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Abstract— This paper proposes a novel formation control
design for safe platooning and merging of a group of vehicles in
multi-lane road scenarios. Provided a leader vehicle is indepen-
dently controlled, the objective is controlling the follower vehi-
cles to drive in the desired lane with a constant desired distance
behind the neighboring (preceding) vehicle while preventing
collisions with both the neighboring vehicle and the road’s
edges. Inspired by the recent concept of constructive barrier
feedback, the proposed controller for each follower vehicle is
composed of two parts: one is the nominal controller that
ensures its tracking of the neighboring vehicle; another is for
collision avoidance by using divergent flow as a dissipative term,
which slows down the relative velocity in the direction of the
neighboring vehicle and road edges without compromising the
nominal controller’s performance. The key contribution of this
work is that the proposed control method ensures collision-free
platooning and merging control in multi-lane road scenarios
with computational efficiency and systematic stability analysis.
Simulation results are provided to demonstrate the effectiveness
of the proposed algorithms.

I. INTRODUCTION

In recent years, the technology of connected and auto-
mated vehicles (CAV) has experienced significant progress.
The synergistic integration of reliable sensor, communica-
tion, and control technologies on CAVs enables them to form
fleet-level cooperation in road operations, leading to innova-
tive solutions for addressing various traffic challenges [1]. As
pioneered by PATH project [2] in the early 2000s, vehicle
platooning, defined as a train of CAVs operating with short
inter-vehicle distances and synchronized speeds in a shared
trip, is one important representation of cooperative driving
technologies. Various studies have highlighted the potential
benefits of vehicle platooning, encompassing increased road
capacity, enhanced safety, improved fuel efficiency, and
reductions in travel delays and road congestion [3]–[5].

Early works (e.g., [6]–[8] ) have been dedicated to study-
ing one-dimensional longitudinal motion control for a pla-
toon of vehicles. The focus is maintaining safe inter-vehicle
distances for vehicles on a single lane to drive at the same
speed and to ensure string stability. In a multi-lane traffic
setting, guiding vehicles into a platoon formation requires
additional consideration for safe lane-changing maneuvers
concerning neighboring vehicles. Additionally, vehicles must
navigate within a structured road environment, requiring
adaptable formation adjustments to accommodate the road’s
shape and robust lane-keeping mechanisms to prevent en-
croachment on road edges. In summary, collision avoidance
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in a structured road environment remains a critical open
challenge for platoon formation in multi-lane road scenarios.

A majority of literature about collision avoidance focuses
on designing gradient descent control laws based on con-
structing the potential function using geometric information
on the considered topology [9]. Yet, most solutions only
consider single-integrator systems due to the position feed-
back used for the collision avoidance effect. The work in
[10] exploits potential functions for collision-free flocking
of a group of double-integrator systems, and the authors
in [11] apply this algorithm to a safe platoon control in
a multi-lane scenario. However, restricted initial condition
on both the position and velocity of the whole formation
is needed for collision avoidance between agents. Recently,
optimization-based controllers based on model predictive
control (MPC) [12], [13] and control barrier functions (CBF)
[14] have emerged as promising alternatives to guarantee
safety between agents. However, their application in vehi-
cle platooning often imposes limited considerations, such
as ignoring road boundaries or focusing only on lateral
or longitude controller design. For instance, a distributed
MPC is employed in [12] to ensure collision-free vehicle
platooning with a dedicated design of terminal constraints,
however restricted in the longitudinal direction. The CBF-
based control approach has been exploited for safe lane
change maneuvers in [15], whereas vehicles are modeled as
a simple first-order system and the constraint of limited free
space on the road is ignored. It is worth noting that the use
of optimization-based control approaches poses challenges in
explicitly analyzing the equilibrium and convergence of the
multi-robot system, in addition to potential computational
complexity and feasibility issues.

Recently, Tang et al. propose in [16] a novel concept of
constructive barrier feedback inspired by natural systems
like insects and birds, which exploits divergent flow [17]
to prevent collisions while effectively achieving the primary
control objective. The decentralized controller proposed in
[16] is designed as the sum of a nominal tracking controller
and the constructive barrier feedback composed of the di-
vergent flow in the direction of the neighboring vehicle.
The constructive barrier feedback here serves as dissipative
velocity feedback that slows down the relative velocity in
the direction of the neighboring vehicle without compro-
mising the nominal controller’s performance. Its application
to collision-free formation control under an acyclic digraph
topology outperforms classical barrier function approaches
and potential field methods, resulting in computationally
efficient collision avoidance algorithms with systematic equi-
librium analysis.
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In this paper, the constructive barrier feedback approach
in [16] is adopted to design a safe platoon formation control
in a multi-lane road setting while considering limited free
space within road boundaries. The focus is to design control
input for the center point of the front axle of the car,
which is modeled as a double integrator. Then, the control
input is transferred to the control design of a kinematic
bicycle model as in [18]. By assuming the leader vehicle
is independently controlled, for each follower vehicle, the
proposed controller is designed as the sum of two parts:
one is the nominal controller that ensures its tracking of
the neighboring vehicle; another is for collision avoidance
by using divergent flow as a dissipative term. Under the
proposed controller, i) the follower vehicles remain within
a safe distance to both the neighboring vehicle and road
edges at all times as long as the initial condition is within
the safe distance; ii) the tracking error in terms of position
and velocity converges asymptotically to zero. The proposed
method is simple and elegant in design, and its effectiveness
is validated in simulations for both merging and platoon
formation scenarios.

The remaining sections of this paper are structured as
follows. In Section II, we provide the necessary preliminaries
on the constructive barrier feedback approach. In Section III,
we state the vehicle model and its transformation together
with the problem formulation of this paper. Section IV
outlines the detailed formulation of the proposed controller
and theoretical results. In Section VI, we conduct numerical
evaluations of the method and compare it with a nominal for-
mation control without the collision avoidance component.
Finally, in Section VII, we provide concluding remarks on
our work.

II. PRELIMINARY

Consider a system of n (n ≥ 2) connected agents in the
platooning scenarios. The underlying interaction topology
can be modeled as a digraph (directed graph) G := (V, E),
where V = {1, 2, . . . , n} is the set of vertices and E ⊆ V×V
is the set of directed edges. The set of neighbors of agent i is
denoted by Ni := {j ∈ V|(i, j) ∈ E}. To provide clarity on
the graph topology used in this work, we make the following
assumption:

Assumption 1: The topology G is fixed and described by
an acyclic digraph with a single directed spanning tree,
as shown in Fig. 1. Without loss of generality, agents are
numbered (or can be renumbered) such that agent 1 is the
leader, i.e. N1 = ∅, all other agents i, i ≥ 2 are followers
whose neighboring set is Ni = {i− 1}.

A. Constructive barrier feedback for collision avoidance

In this section, we will recall the concept of constructive
barrier feedback proposed in [16] for collision avoidance of
a leader-follower structure in which each vehicle dynamics
is described as a double integrator as follows{

ṗi = vi

v̇i = ui

(1)

Agent: 1Agent: 2Agent: 3Agent: 4

Fig. 1: Interaction topology for a 4-agent platoon formation
scenario. The arrow indicates the information access for each
agent i from its neighboring agent i− 1.

where pi ∈ R2 is the position, vi ∈ R2 is the velocity of each
agent i, respectively, and ui ∈ R2 is the input acceleration.

The relative position vectors between two neighboring
agents i and i− 1 is defined as:

ei := pi−1 − pi, i ≥ 2. (2)

Similarly, νi := ėi = vi−1−vi denotes the relative velocity
between agent i and i − 1. As long as ∥ei∥ ≠ 0, one can
define direction vector from i to i− 1 as:

gi =
ei

∥ei∥
∈ S1

where S1 := {y ∈ R2 : ∥y∥ = 1} denote the 1-Sphere.
Let r be a positive constant that we term the safety

distance and define

di := ∥ei∥ − r = ∥pi−1 − pi∥ − r. (3)

A straightforward computation shows that ḋi = g⊤i νi.
To prevent collisions between neighboring agents, the

key principle is controlling the relative velocity along the
direction gi, i.e., ḋi = g⊤i νi. To get an effective reactive
collision avoidance without affecting the stability property
of the nominal controller, feedback controller ui is designed
in [16] as:

ui = un
i + kogif

B(ḋi, di), i ∈ V/{1}, (4)

with ko a positive constant gain and un
i the nominal control

input ensuring the asymptotic (or the exponential) stability
of the equilibrium (ei − e∗i , νi − ν∗i ) = (0, 0), where e∗i and
ν∗i denote desired relative position and velocity, respectively.
And

ϕi := fB(ḋi, di) =
ḋi
di

=
g⊤i νi
di

(5)

a dissipative control barrier feedback slowing down the
relative velocity in the direction of the neighbor without
compromising the stability nature of the nominal control
action. It can be obtained directly from the optical flow using
visual information [19], or estimated from the measure of di
[20].

To illustrate the obstacle avoidance principle employed in
this context, let’s consider a 2-agent system with agent i −
1 as the leader, agent i as the follower. Using the above
definitions of d = di and ḋ = ḋi, it is straightforward to
verify that:

d̈ = −ko
ḋ

d
− αi(t) (6)
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with αi(t) = −∥πgi
νi∥2

d+r + g⊤i (ui−1 −un
i ). The barrier effect

of the fB , is announced in the following technical lemma:
Lemma 1: Given the dynamics (6) with ko a positive gain

and αi(t) a continuous and bounded function. Then for
any initial condition satisfying d(0) > 0 and ϕ(0) = ḋ(0)

d(0)
bounded, the following assertions hold:

1) d remains positive, ∀t ≥ 0.
2) d converges to zero as t → ∞ if and only if (iff)

limt→∞
∫ ⊤
0

α(τ)dτ → +∞.
3) If d converges to zero, then ḋ is bounded and con-

verges to zero, and ϕ(t) remains bounded, ∀t ≥ 0.
Furthermore, if αi(t) converges to a positive constant
α0 > ϵ > 0, then ḋ

d → −α0

ko
and hence d̈ converges to

zero.
Proof of the lemma is given in [16]. This lemma shows

that d = di will never cross zero for all times as long as the
nominal controller un

i , the leader input ui−1, and the relative
velocity νi are continuous and bounded.

III. VEHICLE DYNAMICS AND PROBLEM FORMULATION

In this paper, we will extend the use of constructive
barrier feedback for safe platoon formation and merging
control problems for a group of CAV in a multi-lane highway
scenario, considering realistic car model and environmental
constraints such as limited free space with road edges.

A. Vehicle dynamics

Each vehicle i is modeled as a kinematic bicycle model
as the following:

ẋir

ẏir
θ̇i
v̇ir
δ̇i

 =


vir cos(θi)
vir sin(θi)
vir tan(δi)

Li

0
0

+


0 0
0 0
0 0
1 0
0 1


[
ai
ωi

]
(7)

where (xir, yir) and θi indicate the rear axle center position
and orientation of vehicle i in the common global frame, vir
is the speed measured at the rear wheel, and finally δi , Li are
the steering angle and wheelbase of vehicle i, respectively,
as shown in Fig. 2. The control inputs of the system are
the longitudinal acceleration ai and the angular rate of the
steering wheel wi.

In this paper, we will focus on the control design of
the vehicle’s center of the front axle, which is modeled
as a double integrator model (1). The control input of the
kinematic bicycle model (7) is transferred from the control
design of the double integrator model similarly in [18]. As
shown in Fig. 2, the position of the front axle is presented
as

pi :=

[
xih

yih

]
=

[
xir + Li cos(θi)
yir + Li sin(θi)

]
. (8)

Take the time derivatives of pi, the velocity at the front axle
is denoted as

vi :=

[
ẋih

ẏih

]
=

[
vir cos(θi)− vir sin(θi) tan(δi)
vir sin(θi) + vir cos(θi) tan(δi)

]
(9)

x

y

(𝑥𝑖ℎ, 𝑦𝑖ℎ)

Fig. 2: Kinematic bicycle model for 2-dimensional vehicle
motion.

Define the control input of the front axle’s center as ui and
diffienciating again the above equation, we have

ui :=

[
ẍih

ÿih

]
=

[
−v2

ir

L sin(θi) tan(δi)− v2
ir

Li
cos(θi) tan

2(δi)
v2
ir

Li
cos(θi) tan(δi)− v2

ir

Li
sin(θi) tan

2(δi)

]

+

[
cos(θi)− sin(θi) tan(δi) −vir sin(θi) sec

2(δi)
sin(θi) + cos(θi) tan(δi) vir cos(θi) sec

2(δi)

] [
ai
ωi

]
(10)

The vehicle input (ai, ωi) can be obtained from ui by
solving (10) as follows:[
ai
ωi

]
=

[
cos(θi)− sin(θi) tan(δi) −vir sin(θi) sec

2(δi)
sin(θi) + cos(θi) tan(δi) vir cos(θi) sec

2(δi)

]
︸ ︷︷ ︸

A

−1

(
ui −

[
− v2

ir

Li
sin(θi) tan(δi)− v2

ir

Li
cos(θi) tan

2(δi)
v2
ir

Li
cos(θi) tan(δi)− v2

ir

Li
sin(θi) tan

2(δi)

])
(11)

which is valid as long as detA ̸= 0. It is straightforward to
check that detA = vir sec

2(δi), so the solution to (11) exists
as long as δi ̸= π

2 and vir ̸= 0. By the physical constraint of
the real car model, we have δi <

π
2 . And if vir = 0 at a time

instance, the solution of ai still exists by solving (10), which
avoids the mathematical singularity at that time instance.

B. Problem formulation

From now on, we will focus on the platoon formation
control of the front axle’s center of each vehicle, which is
modeled as a double integrator (1).

Consider a vehicle platoon formation problem of n CAVs
in a multi-lane highway scenario, as shown in Fig. 3. We
adopt the following assumption about the road:

Assumption 2: The road with width w > 0 is placed on a
flat two-dimensional plane. Two parallel straight lines define
the road edges along the constant longitude direction g∗ (i.e.,
ġ∗ = 0). The common inertial frame {I} is placed on the
right road edge with axis g∗ := [1 0]⊤ and η∗ := [0 1]⊤ as
can be seen in Fig. 3.
More general road segments with curvature will be consid-
ered as future works.

The desired platoon formation is defined as the group of
vehicles driving on the desired lane along the longitudinal
direction of the road g∗ with non-zero forward velocity,
as indicated in Fig. 3. More specifically, the following
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Vehicle: 2

Vehicle: 1

Vehicle: 3
Vehicle: 4𝒈∗

𝜼∗

𝒑𝟏
∗

𝒗𝟏
∗ = 𝒄𝒗𝒈

∗

𝒑𝟐
∗𝒑𝟑

∗𝒑𝟒
∗

Left Road Edge

Right Road Edge

𝒘

𝒆𝟐

Inertial Frame:

Fig. 3: Platoon formation scenario in a multi-lane highway
segment at a certain time instance. The red dot indicates the
desired position for each vehicle. The red arrow indicates
the desired velocity for the platoon leader. The blue arrow
between vehicle 2 and vehicle 1 indicates the relative position
vector e2.

assumption describes the formulation of the desired platoon
formation.

Assumption 3: The leader vehicle, agent 1, is indepen-
dently controlled with the formation such that p1 = p∗1 and
v1 = v∗1 = cvg

∗ with cv > 0 the desired platoon speed. The
follower vehicle, agent i, i ≥ 2 follows its neighbor vehicle
i − 1 with desired relative position e∗i := p∗i−1 − p∗i = cig

∗

and desired relative velocity ν∗i := v∗i−1−v∗i = 0 where ci >
Li−1 + r > 0 is the desired platoon distance between two
neighbors and r is the safe distance between two vehicles.

The interaction topology of the platoon formation is de-
scribed in Assumption 1. Since the vehicles considered in
this work are homogeneous, the order of the vehicles’ index
is assigned according to their initial position projected to the
road direction g∗.

Assumption 4: Provided g∗⊤(pi(0) − pj(0)) ̸= 0,∀i, j ∈
V = {1, 2, . . . , n}, the vertex set of n-vehicle systems is
assigned such that g∗⊤(pi−1(0)− pi(0)) > 0,∀i ≥ 2.

The above assumption is natural in the scenarios of platoon
formation, and an illustration of the index order is shown in
Fig. 3.

With all the above ingredients, the problem addressed in
this work is formally formulated as follows.

Problem 1: Find individual feedback control ui for each
follower vehicle i ≥ 2 such that their front axle’s center
positions (pi, vi) converges to the desired platoon formation
(p∗i , v

∗
i ) while keeping a safe distance between neighbor

vehicles and toward the road edges.

IV. CONTROLLER DESIGN

Inspired by the design (4) from the work [16], the safe
platoon formation controller for each follower vehicle i ≥ 2
is proposed as two parts:

ui = un
i + uc

i (12)

where un
i is the nominal controller for platoon formation, and

uc
i is the constructive barrier feedback design for collision

avoidance against both the neighbor vehicle and road edges.
To drive the vehicle i to the desired lane while keeping a

desired distance to the forward neighboring vehicle i−1, we

decouple the control along longitude and lateral directions
and design the nominal controller as

un
i = k1g

∗g∗⊤(ẽi + νi)− k2η
∗η∗⊤(p̃i + ṽi) + ui−1, i ≥ 2.

(13)
where k1 and k2 are positive gains, p̃i := pi − p∗i , ṽi :=
vi − v∗i , and ẽi := ei − e∗i = p̃i−1 − p̃i are absolute position
error, absolute velocity error and relative position error of
agent i, respectively.

To prevent collision between two neighbor vehicles i and
i − 1, di = ∥ei∥ − r should be guaranteed all the time
positive. Here, we explore inter-agent distance projected to
the longitude direction of the road g∗i

li := g∗⊤ei − r. (14)

Since ∥ei∥ =

√
(g∗

⊤
ei)2 + (η∗⊤ei)2, it is straightforward

to verify that li > 0 implies di > 0.
Besides collision avoidance with the neighboring vehicle,

all vehicles must follow the traffic rules so the road edges
can not be exceeded. To avoid vehicles from crossing the
two road edges, we define distance dηi := bi − rη with rη
the safe distance with the road edge and bi the minimum
distance between the vehicle i and the two road edges

bi :=

{
η∗⊤pi, η∗⊤pi ≤ w

2 ,

w − η∗⊤pi, otherwise,
(15)

recall that w is the width of the road.
With the above-defined distances, the constructive barrier

feedback uc
i is designed as

uc
i = k3g

∗ϕl
i − k4ai(t)η

∗ϕη
i (16)

where ϕl
i =: l̇i

li
and ϕη

i =:
ḋη
i

dη
i

with l̇i = g∗⊤νi and ḋηi =

ai(t)η
∗⊤vi, and

ai(t) :=

{
1, η∗⊤pi ≤ w

2 ,

−1, otherwise.
(17)

V. STABILITY ANALYSIS

Recalling (1), (12), (13), and (16), one verifies that the
closed-loop dynamics of the error variable (p̃i, ṽi), i ∈
V/{1} can be rewritten as

˙̃pi =ṽi

˙̃vi =k1g
∗g∗⊤(ẽi + νi)− k2η

∗η∗⊤(p̃i + ṽi) + ui−1 − v̇∗i

+ k3g
∗ϕl

i − k4ai(t)η
∗ϕη

i
(18)

For the stability analysis of the proposed controller, we start
with a single-follower scenario with the following lemma.

Lemma 2: Consider a 2-agent system with the dynamics
(1) and let the input u2 be given by (12) along with (13), and
(16). If Assumptions 1-4 are satisfied, then for any initial
conditions (p̃2(0), ṽ2(0)) such that l2(0) > 0, dη2(0) > 0,
ϕl
2(0) and ϕη

2(0) are bounded, the following assertions hold
∀t > 0

1) d2 and dη2 remains positive, ϕl
2, ϕη

2 and u2 are bounded,
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TABLE I: Initial vehicle states for the merging scenario

Vehicle xir yir θi vir δi

[m] [m] [rad] [m/s] [rad]

1 50 10 0 15 0

2 42.4 13.5 0 18 0

3 36 10 0 15 0

4 28.6 6 0 30 0

5 22 10 0 15 0

TABLE II: Initial vehicle states for the formation scenario

Vehicle xir yir θi vir δi

[m] [m] [rad] [m/s] [rad]

1 50 18 0 15 0

2 44 16 0.3 30 0

3 38 8 -0.4 15 0

4 31 5 0 25 0

5 25 18 0 15 0

2) the desired equilibrium point (p̃2, ṽ2) = (0, 0) is
asymptotically stable.

The proof of this lemma is provided in Appendix A.
The stability analysis for a general n-vehicle (n ≥ 3)

platoon formation is provided by the following theorem.
Theorem 1: Consider an n-agent (n ≥ 3) system with the

dynamics (1) along with the feedback control law (12), (13),
and (16). If Assumptions 1-4 holds, then for any bounded
initial conditions (p̃i(0), ṽi(0)) such that li(0) > 0 and
dηi (0) > 0, ϕl

i(0) and ϕη
i (0) are bounded, the following

assertions hold ∀i ∈ V/{1}, ∀t ≥ 0:
1) di(t) and dηi (t) remains positive and ϕl

i(t), ϕ
η
i (t), and

ui are bounded,
2) the desired equilibrium point (p̃i, ṽi) = (0, 0) is

asymptotically stable.
The proof of this theorem is given in Appendix B.

VI. SIMULATION RESULTS

To illustrate the effectiveness of the proposed feedback
control method (12) in the context of multi-lane platoon
formation, we have designed two simulation scenarios, as
depicted in Fig. 4. These scenarios are referred to as (a) the
merging scenario and (b) the formation scenario.

In both scenarios, a total of five vehicles are employed.
The platoon leader, designated as i = 1, is initially positioned
at coordinates (xir, yir) = (50m, 10m) for the merging
scenario and (xir, yir) = (50m, 18m) for the formation
scenario. It moves along the x-direction at a constant velocity
of vir = 15 m/s. Additionally, both scenarios share several
common parameters, including road width w = 20 m, vehicle
length Li = 4 m, vehicle safe distance r = 5 m, road safe
distance rη = 1.2 m, desired platoon speed cv = 15 m/s,
and desired platoon spacing, ci = 14 m. The gains for the
nominal and collision avoidance controllers are set as k1 = 2,
k2 = 2, k3 = 4, and k4 = 5.

To illustrate the effectiveness of the proposed controller in
managing the merging of vehicles into an existing platoon,
the merging scenario has been designed. Here, vehicles 1, 3,
and 5 initially assume positions conforming to the desired
platoon formation. Vehicles 2 and 4, on the other hand, are
tasked with merging into the platoon. Vehicle 2 merges from
the left side, while vehicle 4 merges from the right side of
the platoon as depicted in Fig. 4a. A summary of the exact
initial states for all vehicles involved in this merging scenario
can be found in Table I.

For the formation scenario as illustrated in Fig. 4b, all fol-
lower vehicles with i ≥ 2 are randomly placed in safe initial
positions. This setup allows us to evaluate the controller’s
performance in steering vehicles from different lanes into
the desired platoon formation. A detailed overview of the
initial states for all vehicles participating in the formation
process is provided in Table II.

Analyzing the progression of the formation process in both
scenarios, as displayed in Fig. 4, we observe that all vehicles
smoothly converge to the desired formation. Both formation
processes reach completion within a distance of 100 meters,
starting from the safe initial conditions. This convergence
to the desired platoon formation is further evidenced by ex-
amining the evolution of the absolute position error ||p̃i(t)||
and the absolute velocity error ||ṽi(t)|| for all followers i ≥ 2
over time, as depicted in Fig. 5. Both ||p̃i(t)|| and ||ṽi(t)||
converge to zero within 8 seconds, marking the successful
completion of the formation process.

To assess the safety aspect of the proposed method,
we compare the simulation results with a baseline control
strategy which takes the form of the nominal controller (13)
without the collision avoidance component (16). In Fig. 6,
we compare the time evolution of the safe distance di(t)
and dηi (t) between the proposed safe formation controller
and the baseline controller. In both scenarios, the proposed
method effectively maintains the safe distance above zero
at all times, signifying compliance with safety conditions.
In contrast, the baseline controller caused collisions in both
scenarios, as it fails to keep d4 > 0 in the merging scenario
Fig. 6a, and in the formation scenario Fig. 6b, it violates
both dη2 > 0 and d4 > 0. A video of the simulations can be
found at http://bit.ly/platoon_formation.

VII. CONCLUSIONS

In this paper, we have designed a safe platoon formation
control using constructive barrier feedback. The method
allows the vehicles to converge to the desired platoon for-
mation while avoiding inter-vehicle collisions and violation
of the road edges. We provide a theoretical analysis of the
performance and safety properties of the proposed controller.
Through simulation studies, we further validate the efficacy
of the controller in both formation and merging scenarios.
Compared with the baseline controller, the simulation results
demonstrate the capability of the proposed method to safely
control the vehicles into the desired platoon formation as
long as the initial condition is safe. In future works, we
aim to investigate the generalization of the method to handle
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Fig. 4: Time evolution of the platoon formation process. Two parallel red solid lines are the road edges, the black solid
line indicates the desired lane for the platoon, and the color solid lines indicate the vehicle trajectory during the formation
process.
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Fig. 5: Time evolution of the absolute position error ||p̃i(t)|| and the absolute velocity error ||ṽi(t)|| for all i = {2, 3, 4, 5}.

a broader class of traffic scenarios, including formation in
curved roads and other types of graph topology. Another
direction is to consider state and input constraints in the
controller design and to handle model and measurement
uncertainties with robustness.

APPENDIX

A. Proof of Lemma 2

Proof: Based on Assumption 3, we have (p1, v1) =
(p∗1, v

∗
1). Recall (18), the closed loop dynamics for the error

variable (p̃2, ṽ2) of the follower vehicle 2 can then be

simplified as:
˙̃p2 = ṽ2
˙̃v2 =− k1g

∗g∗⊤(p̃2 + ṽ2)− k2η
∗η∗⊤(p̃2 + ṽ2)

+ k3g
∗ϕl

2 − k4a2(t)η
∗ϕη

2

(19)

Consider the following Lyapunov function candidate:

L2 =
1

2
p̃⊤2 Kp̃2 +

1

2
||ṽ2||2 (20)

where K =

[
k1I 0
0 k2I

]
> 0. Differentiate L2, we get:

L̇2 = −ṽ⊤2 Kṽ2 + k3ṽ
⊤
2 g

∗ϕl
2 − k4a2(t)ṽ

⊤
2 η

∗ϕη
2 (21)

Recall that ϕl
2 = l̇2

l2
, ϕη

2 =
ḋη
2

dη
2

and use the fact that l̇2 =

g∗⊤ν2 = −g∗⊤ṽ2, and ḋ2η = a2(t)η
∗⊤v2 = a2(t)η

∗⊤ṽ2,
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(a) Simulation result for the merging scenario
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(b) Simulation result for the basic formation scenario

Fig. 6: Time evolution of the safe distance di(t) and dηi (t) for all i ∈ {2, 3, 4, 5}. The solid lines indicate evolutions of di(t)
and dηi (t) under the proposed controller (12), (13), and (16). The dashed lines indicate the result under only the baseline
controller with nominal design (13).

L̇2 can be simplified as

L̇2 = −ṽ⊤2 Kṽ2 − k3
|l̇2|2

l2
− k4

|ḋη2 |2

dη2
≤ 0 (22)

which is negative semi-definite provided l2 > 0 and dη2 > 0.
This implies (p̃2, ṽ2) is bounded as long as l2 and dη2 remain
positive.

Proof of item (1): Since l2 > 0 implies d2 > 0, we will
prove l2 > 0 in the following statement. Take the derivative
of l̇2 = g∗⊤ν2 and ḋη2 = a2(t)η

∗⊤ṽ2, due to the fact that
g∗⊤η∗ = 0, one has

l̈2 = −k3
l̇2
l2

+ k1g
∗⊤(ẽ2 + ν2) (23a)

d̈η2 = −k4
ḋη2
dη2

− a2(t)k2η
∗⊤(p̃2 + ṽ2). (23b)

To prove that l2(t) and dη2(t) will not approach zero in finite
time, we use proof by contradiction. Assume there is a finite
time T > 0 such that l2(T ) = 0 and dη2(T ) = 0, taking the
integral of (23) from 0 to T

k3( ln l2(T )− ln l2(0)) = l̇2(0)− l̇2(T )

+ k1

∫ T

0

g∗⊤ẽ2dτ + k1(l2(T )− l2(0)) (24a)

k4( ln d
η
2(t)− ln dη2(0)) = ḋη2(0)− ḋη2(t)

− k2

∫ T

0

a2(τ)η
∗⊤p̃2dτ − k2(d

η
2(t)− dη2(0)) (24b)

the left side of (24a) and (24b) tend to ’negative’ infinity,
while the right side of the corresponding equation is bounded
or tends to ’positive’ infinity, since g∗⊤(ẽ2), a2(t)η∗⊤(p̃2)
are bounded ∀0 < t < T , and l̇2(T ), ḋη2(t) are either
bounded or ’negative’ infinity as l2 and dη2 approach to zero.
This statement yields a contradiction. Hence, one concludes
that l2 (so does d2) and dη2 remain positive for all the time,
which implies (p̃2, ṽ2) are bounded. A direct application of
Lemma 1-item 3) concludes that ϕl

2 and ϕη
2 are bounded for

all the time which implies u2 is bounded for all the time.
Proof of Item (2): Using a similar argument as the proof

of Lemma 2 - item (2) in [16], one concludes that the
equilibrium point (p̃2, ṽ2) = (0, 0) is asymptotically stable.
The undesired equilibrium point described in [16, Lemma 2
- item (2)] does not appear here due to the Assumption 4.

B. Proof of theorem 1

Proof: We will proceed with the proof using mathemat-
ical induction. Since the case, i = 2 is equivalent to Lemma
2 and hence trivial, we will start by proving that the theory
holds for i = 3.

Proof for i = 3: Recalling (18), the closed loop dynamics
for (p̃3, ṽ3) is given as:

˙̃p3 = ṽ3
˙̃v3 =k1g

∗g∗⊤(ẽ3 + ν3)− k2η
∗η∗⊤(p̃3 + ṽ3)

+ u2 − v̇∗3 + k3g
∗ϕl

3 − k4a3(t)η
∗ϕη

3 .

(25)
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Since ẽ3 = p̃2− p̃3 and ν3 = ṽ2− ṽ3, (25) can be considered
as a nominal system pertubered by (p̃2, ṽ2) to the unforced
system

˙̃p3 = ṽ3
˙̃v3 =− k1g

∗g∗⊤(p̃3 + ṽ3)− k2η
∗η∗⊤(p̃3 + ṽ3)

+ k3g
∗ϕl

3 − k4a3(t)η
∗ϕη

3

(26)

Consider a Lyapunov candidate for the unforced system
(26):

L3 =
1

2
p̃⊤3 Kp̃3 +

1

2
||ṽ3||2. (27)

Following the same argument as in the proof for Lemma 2,
the derivative of L3 is obtained as:

L̇3 = −1

2
ṽ⊤3 Kṽ3 − k3

|l̇3|2

l3
− k4

|ḋη3 |2

dη3
(28)

which is negative-semidefinite given that l3 > 0 and dη3 > 0.
Proof of item (1) for i = 3: Take the derivatives of l̇3 =

g∗⊤ν3 and ḋη3 = a3(t)η
∗⊤v3

l̈3 = −k3
l̇3
l3

− k1g
∗⊤(ẽ3 + ν3) (29a)

d̈η3 = −k4
ḋη3
dη3

− a3(t)η
∗⊤(k2(p̃3 + ṽ3)− u2) (29b)

Since u2 is bounded as indicated in Lemma 2, one concludes
that ∀t ≥ 0, l3 > 0 (hence, d3 > 0), dη3 > 0, ϕl

3, ϕη
3 , and

u3 are bounded, using a similar argument as in the proof of
Lemma 2 - item (1).

Proof of item (2) for i = 3: Using a similar argument
as the proof of Lemma 2 - item (2), one concludes that the
equilibrium point (p̃3, ṽ3) = (0, 0) of the unforced system
(26) is asymptotically stable. Since (p̃2, ṽ2) = (0, 0) is
asymptotically stable, one conclude that (p̃3, ṽ3) = (0, 0)
of the nominal system (25) is also asymptotically stable.

Proof for i ≥ 4: Now, assuming that the theorem is true
for i − 1 ≥ 3, using an analogous statement as for i = 3,
one concludes that the theorem is also true for i ≥ 4. By
mathematical induction, we conclude that items 1 and 2 hold
true for all agents i ∈ V/{1}.
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