we first compute
the matrix Q ∈ RNm×Nm which extracts and weights the
most important samples of the planned state trajectory x̄∗ to
use them for reference tracking. For this purpose, we first
compute the clearance c(x), which is the minimum distance
between the robot and the obstacle in real-world coordinates
for a given state x, for each sample of the planned state
trajectory. Based on the clearance, we differentiate three
cases. First, if the clearance of a sample is above the
threshold value c ∈ R, the sample of the planned trajectory
is not considered in the tracking problem, and it is assigned
the weight 0, i.e.,

c(xn) ≥ c =⇒ Qn = 0 . (11)

Second, if the clearance of a sample is below the threshold
value but not the sample with the minimum clearance, the
sample of the planned trajectory is considered in the tracking
problem and it is assigned the weight W1, i.e.,

c(xn) < c =⇒ Qn = W1 . (12)

Third, if the clearance of a sample is not only below the
threshold value but also the sample with the minimum
clearance value, the sample of the planned trajectory is
considered in the tracking problem and it is assigned the
weight W2, i.e.,

∀i ̸= n, c(xn) < c(xi) =⇒ Qn = W2 . (13)

In order to reach the goal state, the last sample of the planned
trajectory must be part of the reference is weighted with WG,
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i.e.,
n = N =⇒ Qn = WG . (14)

The weighting matrix Q is assembled as a block-diagonal
matrix of the respective samples’ weights, i.e.,

Q = blkdiag (Q1 Q2 . . . QN ) . (15)

The weights W1 and W2 may depend on the clearance c
and should chosen to reflect characteristics of the problem
at hand.

Given the planned state trajectory and the weighting
matrix Q, we now employ iterative learning control to learn
an input trajectory ū that tracks the planned state trajectory
x̄∗ weighted by the matrix Q under the real-world dynamics.
For this purpose, the so called lifted dynamics are given by

x̄j = Pūj +DxI , (16)

where P is the matrix

P :=


B 0 . . . 0

AB B
. . .

...
...

. . . . . .
...

AN−1B AN−2B . . . B

 (17)

and D is the matrix

D :=
[
A⊤ A2⊤ . . . AN⊤]⊤ . (18)

On each trial, we first apply the current input trajectory ūj to
the real-world dynamics and record the corresponding state
trajectory x̄j . Next, we update the input trajectory by

∀j ∈ N, ūj+1 = ūj +∆ūj . (19)

To choose the increment ∆ū ∈ RrN , we minimize the next-
trial cost criterion

Jj(∆ūj) = ê⊤j+1Qêj+1 +∆ū⊤
j S∆ūj , (20)

where êj+1 is the difference between the planned and actual
state trajectories predicted by the linear model on the next-
trial, i.e.,

êj+1 = x̄∗ − (x̄j +P∆ūj) . (21)

The optimization also takes constraints into consideration,
i.e.,

∀j ∈ N, ∆ūj = argmin
∆ū

Jj(∆ū) (22)

s.t. ūj+1 ∈ U , x̄j+1 ∈ X . (23)

The proposed scheme belongs to the class of so-called
norm optimal ILC, for which monotonic convergence and
asymptotic stability of the error trajectory over trials is
guaranteed by design [13] if the plant matrix P is known.

Note that the kinodynamic RRT guarantees feasibility
of the planned trajectory x̄∗ under the approximate, linear
model (5). However, the trajectory may not be feasible under
the real world’s dynamics (2) if the difference between the
approximate model and the actual dynamics is too large.
In this case, the ILC would not converge to the desired
trajectory x̄∗, the motion task may fail in the real world,
and re-planning may be required, see Figure 2.
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Fig. 3. The kinodynamic RRT finds a trajectory that connects the initial
and goal state without colliding with the obstacle. Based on the distance to
the obstacle, the samples of the state trajectory in the proximity window are
weighted and selected to serve as reference samples for the point-to-point
iterative learning control.

IV. EXPERIMENTAL RESULTS

To validate the proposed method, we consider the problem
of the two-wheeled inverted pendulum robot (TWIPR) that
has to solve a motion task that consists in diving beneath
an obstacle, see Figure 1. The robot consists of a chassis
housing main electronics and to the chassis two motors with
wheels are mounted such that the robot can balance in its
upright position. The robots configuration is described by its
pitch angle φ ∈ R and position s ∈ R, i.e.,

y = [φ s]⊤ , (24)

and the robot’s state vector consists of its pitch, position, and
respective velocities, i.e.,

x = [φ̇ φ ṡ s]
⊤

. (25)

The input variable is the motor torque u ∈ R, and, hence,
the robot is underactuated. A linear state feedback controller
is implemented to stabilize and balance the robot in its
upright equilibrium. The robots true dynamics are nonlinear
and affected by complex phenomena such as friction and
backlash of the gearings. However, only an approximate
linear model of the dynamics has been identified.

In order to solve the given motion task, the proposed
method is applied. Here, we first use the kinodynamic RRT to
plan a state trajectory that connects the initial and goal state
without any collisions or constraint violations. Planning is
implemented in python using the Flexible Collision Checking
library [14], and solving the planning problem takes roughly
8 s using a off-the-shelf notebook. The robot’s configuration
space, including the obstacle, and the planned trajectory is
depicted in Figure 3. While the planned trajectory solves the
problem, the trajectory includes excessive motion, and due to
the model’s inaccuracy, the input trajectory would not yield
the same state trajectory if applied to the real robot.
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Fig. 4. The progression of the error norm shows that the iterative learning
control learns to quickly track the desired reference samples under the real-
world dynamics. The learned state trajectory not only solves the motion task
by connecting the initial and goal state without a collision but also is rid of
the planned trajectory’s excessive motions.

Hence, the samples of the planned trajectory that are most
relevant to the motion task are selected and weighted as
reference points. The weights of the reference extraction are
selected as

W1 = diag(0 1 0 0)
400

1 + e−α(c−cth)
(26)

with α = 50 and cth = 0.12m,

W2 = diag(0 0 200 4000) +W1 , (27)

and
WG = diag(100 100 100 100) . (28)

Only samples that are sufficiently close to the obstacle
are considered as reference samples, which are marked as
proximity window in Figure 3.

To now solve the motion task in the real world, we employ
ILC with the parameter S = 1

h2 toeplitz (−1 2 − 1) to
learn to track the reference samples. Where h is the sampling
period. A video of the learning process can be found at www.
bit.ly/3TC2tl3, the results are depicted in Figure 4 and
show that the ILC manages to rapidly decrease the tracking
error which converges within roughly five trials to a value
close to zero. The progression of the output trajectories over

time shows that the planned trajectory is precisely tracked
when in close proximity to the obstacle. The progression of
the trajectories in configuration space shows that the precise
tracking of the planned trajectory in the proximity window
leads to the robot passing the obstacle without a collision.
Furthermore, the trajectory not only avoids the obstacle but
also ends in the goal state, i.e., the motion task was solved
despite the robots nonlinear, underactuated dynamics.

V. CONCLUSION

This work has considered the problem of solving motion
tasks for robots with challenging dynamics maneuvering
environments that are obstructed by obstacles. A novel
combination of methods from kinodynamic motion planning
and iterative learning control was proposed. The proposed
method only requires an approximate linear model even
if the robot’s actual dynamics are nonlinear and possibly
underactuated. This is achieved by first employing rapidly
exploring random trees to find a feasible solution to a motion
task, and by then extracting and learning to track the most
relevant samples of the planned trajectory using iterative
learning control. The proposed method was validated on
a two-wheeled inverted pendulum robot with underactuated
dynamics that has to solve a motion task that requires a
swift and agile motion. The experimental results indicate
that the proposed method can enable robots to solve motion
tasks in real-world environments despite incomplete model
information and challenging dynamics.

One limitation of the proposed method is that the motion
planning only employs an approximate model and can,
hence, not guarantee feasibility of the motion under the real-
world dynamics. To overcome this limitation, future work is
going to employ Gaussian Processes in the ILC to learn a
model of the unknown, nonlinear real-world dynamics [15]
and use the learned model in the kinodynamic RRT to plan
motions that are guaranteed to be feasible in the real-world.
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