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Abstract— In this paper, a novel nonlinear controller for
induction motors used in EV applications is proposed to achieve
field-oriented operation with minimum losses at the steady
state, while inherently guaranteeing the required operating con-
straints. By taking the expression of the total (iron and copper)
losses of the motor, an optimization problem is formulated to
minimize the motor losses under the required equality and
inequality constraints (torque, voltage and current constraints).
Opposed to conventional loss-minimizing control that requires
the solution of the entire optimization problem and continuous
update of the reference motor currents in order to guarantee all
necessary constraints, in this paper, a novel bounded controller
is introduced with a specific nonlinear dynamic structure that
inherently accomplishes all voltage and current constraints,
while achieving field-oriented operation. Hence, a simplified
optimization problem is required to be solved once offline to
obtain the desired property that the motor currents should
satisfy in order to minimize the entire motor losses, thus
simplifying the controller implementation. In order to verify
the theoretical contribution, the proposed controller is directly
compared to the well-known field-oriented control and the
conventional loss-minimizing control for the same induction
motor control scenario.

I. INTRODUCTION

Squirrel cage induction motors (IM) are widely used in
electric vehicle (EV) applications, particularly in dual-motor
configurations, due to their increased robustness. Since an IM
is driven by a voltage source inverter (VSI), this offers the
opportunity for precise torque or speed control. Hence, the
VSI-driven induction motor is capable of quickly achieving
the required amount of torque, while reaching a high speed
operation, as required in EV applications.

In order for the IM to achieve the required torque or speed,
an indirect rotor field-oriented control approach (IR-FOC)
is often utilized [1]. The aim of the IR-FOC operation is
to simplify the electromagnetic torque expression as in a
separately excited dc motor [2], by separating the current into
the d− and q−axes of the synchronously rotating reference
frame, using the Park transformation. Thus, the motor vari-
ables are decoupled, in order for the motor flux and torque to
be controlled from the d− and q−axis currents, respectively.

Taking into consideration the limited range of an EV, an
optimization process to minimize the motor losses is essen-
tial. For this purpose, an optimization problem is formulated
to minimize the machine’s copper and iron loss under the

This work was supported under Grant 81359 from the Research
Committee of the University of Patras via ”C.CARATHEODORY”
program. The authors are with the Department of Electri-
cal and Computer Engineering, University of Patras, Rion
26504, Greece. Emails: a.manasis@upatras.gr,
g.konstantopoulos@ece.upatras.gr

appropriate operating constraints, which are comprised of
the voltage, current and torque constraint expressions. There
are numerous articles in the scientific community which are
describing the loss-minimizing control (LMC) for induction
motors. The main categories of loss-minimizing control are:
1) the search controller (SC) [3], [4] and 2) loss-model-
based controller (LMBC) [5]. The first type of LMC utilizes
the measurement of the motor input power and adjusts the
flux level in consecutive steps [6], with the main goal being
the minimization of the input power for given values of
torque and speed. The LMBC relies on the machine model
and its parameters, in order to calculate the optimal flux
that minimizes the total losses. The strong advantage of the
first method is the independence of the motor parameters,
while the main drawback is the slow convergence and higher
torque ripples [7]. The main advantages of the LMBC are the
limited torque ripple and the speed of the control operation,
but the design directly depends on the motor parameters.

In this paper, the loss-model-based approach is selected.
Considering the induction motor dynamic model, the analyt-
ical expressions for the iron and copper losses are obtained
in order to formulate the optimization problem that aims
to minimize the total losses. The LMC approach aims to
find the optimum flux level that minimizes the losses while
producing a desired torque and simultaneously satisfying
several operating constraints (current, voltage constraints).
Hence, the analytic solution of this optimization problem can
be found using the Kuhn−Tucker theorem [8]. This results in
four different solutions for thed− and q−axis stator currents,
each depending on the operating region of the motor.

The novelty of this paper is the fact that only one of the
four solutions is required for the control operation, i.e. lead-
ing to a simplified optimization problem that includes only
the equality constraint of the motor torque, while the inequal-
ity constraints are embedded into the controller structure.
In particular, the proposed LMC takes a particular dynamic
structure that maintains the controller states within a desired
set that represents the inequality constraints. Furthermore,
using non-linear ultimate boundedness theory, the proposed
non-linear loss-minimizing controller (NL-LMC) is proven
to limit the instantaneous values of the d− and q−axis stator
currents inside a desired set at all times. Hence, compared to
the FOC, the NL-LMC achieves the same speed regulation
scenario with minimum losses and field-oriented operation at
the steady state, while compared to the conventional LMC,
the proposed approach can solve a simplified optimization
problem once offline, obtain the relationship of the d− and
q−axis stator currents in order to achieve minimum total
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Fig. 1. Proposed non-linear loss-minimizing controller (NL-LMC) struc-
ture.

losses, while satisfying the required inequality constraints
due to its special dynamic structure.

II. INDUCTION MOTOR MODELING AND FIELD
ORIENTED CONTROL

A. Dynamic model of a VSI-fed induction motor

The system under consideration is depicted in Fig. 1,
and is consisted of a DC source feeding the three-phase
induction motor via a three-phase voltage source inverter
(VSI). Using the Park transformation [1], also known as
synchronously rotating reference system (d− q frame) and
assuming as state variables of the induction motor the
following: ids,iqs,λdr,λqr, ωr, which are the stator currents,
the rotor fluxes and the motor speed, the dynamic model of
the motor is derived as [2]:

σi̇ds=−
(
RrL

2
m

L2
r

+Rs

)
ids + σωsiqs +

RrLm

L2
r

λdr

+
Lm

Lr
pλqrωr + Vds (1)

σi̇qs=−
(
RrL

2
m

L2
r

+Rs

)
iqs − σωsids +

RrLm

L2
r

λqr

− Lm

Lr
pλdrωr + Vqs (2)

λ̇dr=
RrLm

Lr
ids −

Rr

Lr
λdr + (ωs − pωr)λqr (3)

λ̇qr=
RrLm

Lr
iqs −

Rr

Lr
λqr − (ωs − pωr)λdr (4)

Jmω̇r=−3Lm

2Lr
pλqrids +

3Lm

2Lr
pλdriqs − bωr − Tl (5)

where ωs is the motor synchronous speed, Rs and Rr are
the resistances of the stator and rotor, respectively, Ls and
Lr are the inductances of the stator and rotor, respectively,
Lm is the mutual inductance, p is the number of pole pairs,
Jm and b are the total rotor inertia and friction coefficient,
respectively, Tl is the load torque and σ = Ls − L2

m

Lr
is the

leakage coefficient, while the d− and q−axis VSI voltage
components, i.e. Vds and Vqs, represent the control inputs of
(1)-(5). The electromagnetic torque is given as:

Te =
3

2
p
Lm

Lr
(λdriqs − λqrids). (6)

Using the Park transformation in order to implement the IR-
FOC, it gives the opportunity to align the d−axis of the

synchronous rotating reference frame to the total rotor flux.
This alignment results in the following expressions:

λdr = λr, λqr = 0. (7)

Thus, the torque equation (6) on the IR-FOC becomes:

Te =
3

2
p
Lm

Lr
λdriqs. (8)

Note that the VSI is capable of controlling its output voltage
and frequency. Thus, the synchronous frequency ωs, is
produced by the VSI, and it is calculated from the motor
speed and the desired slip asωs=pωr+ωslip.

B. Traditional Field Oriented Control

Field Oriented Control (FOC) is a widely used control
design for an induction motor [1]. The most common form
of FOC is the indirect rotor FOC (IR-FOC), where the rotor
flux is aligned to the d−axis of the synchronous reference
frame. Hence, at steady-state operation, according to (4) the
preferred slip is obtained:

ωslip = ωs − pωr =
RrLm

Lrλr
iqs. (9)

Therefore, it is essential to know the rotor flux λr, which
cannot be measured directly. Hence, the amplitude of the
rotor flux can be estimated from (3) under FOC operation,
i.e. λqr = 0, while assuming steady-state operation:

λ̂r = λe
r = Lmieds, (10)

where λ̂r, λ
e
r are the estimated and steady-state values of the

flux, respectively. The above assumption is valid, because in
order to achieve a decent performance of the machine in the
low/rated speed area, there is no need to chance the flux
reference value. Thus, the flux level is maintained constant,
and usually the reference values of the controller are the
desired speed and the rated flux values. It is noted, that the
superscript e in (10) means the steady state condition.

The traditional IR-FOC is implemented using cascaded
PI controllers with the appropriate canceling terms [1], [9].
From equation (7) the appropriated d−axis current is derived,
while the q−axis current is obtained through an outer-loop
PI controller, which acts as the speed regulator.

C. Minimum losses operation

The loss-minimizing control (LMC) of induction motors
has been extensively studied in the literature [5], [7], [10],
[11]. The main aim is to ensure that the induction mo-
tor achieves the desired operation at the steady-state, e.g.
speed regulation, with minimum iron and copper losses.
Hence, consider first the existence of an equilibrium point(
ieds, i

e
qs, λ

e
dr, λ

e
qr, ω

e
r

)
for system (1)-(5) at the steady state.

Consider the total induction motor losses (iron and copper)
as Ploss =

Rs

[
(ieds)

2+
(
ieqs
)
2
]
+Rr

[
(iedr)

2+
(
ieqr
)
2
]
+
(V e

dm)
2+
(
V e
qm

)
2

rm
(11)

where, idr, iqr are the rotor d− and q−axis currents, re-
spectively. rm is the resistance parallel to the magnetizing
inductance, which is used to model the iron loss, and
Vdm, Vqm are the d− and q−axis components of the air-gap
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voltage, at the steady-state; as described in [8]. Note that the
total losses in (11) correspond to the model (1)-(5) according
to the assumptions presented in [8]. Equation, (11) can be
rewritten as:

Ploss = Rd(ωs) (i
e
ds)

2
+Rq(ωs)

(
ieqs
)2

(12)

with Rd(ωs)=Rs+
ω2

sL
2
m

rm
, Rq(ωs)=Rs+

RrL
2
m

L2
r

+
ω2

sL
2
mL2

lr

rmL2
r

being the equivalent resistors for the d− and q−axis.
In order to minimize the losses at the steady-state opera-

tion, it is necessary to formulate an optimization problem
with the necessary operating constraints. The aim is to
minimize the cost function given by (11) while producing
a desired torque Te under current and voltage constraints
of the stator. In particular, considering steady-state operation
and field-orientation, as explained in the previous subsection,
the desired torque Te can be given from (6) as

Te =
3

2
p
L2
m

Lr
iedsi

e
qs. (13)

. Furthermore, considering the maximum stator current as
Imax, and the maximum d−axis current as id,max , then the
following two inequality constraints are introduced

(ieds)
2
+
(
ieqs
)2 ≤ I2max (14)

ieds ≤ id,max. (15)

Considering the maximum stator voltage as Vmax [8], i.e.
(V e

ds)
2
+
(
V e
qs

)2 ≤ V 2
max, and taking into account that the

stator voltage reaches its maximum limit at the start of the
field-weakening region [12], where the voltage drop over the
stator resistance is negligible, then the voltage constraint can
be rewritten as

(ieds)
2

(Vmax

ωsLs
)2

+

(
ieqs
)2

(Vmax

ωsσ
)2

≤ 1. (16)

Hence, the optimization problems is formulated as:.
Minimize Ploss from (12) subject to

3

2
p
L2
m

Lr
iedsi

e
qs =Te (17)

(ieds)
2
+
(
ieqs
)2 ≤I2max (18)

(ieds)
2

(Vmax

ωsLs
)2

+

(
ieqs
)2

(Vmax

ωsσ
)2

≤1 (19)

ieds ≤id,max (20)

Note that (18) represents the area within a circle centered
at the origin and (19) represents the area within an ellipse
centered at the origin, as well, but with varying radius based
on the motor speed. Finally, (20) represents the area on the
left-hand side of a line, parallel toiqs-axis line on the ids−iqs
plane. The operating point of the induction motor should lie
inside the area formed by the intersection of the above sets.

The optimization problem in order to achieve operation
under minimum losses can be solved using Lagrange mul-
tipliers and the Kuhn-Tucker theorem. Hence, the desired
steady-state values of the currents ieds and ieqs can be
calculated under 4 different scenarios, i.e. when the point

(
ieds, i

e
qs

)
lies at the interior of the intersection of (18),

(19) and (20), as well as the cases where it lies on the
boundary of each one of (18), (19) or (20). For further
details, the reader is referred to [8]. Hence, the design of
the conventional loss-minimizing control (LMC) requires a
continuous update of the current reference values, which
are fed to the field-oriented control structure (i.e IR-FOC),
in order to achieve minimum losses with a desired torque
level. This complicates the implementation and the desired
operation of the conventional LMC, since it is possible to
cause chattering effects between two reference values which
result from the solution of the optimization problem, when
the system operates close to the constraints.

III. NON-LINEAR LOSS-MINIMIZING CONTROLLER
(NL-LMC)

A. Reference current values

This paper aims to design a LMC structure that inherently
accomplishes the desired inequality constraints, i.e. limits the
steady-state currents ieds and ieqs within the desired sets; thus
resulting in a simplified optimization problem, consisting of
the minimization of the cost function (12) under only the
equality constraint (17). This problem can be solved offline
once and then fed to the proposed controller.

In particular, using Lagrange multipliers, the optimization
problem can be solved and result in the solutions [8]:(

ieds, i
e
qs

)
=

( Rq(ωs)T
2
e

Rd(ωs)(
3
2p

L2
m

Lr
)2

) 1
4

,

(
Rd(ωs)T

2
e

Rq(ωs)(
3
2p

L2
m

Lr
)2

) 1
4

.
(21)

One can obtain the stator currents relationship as:

ieds = ieqs

√
Rq(ωs)

Rd(ωs)
(22)

where the value of ieqs can be obtained using a outer-loop
PI controller, which acts as a speed regulator (instead from
calculating directly from (21) based on the desired torque).
The above analysis describes the process for calculating the
reference values for the d− and q−axis currents in order to
accomplish minimum losses operation, which are then fed to
the proposed non-linear current controller.

B. Proposed non-linear controller

After the calculation of the desired reference currents
that satisfy (22), the aim is to design an inner-loop current
controller that regulates the stator currents at the desired
reference values while guaranteeing the inequality constraints
(18)-(20) at all times. To this end, the proposed non-linear
loss-minimizing controller (NL-LMC) is given below:

Vds = v̄d − (σωsiqs +
RrLm

L2
r

λdr +
Lm

Lr
pλqrωr) (23)

Vqs = v̄q − (−σωsids +
RrLm

L2
r

λqr −
Lm

Lr
pλdrωr), (24)

where v̄d and v̄q are the new control inputs of the system:

v̄d = −Kpids +KpImaxwd (25)
v̄q = −Kpiqs +KpImaxwq, (26)
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withwd andwq representing the controller states with:

ẇd = KI(i
ref
ds − ids)(1− w2

d − w2
q)(1−

Imaxwd

id,max
)

(1− (ωsLsImaxwd)
2

V 2
max

− (ωsσImaxwq)
2

V 2
max

)− kwd (27)

ẇq = KI(i
ref
qs − iqs)(1− w2

d − w2
q)

(1− (ωsLsImaxwd)
2

V 2
max

− (ωsσImaxwq)
2

V 2
max

)− kwq. (28)

Note that irefds and irefqs represent the reference values of
the stator currents that are obtained from the outer-loop con-
troller and satisfy (22), Kp > 0 is the controller proportional
gain, KI > 0 is the controller integral gain and k is an
arbitrarily small positive constant. The entire structure of the
proposed NL-LMC is shown in Fig. 1.

By replacing the proposed NL-LMC (23)-(26) into the
induction motor dynamics (1)-(2), the closed-loop stator
current dynamics become:

σi̇ds = −
(
RrL

2
m

L2
r

+Rs +Kp

)
ids +KpImaxwd (29)

σi̇qs = −
(
RrL

2
m

L2
r

+Rs +Kp

)
iqs +KpImaxwq. (30)

Now, by selecting the proportional gain Kp such that Kp ≫
RrL

2
m

L2
r

+Rs (as in practice Rs and Rr take relatively small
values), and assuming steady-state operation, it yields

ieds ≈ Imaxw
e
d (31)

ieqs ≈ Imaxw
e
q . (32)

This means, that the desired inequality constraints (18)-(20)
can be rewritten as

1− (we
d)

2 −
(
we

q

)2 ≥0 (33)

1− (ωsLsImaxw
e
d)

2

V 2
max

−
(
ωsσImaxw

e
q

)2
V 2
max

≥0 (34)

1− Imaxw
e
d

Id,max
≥0, (35)

respectively. This is depicted in Fig. 2. Note that the
functions on the left-hand side of inequalities (33)-(35)
are utilized in the proposed NL-LMC dynamics (27)-
(28). This is particularly important in order to ensure
that the controller states do not violate the desired
constraints, i.e. for zero initial conditions wd(0) and
wq(0), the trajectory (wd(t), wq(t)) , ∀t ≥ 0 remains
within the compact and convex set W = W1 ∩ W2 ∩ W3

with W1 =
{
wd, wq ∈ R2 : 1− w2

d − w2
q ≥ 0

}
, W2 ={

wd, wq ∈ R2 : 1− (ωsLsImaxwd)
2

V 2
max

− (ωsσImaxwq)
2

V 2
max

≥ 0
}

and W3 =
{
wd, wq ∈ R2 : 1− Imaxwd

Id,max
≥ 0
}

. This is
proven using vector field analysis as shown below.

Consider any point
(
w∗

d, w
∗
q

)
on the boundary of W1

or W2. Then, the right-hand sides of (27)-(28) become
fd(w

∗
d, w

∗
q ) = −kw∗

d and fq(w
∗
d, w

∗
q ) = −kw∗

q , respectively,
resulting in the vector field

f(w∗
d, w

∗
q ) = −k

[
w∗

d w∗
q

]T

which represents a vector pointing from the point
(
w∗

d, w
∗
q

)
towards the origin. Since the origin lies at the interior of W ,
then the vector field points inwards to W . Now consider any
point

(
w∗

d, w
∗
q

)
on the boundary of W3 which belongs also

on the boundary of W . From (27), the d−axis vector field
becomes fd(w∗

d, w
∗
q ) = −kw∗

d while the q− axis vector field
could point anywhere on the d−axis current limit based on
(28). It is easy to see that the total vector field f(w∗

d, w
∗
q )

will definitely point to the left or on the boundary of W3

and therefore inwards to W . Hence, according to Nagumo’s
theorem on invariant sets [13], the set W is robustly pos-
itively invariant with respect to (27)-(28); thus if initially
(wd(0), wq(0)) ∈ W, then (wd(t), wq(t)) ∈ W, ∀t ≥ 0.
This property is crucial not only for satisfying the desired
inequality constraints, but also for guaranteeing boundedness
of the instantaneous values of the stator current.

C. Boundedness of stator currents

Consider the closed-loop current dynamics (29)-(30). By
defining the continuously differentiable function:

W (t) =
1

2
σ(i2ds + i2qs) (36)

its time derivative yields:

Ẇ (t) = σidsi̇ds + σiqsi̇qs. (37)

By substituting (29)-(30) into equation (37):

Ẇ (t) = −
(
RrL

2
m

L2
r

+Rs

)
(i2ds + i2qs)−Kp(i

2
ds + i2qs)

+KpImaxwdids +KpImaxwqiqs (38)

Ẇ (t)=−
(
RrL

2
m

L2
r

+Rs

)
∥i∥22−Kp∥i∥22+KpImaxw

Ti, (39)

with i = [ids iqs]
T
, w = [wd wq]

T and ∥i∥2 denotes the
Euclidean norm of the current vector. Since wT i ≤

∣∣wT i
∣∣ ≤

∥w∥2∥i∥2, then (39) becomes

Ẇ(t)≤−
(
RrL

2
m

L2
r

+Rs

)
∥i∥22, ∀∥i∥2≥∥w∥2Imax. (40)
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Fig. 2. The set (shaded area) for (wd, wq) for satisfying the inequality
constraints (33)-(35) under different motor speeds that modify the voltage
limit (34), and the vector field at the boundary of the set.
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TABLE I
SYSTEM PARAMETERS

Parameters Value Parameter Value

Pn 4 kW Rr 1.395 Ω

Is 9 A rm 500 Ω

rated speed 1430 rpm p 2

Ls 178 mH Jm 0.0131 kg·m2

Lr 178 mH VDC 1000 V

Lm 172 mH Vmax 500 V

Rs 1.405 Ω id,max 4.68 A

It was shown in the previous subsection that for any
(wd(0), wq(0)) ∈ W, then there is (wd(t), wq(t)) ∈
W, ∀t ≥ 0, which means that (wd(t), wq(t)) ∈ W1, ∀t ≥ 0
since W ⊂ W1. Hence, from the structure of W1, there is
∥w(t)∥2 ≤ 1, ∀t ≥ 0. Therefore, using the ultimate bound-
edness theory (Theorem 4.18, [14]), expression (40) yields
that if initially ∥i(0)∥2≤ Imax, then ∥i(t)∥2≤ Imax, ∀t ≥ 0,
which proves that the instantaneous values of ids(t) and
iqs(t) are bounded below the maximum current for all t ≥ 0.
It is underlined that opposed to conventional control methods
that add a saturation unit at the output of the outer-loop PI
speed regulator to ensure that the reference value of irefqs

(and consequently of irefds ) is bounded, the proposed NL-
LMC ensures that the instantaneous values of ids and iqs are
bounded, i.e. even during transients. This is accomplished in
addition to the desired inequality constraint satisfaction and
is validated in the simulation results that follow.

IV. SIMULATION RESULTS

In order to verify the effective performance of the pro-
posed controller, the VSI-fed IM system is simulated in
the MATLAB/Simulink environment. The induction motor
parameters are presented in Table I.

The proposed controller (NL-LMC) is compared to the
traditional FOC, as described in [12], and the conventional
FOC loss-minimizing control, using PI controllers (FOC-
LMC) [5]; thus, the same speed regulation scenario is
considered. Starting from a motor speed at ωref

r =1200 rpm
and load torque at 22.1 N ·m, the speed reference drops to
ωref
r = 1000 rpm at the time instant t= 1 sec. At the time

instant t=2 sec, the speed reference is set to the rated speed,
i.e. ωref

r = 1430 rpm, and is maintained there. Firstly, the
torque load drops to 19.5 N ·m at t = 3 sec, while, at the
time instant t=4 sec it is increased to 26N ·m. Then, at the
time instant t=5 sec it drops to 24 N ·m, before it returns
to 26N ·m at t=6 sec. It is noted, that in the below figures,
the reference or maximum values are depicted with dashed
lines.

Fig. 3(a) shows the speed of the IM under the scenario
described above. The FOC and the FOC-LMC result in a
similar response in terms of overshoot and settling time,
while NL-LMC results in a small overshoot under speed
reference changes and approximately the same settling time
with the aforementioned strategies; however, it appears to
have a slightly larger overshoot and settling time under
extreme and sudden load torque increases. This is explained

Fig. 3. IM operation under the proposed NL-LMC, traditional IR-
FOC (FOC) and conventional FOC with loss-minimizing operation and PI
controllers (FOC-LMC): (a) rotor speed, (b) maximum phase current (peak),
(c) power losses.

in Fig. 3(b), where the total current limit is depicted, indi-
cating that the NL-LMC has already limited the total current
below its maximum opposed to the conventional methods
that violate the limit. In Fig. 3(c), the total power losses of the
IM are obtained. As it was expected, the IM results in more
losses under the FOC control, while the total losses are much
lower under the FOC-LMC and the NL-LMC. The response
of the d− and q−axis currents is illustrated in Fig. 4(a),(b),
showing the boundedness of the instantaneous currents, as
analytically proven in Section III-C.

Fig. 5 shows the performance of the NL-LMC controlled
IM under the high speed operation, as required in EV
applications; thus, showing the field-weakening ability of the
system. It is underlined that the actual top speed depends on
the IM structure and its mechanical resiliency. The torque
load is chosen to be disproportional to the IM speed, utilizing
the constant power region of the motor [12]. The IM flux
depends on the d−axis current, thus a reduced d−axis
current is essential for the field-weakening operation. As
depicted in Fig. 5(c), the d−axis current is reduced as
the IM speed increases, highlighting that the proposed NL-
LMC is capable of implementing the flux weakening control.
From Fig. 5(b), 5(c) and Fig. 6(a), it is shown that the
total phase current is bounded, while the d−axis current is
always limited below Id,max. In Fig. 6(b), it is clear that
the inequality constraint (19) holds true for the whole speed
range, leading to a successful field-weakening operation.
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Fig. 4. IM operation under the proposed NL-LMC, traditional IR-
FOC (FOC) and conventional FOC with loss-minimizing operation and PI
controllers (FOC-LMC): (a) q−axis current, (b) d−axis current.

Fig. 5. Field-weakening operation of the IM under the proposed NL-LMC:
(a) rotor speed, (b) maximum phase current (peak), (c) d−axis current.

V. CONCLUSION

In this paper a novel NL-LMC was proposed for mini-
mizing the losses of the IM, while achieving accurate speed
control with inherent constraint satisfaction. Opposed to
conventional LMC strategies that require the solution of an
optimization problem and continuous update of the stator
currents depending on required constraints, the proposed
approach requires the solution of a simplified optimization
problem to accomplish minimum total losses, which can
be solved once offline, while all inequality constraints are
satisfied from the special dynamic structure of the con-
troller. Furthermore, an analysis for the boundedness of the

Fig. 6. Field-weakening operation of the IM under the proposed NL-LMC:
(a) q−axis current, (b) maximum phase voltage (peak).

stator currents was also provided using nonlinear ultimate
boundedness theory, proving that the instantaneous stator
currents values are always limited. Extended simulation
results demonstrate the effectiveness of the proposed NL-
LMC compared to the conventional FOC and LMC.
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