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Abstract— This paper presents a control strategy to perform
time-optimal point-to-point motions using the feasibility gov-
ernor (FG) strategy. This technique consists of two stages.
The first stage is a feasibility governor in which an auxiliary
reference is calculated inside a feasible set that drives the
system toward the reference along the constraint boundaries.
The second stage is a time-optimal model predictive control
(MPC) formulation with an appropriate structure which is
executed in a set where the reference can be reached within
the prediction horizon. Feasible and reachable sets that contain
system dynamics and constraints information are computed
offline, allowing the methodology to run with short prediction
horizons. This reduces the computational load in the online
execution. An example of a car represented by a bicycle model
performing a lateral movement at constant forward velocity is
presented to illustrate the controller’s performance.

I. INTRODUCTION

Model predictive control (MPC) is a methodology that
sets and solves an optimal control problem (OCP) at each
sampling time to provide an optimized system input. This
process is also known as receding horizon control. A key
feature of MPC is that it explicitly handles constraints. This
feature plays a major role in, e.g., handling input saturation
limits, or ensuring safety regions for states.

Time-optimal types of problems in MPC are of interest in
many cases, e.g., following trajectories in minimum time, re-
jection of disturbances in dynamic environments, and point-
to-point motion to optimize production schedules. Formu-
lations of time-optimal point to point motions with MPC
are not straightforward to implement for real time execution
because, usually, the required time to find a solution is larger
than the sampling time. This is because of the complexity
of the optimization problems that should be solved. Some
works have addressed this problem by (i) optimizing the
solver algorithms [1], (ii) setting a bilevel optimization with a
varying horizon length [2], (iii) using variable sampling step
values which are included as optimization variables that are
reduced along time [3]. One of the limitations that remains
is the terminal constraint. It forces that, from a given initial
state, the MPC within the prediction horizon should reach
the terminal state, it is also denominated target position, and
for simplicity reference in this work. To accomplish that,
the prediction horizon should be long in case the distance to
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the reference is large, increasing the number of optimization
variables and therefore, increasing the optimization problem
complexity. To solve these time-optimal problems with a
long horizon in a reasonable time for real time execution,
we need an additional procedure.

Governors, like the reference governor (RG) and command
governor (CG) [4] are online solution strategies for point-to-
point motion problems that can handle long distances without
resulting in excessive online computations at the cost of more
extensive offline pre-computation. These strategies calculate
a sequence of auxiliary references that replace the original
reference or destination point as inputs to the closed-loop
controlled system. The calculated sequence is guaranteed
to be feasible under the assumed feedback control config-
uration, that is, guarantee that the auxiliary references can
be reached without violating specified constraints. Different
possible formulations are described in [4].

The works [5]–[7] present and extended governor ver-
sion, called the feasibility governor (FG) which assumes
and accounts for a tracking MPC strategy with quadratic
objective as the close-loop controller. For the FG the set
where the initial state and reference should belong is larger,
which means that the distance between the point for which
feasibility and convergence properties are guaranteed can be
larger than for the RG and CG. The FG can be formulated
such that at least during part of the motion the system moves
time-optimally to the reference. Once the system is close to
the reference such that it can be reached by the applied MPC
strategy within its prediction horizon, time-optimality is lost
because of the chosen quadratic objective.

Therefore, this work combines the time-optimal FG with
time-optimal MPC. The strategy consists of two stages. The
first stage exploits the set properties of the FG to move
toward the reference as fast as possible (hitting the system
constraints). Once the reference can be reached within its
prediction horizon the strategy switches to the second stage.
It is a time-optimal formulation suitable for an MPC fashion
strategy. The switching conditions are precomputed, reducing
the computational burden for online execution.

An outline of the FG strategy is presented in Section II
and the time-optimal MPC using governor formulation is
described in Section III. In Section IV, an example illustrates
the main strategy characteristics and compares it with the
related methodologies. Conclusions and future ideas close
the paper in Section V.

Notation: The identity matrix is denoted as IN ∈ RN×N .
Given M ∈ Rm×n, Ker(M) = {x | Mx = 0}. For a given
vector x ∈ Rn and a positive definite matrix P ≻ 0 ∈ Rn×n,
the weighted norm of x is ∥x∥P=

√
x⊤Px. For a vector
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Fig. 1. Diagram of the control structure. The governor uses the reference
r and considering the states and input constraints, it provides an auxiliary
reference v.

x ∈ Rn and a set Ω ⊆ Rn+m, the projection of Ω onto the
domain of x is ΠxΩ where Πx = [In 0n×m].

II. FEASIBILITY GOVERNOR

The feasibility governor (FG) for linear MPC proposed in
[5], [6] enlarges the nominal MPC region of attraction. This
method is an add-on unit that manipulates the reference –
similar to the command governor –, while ensuring feasibility
of the MPC problem in the feedback loop. It is composed of
two main parts: (i) the primary controller, which is an MPC
formulation, and (ii) the governor that takes the reference
and provides an auxiliary reference to the system (see the
general FG scheme in Fig. 1). The remainder of this section
presents a brief explanation of this method.

A. System description
Let us consider a linear time-invariant (LTI) system

xk+1 = Axk +Buk,

yk = Cxk +Duk,

zk = Exk + Fuk,

(1)

where k ∈ N is the discrete-time index, xk ∈ Rnx are the
states, uk ∈ Rnu the control inputs, yk ∈ Y ⊆ Rny the
constrained outputs, where Y is a compact polyhedron, and
zk ∈ Rnz the tracking outputs. Note that the polyhedron Y
contains the state and input constraints or a combination of
them. We should consider assumptions (1-2) from [6]: (i)
The pair (A,B) is stabilizable; (ii) the set Y is a compact
polyhedron that can be described as Y = {y|Y y ≤ h}
and satisfies 0 ∈ Int Y . In case of constant references
v ∈ Rnz , the steady-state solution for the states, inputs,
and tracking outputs can be parameterized as solutions of
Z[x⊤u⊤z⊤]⊤ = 0 as [8]

x̄v = Gxv, ūv = Guv, z̄v = Gzv,

Z =

[
A− Inx

B 0
E F −Inz

]
,

where G⊤ = [G⊤
x G⊤

u G⊤
z ] is a basis for Ker(Z), and Gz

is full rank. Thus, for given reference values v the corre-
sponding steady-state system variables solution [x̄v, ūv, z̄v]
can be calculated directly.

B. The maximal output admissible set
This is the set of all states x and auxiliary references v

such that the constrained outputs of the predicted closed-
loop response from state x with constant auxiliary reference
v remain inside the set. It is defined as follows:

O∞ = {(x,v) : ŷ(k | x,v) ∈ Y, ∀ k ∈ Z+},

ŷ(k | x,v) = CA
k
x+ C

k∑
j=1

A
j−1

Bv +Dv,

where A := A−BK, B := B(KGx+Gu), C := C−DK,
and D := D(KGx + Gu) represent the close loop system
for a specified state feedback gain K [4], [6]. Furthermore,
if Y is convex, O∞ is convex and it can be expressed as

O∞ := {(x,v) | Txx+ Tvv ≤ c}.

Additionally, let us now define (i) the set of steady-state
admissible auxiliary references

V := G−1
y Y = {v | Gyv ∈ Y} ,

where Gy = CGx + DGu, V is the set of constant v’s that
yields in steady-state values for yk ∈ Y , and (ii) the set of
admissible references

R := GzV = {Gzv | v ∈ V} ,

which is the corresponding set of steady values for zk.

C. MPC controller

Following the approach in [5], [6], we formulate the
controller as a linear MPC that optimizes an objective and
handles the constraints. Knowing the states and inputs in
steady-state for a given v, the strategy will solve each
sampling time the following optimal control problem (OCP)

min
x,u

N−1∑
k=0

∥xk − x̄v∥2Q + ∥uk − ūv∥2R + ∥xN − x̄v∥2P

(2a)
s.t. x0 = xini, (xN ,v) ∈ O∞, (2b)

xk+1 = Axk +Buk for k = 0, . . . , N − 1, (2c)
Cxk +Duk ∈ Y for k = 0, . . . , N − 1, (2d)

where N ∈ N is the prediction horizon, x :=
{x0,x1, . . . ,xN} and u := {u0,u1, . . . ,uN−1} are the sets
of decision variables, xini is the measurement or estimate
of the initial states. Q,R and P are weighting matrices.
Generally, the stage cost matrices satisfy Q ⪰ 0, with (A,Q)
detectable, and R ≻ 0. Moreover, the abovementioned
state feedback gain K is the associated LQR gain K =
(R + B⊤PB)−1(B⊤PA) where P is the solution to the
discrete algebraic Riccati equation P = Q + A⊤PA −
(A⊤PB)(R+B⊤PB)−1(B⊤PA). Note that the control law
K is needed to calculate O∞ but is not used as the actual
system controller. Hence, we redefine the reachable maximal
output admissible set

ΓN := {(xini,v) ∈ Rnx × Rnv | ∃ (x,v,u) : (2b)− (2d)}
(3)

as the N -step backward reachable set of O∞. ΓN is poly-
hedral since O∞ is also polyhedral, and can be computed
offline. Two polyhedral calculation methods are presented in
[6, Sec IV.C]. This calculation is computationally expensive,
and its complexity increases exponentially with the size of
states and horizon.
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D. Governor

The governor has the role of modifying the reference r,
providing an auxiliary reference v such that system (1) with
MPC (2) in the feedback is always feasible and does not
violate the constraints. The auxiliary reference v provided
by the governor is calculated by solving the following
optimization problem:

min
v ∈ V

∥Gzv − r∥22 (4a)

s.t. (x,v) ∈ ΓN . (4b)

Thus, having a state measurement or estimate we compute
the auxiliary reference v in the set of admissible auxiliary
references that is closest to r and belongs to the reachable
maximal output admissible set ΓN , meaning that all con-
straints Y will hold.

Solving, accordingly, problems (2) and (4) ensures con-
straint satisfaction. Moreover, a state calculated with the
form x = Gxv is asymptotically stable and has finite time
convergence property [5], [6].

III. TIME-OPTIMAL FEASIBILITY GOVERNOR MPC
(TOFG)

As mentioned above, the presented approach consists of
two stages. In the first stage, a FG is used to drive the
system in minimal time towards the given reference r. When
the system is close enough to the reference and the FG is
not time-optimal anymore stage two is initiated, which is an
actual time-optimal strategy. Further details on this approach
are given below.

A. Feasibility governor with time-optimal behavior

To generate a time-optimal trajectory with the FG strategy,
the set within which the auxiliary reference v is searched is
ΓN , the reachable maximal output admissible set. Hence,
in order to achieve time-optimality, ΓN should contain the
time-optimal trajectory values toward the reference. The set
ΓN depends on O∞ which, in turn, depends on Q and R.

Assumption 1: The values Q, R and N are designed such
that ΓN ∩ bd(Y) ̸= ∅ where bd() represents the boundary
of a set.

Assumption 1 enables the FG to reach the boundaries
of the system defined by Y . This is a necessary condition
to achieve time-optimality. By minimizing the difference
between the auxiliary reference v and the reference r in
(4), the solution to this problem lies on the boundary of ΓN .
This, in addition to Assumption 1, makes the system hit state
and/or input constraints – defined by Y – and drives the
system with a time-optimal behavior toward the reference.

B. Time-optimal MPC

To implement a time-optimal strategy in an MPC fashion,
a time-optimal OCP should be solved every sampling time.
In each OCP, it is necessary that the reference is reachable
within the prediction horizon because the terminal constraint
specifying to be on target at the end of the horizon provides

the guarantee of convergence and stability of the MPC [9].
The OCP is defined as follows:

min
x,u, NTO

NTO

s.t. x0 = xini,

xk+1 = Axk +Buk for k = 0, . . . , NTO − 1,

Cxk +Duk ∈ Y for k = 0, . . . , NTO − 1 ,

xNTO
= x̄r ,

NTO ≤ NTOmax
.

The optimum value N∗
TO ∈ N≤NTOmax

is the minimum
horizon length to reach the steady-state system state cor-
responding to the reference x̄r = Gxr in less than NTOmax

steps, where NTOmax is the maximum prediction horizon
that allows a practical implementation satisfying real time
constraints. From a practical approach, this formulation has
disadvantages because it is a mixed integer problem with
changing horizon length. The changing horizon length mod-
ifies the problem dimensions at each sampling time, making
it inconvenient for implementations. Therefore, the problem
is reformulated for a fixed horizon length NTO ≥ N∗

TO [9]

min
x,u

NTO−1∑
k=0

θk∥x− x̄v∥1

s.t. x0 = xini,

xk+1 = Axk +Buk for k = 0, . . . , NTO − 1,

Cxk +Duk ∈ Y for k = 0, . . . , NTO − 1 ,

xNTO
= x̄r.

where θ > 1 is a fixed parameter that creates exponential
weights along the horizon, inducing sparsity in the state error
at the horizon end. In this formulation, the system reaches
the reference at NTO at the latest. But this objective function
is not differentiable. Therefore, we apply the sum of absolute
residuals approximation [10] using a slack variable to cast
the problem into a linear program:

min
x,u, s

NTO−1∑
k=0

θk 1⊤s (5a)

s.t. x0 = xini, (5b)
− s ≤ x− x̄v ≤ s ,

(5c)
xk+1 = Axk +Buk for k = 0, . . . , NTO − 1,

(5d)
Cxk +Duk ∈ Y for k = 0, . . . , NTO − 1 ,

(5e)
xNTO

= x̄r. (5f)

This OCP formulation can be implemented in an MPC
fashion, i.e., it is solved at each sampling time without
changing the problem dimension. The set of states for which
(5d)-(5f) holds is definded as the reachable reference set

RTO := {xini | ∃ u : (5d)− (5f)} ⊆ Rnx , (6)
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which is the set of states from which the reference can
be reached within a maximum NTO time steps without
violating imposed constraints. This set is calculated as the
NTO-step backward dynamics propagation of the reference
point, taking into account input constraints. This procedure is
similar to the computation of ΓN in (II-C). The horizon NTO

should be large enough such that the reachable reference set
RTO reaches bd(Y) to allow that the switching of stage
happens while the system is hitting the constraints.

C. Algorithm

With all the elements and sets defined, the feasibility
governor is applied such that it drives the system as fast
as possible toward the reference, and once the system is
inside the reachable reference set, we switch the problem to a
time-optimal scheme. The time-optimal feasibility governor
(TOFG) is summarized in the Algorithm 1.

Algorithm 1 Time-Optimal Feasibility Governor
Calculation of Gx, Gu and Gz

Define Q,R,N ,NTO

Calculation of K and P
Calculate O∞ and then calculate ΓN

Calculate RTO

for start to maximum execution time do
if x0 ∈ ΓN then

if x0 /∈ RTO then
Solve (4) and get v
Solve (2) to get u0 and apply it to the system

else
Solve (5) to get u0 and apply it to the system

end if
else

The system is out of the region of attraction
end if
update the current system state to x0

end for

D. Implementation

For a given NTO the FG should be designed such that
it remains time-optimal until it reaches RTO. Note that
RTO ∩ bd(Y) ̸= ∅ is needed to guarantee a transition
between stages keeping time-optimality. This condition can
be verified offline by increasing NTO until a maximum value
NTOmax

. After that, if FG loses the time-optimality before
reaching RTO, the design variables for FG (Q,R,N ) should
be tuned to extend the time-optimal behavior until it reaches
RTO.

Set calculations are performed offline before the actual
system execution, which is an advantage of this strategy. The
sets ΓN and RTO can be expressed as the projection Πx0,v

and Πx0 of the variables v and (x,u) along the prediction
horizon (see Appendix I). For ΓN , the N -step backward
propagation of O∞ can be represented in inequality form. We
consider the constraints from (2) in the form L[x,v]+Mu ≤

Fig. 2. Car representation by a bicycle model

b. Therefore, the set from (3) can be expressed as

ΓN = Πx0,v{(x,v,u) | L[x,v]⊤ +Mu ≤ b}. (7)

Similarly, we define the NTO-step backward propagation of
the reference to represent RTO from (6) as

RTO = Πx0{(x,u) | L1x+M1u ≤ b1}. (8)

Details about the structure and components of the matrices
above mentioned are presented in Appendix I. The projection
Πx0

is the most computationally expensive operation. As
the number of states or horizon increases, it becomes im-
practical since the algorithm complexity grows exponentially.
To perform this operation, the package Bensolve tools
was used [11], [12]. The implementation was made in
MATLAB 2021b using the toolchain for model predictive
control IMPACT [13], which provides a framework for easy
and meaningful implementations of MPC allowing the user
to interface different numerical optimization solvers.

IV. NUMERICAL EXAMPLE

In this section, an example implementation of TOFG is
presented. The case considered for design and simulation is
the numerical example from [6], [14], which is the lateral
movement of a car at a constant forward velocity Vx. This
illustrates, for example, a part of a lane changing maneuver.

In Fig. 2, the diagram illustrates the bicycle model used
in this example. The system state vector is denoted as
x := [s, ψ, β, ω]⊤, where s represents the lateral position
of the vehicle, ψ is the yaw angle, β = ṡ/Vx stands for the
sideslip angle, and ω = ψ̇ denotes the yaw rate. The control
input to the system is the front steering angle u := δf .
Additionally, the system is subject to constraints on the
vector y := [αf , αr, δf ]

⊤, where αf and αr represent the
front and rear slip angles, respectively. The tracking output
is designated as z = s. The matrices that characterize the
continuous-time model of the system as in (1) are as follows

A :=


0 Vx Vx 0
0 0 0 1

0 0 − 2Cα

mVx

Cα(ℓr−ℓf )
mV 2

x
− 1

0 0
Cα(ℓr−ℓf )

Izz
−Cα(ℓ2r+ℓ2f)

IzzVx

 , B :=


0
0
Cα

mVx
Cαℓf
Izz

 ,
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Fig. 3. Results for the lateral movement of the vehicle. Three strategies
are compared: the time-optimal (TO) with time window N = 104, the
feasibility governor (FG) for N = 5, and the time-optimal feasibility
governor (TOFG) for N = 5, NTO = 35. The yellow dashed vertical
line indicates where the system reaches RTO and the TOFG is switched
to a time-optimal MPC strategy.

C :=

0 0 −1 − ℓf
Vx

0 0 −1 ℓr
Vx

0 0 0 0

 , D :=

10
1

 ,
E = [1000], and F = 0, where m = 2041 kg is the mass

of the vehicle, Izz = 4964 kg ·m2 is the moment of inertia
around the yaw axis, ℓf = 1.56 m and ℓr = 1.64 m are
the moment arms of the front and rear wheels relative to
the center of mass, respectively, and Cα = 246994 N/rad
is the tire stiffness. The continuous-time system matrices
are converted to discrete-time using a zero-order hold with
a sampling time of ts = 0.01 s. The constraint set is
Y = [−8◦, 8◦] × [−8◦, 8◦] × [−30◦, 30◦], which represents
limits on the front and rear slip angles (to prevent tire slip
and drifting), and a mechanical limit on the steering angle.
The initial condition is x0 = 0, the reference is r = 5 m.
The terminal penalty P and gain K are computed using the
LQR equations. The matrices Q = diag([1, 0.01, 0.01, 1])
and R = 0.192 were fine-tuned to achieve input saturation
at the beginning of the trajectory.

Fig. 3 shows results for a time-optimal OCP formulation
with a horizon of N = 104, which is the minimum value
needed to have a feasible problem, i.e., to reach the reference
within the prediction horizon. Results of FG, N = 5, and
TOFG for same N and NTO = 35 are also shown in Fig. 3.

The inputs remain inside the feasible range without vi-
olating the constraints. Before the yellow line, the TOFG
performs in the same way as the FG and they follow closely
the TO solution. After the yellow line, The TOFG follows
the TO solution, reaching the reference at the same time. The
values of v display how the auxiliary reference created by
the governor drives the system toward the reference. After
reaching the reference, v has a small peak to keep the states
in the feasible region. There are small differences between
TOFG and TO that could be attributed to the Q and R tuning,
or to the ℓ1 norm approximation made in the OCP (5). These

Fig. 4. Zoom of the results for the lateral movement of the vehicle. Here
is shown in detail the lateral position transition between FG and TO in the
TOFG strategy. It can be seen how TO and TOFG reach the reference at
the same time.

Fig. 5. Yaw, sideslip and yaw rate for the lateral movement of the vehicle.
The strategies time-optimal (TO) for N = 104, feasibility governor (FG) for
N = 5, and time-optimal feasibility governor (TOFG) for N = 5, NTO =
35 are shown. The yellow dashed vertical line indicates where the system
reaches RTO and the TOFG is switched to a time-optimal strategy.

effects can be corrected by adding penalization to the signal
increments. However, this is out of the scope of this work.

The details of Fig. 4 show that the problem switching takes
place at 0.69 s and then, the behavior of TOFG mimics a
time-optimal solution, showing how the proposed strategy
can be time-optimal while making a safe lateral movement
(no constraint violation). The TO MPC requires a horizon
of only NTO = 35, while if the TO MPC would have been
applied from the initial state, it would require a horizon N =
104. The results for yaw, sideslip and yaw rate in Fig. 5
show that the TOFG follows the time-optimal solution after
the switching point (after the system reaches RTO) indicated
by the yellow dashed vertical line.

V. CONCLUSION

The methodology time-optimal feasibility governor MPC
(TOFG) was presented as an extension of the Feasibility
Governor (FG) strategy. The proposed method allows us to
make time-optimal point-to-point motions using a short MPC
horizon. This is achieved by computing offline the maxi-
mal output admissible set and the reachable reference set.
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These sets guarantee properties like feasibility, no constraint
violation (safety), and reference reachability. An auxiliary
reference is calculated by the governor, and the MPC horizon
for the online calculation is significantly shorter than that
needed in traditional formulations.

Future work includes the exploration of cases involving
piecewise constant references to generalize the methodology
behavior, taking advantage of linear properties. Additionally,
we aim to develop set approximations to simplify definitions
for hardware implementations and develop a systematic
design method.

APPENDIX I
BACK PROPAGATION SET MATRICES

These matrices represent the constraints of the OCP
problem (2) in an inequality structured form. First, the
equality constraints corresponding to the system dynamics
are expressed as double inequalities. For each state xa and
input ua we have

Axa − xa+1 +Bua ≤ 0 , −Axa + xa+1 −Bua ≤ 0.

The output feasible set can be described in terms of the states
and inputs as

Y ya ≤ h → Y Cxa + Y Dua ≤ h.

Now using the above defined inequalities and the set def-
initions from Section II, we can construct the following
matrices:

Ld =


A −I 0 · · · 0
0 A −I · · · 0
...

...
. . . . . .

...
0 0 · · · A −I

 Md =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B



Li =


Y C 0 · · · 0
0 Y C · · · 0
...

...
. . .

...
0 0 · · · Y C

 ,

Mi =


Y D 0 · · · 0
0 Y D · · · 0
...

...
. . .

...
0 0 · · · Y D

 .
Therefore

L =


Ld 0
−Ld 0
Li 0 0
0 Tx Tv

 ,M =


Md

−Md

Mi

0

 , b =


0
0

1N ⊗ h
c

 ,
for variables x = [x0,x1, . . . ,xN ], v, and u =
[u0,u1, . . . ,uN−1], and

L1 =


Ld

−Ld

Li 0
0 I
0 − I

 ,M1 =


Md

−Md

Mi

0
0

 , b1 =


0
0

1NTO
⊗ h

ref
−ref

 ,

for variables x = [x0,x1, . . . ,xNTO
] and u =

[u0,u1, . . . ,uNTO−1]. The interested reader is referred to
[6, Appendix B] for an additional version of a condensed
formulation.
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