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Abstract— This paper proposes an adaptive-observer-based
threat discrimination method for systems with disturbances,
aiming to identify the occurring threat type: component faults
or cyber attacks. Stealthy attacks are typically exponentially
decaying with time and only slightly alter the system outputs,
the effects of which can be easily inundated by non-attacker-
incurred disturbances. To this end, an integrator is applied
to the system output to retain the effects of stealthy attacks.
Compared to the classical integral-type adaptive observers
with a constant adaptation gain, a dynamic adaptation gain
is exploited to provide additional degrees of design freedom for
frequency-domain loop-shaping. This allows to apply distinct
threat/disturbance-to-residual gains in the frequency intervals
to which the threats and the disturbances belong, respectively,
thereby improving the threat discrimination performance. A
numerical example to demonstrate the effectiveness of the
proposed methodology is presented.

I. Introduction
Cyber-physical systems (CPS) are composed of complex

interconnections between physical and cyber components,
which are vulnerable to various threats, ranging from tra-
ditional physical faults to cyber attacks being studied in the
more recent literature (see, e.g., [1]). Techniques to determine
the types of occurring threats (i.e., threat discrimination) have
become an urgent need of industrial practice and a challenge
in engineering research.

Consider a threat that has been detected by some advanced
anomaly detection methodologies such as fault diagnosis
methodologies in [2] and the attack detection methodologies
in [3], [4]. The threat discrimination algorithms are designed
to determine the occurring threats (cyber attacks or physical
faults). Typical fault isolation schemes that locate faulty com-
ponents are in general not suitable for threat discrimination
purposes since physical faults and cyber attacks may occur
individually or simultaneously on the same component and
a pure isolation result cannot provide sufficient information
to reveal the nature of the occurring threats.

To achieve threat discrimination between physical faults
and cyber attacks, an active approach based on the water-
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mark technique is proposed in [5]. The injected watermark,
however, degrades the control performance, which is the
downside of most active approaches. Passive approaches
preserve the original control performance, nevertheless, are
more difficult to achieve good discrimination performance
since only the measurement from the system can be ex-
ploited. A major challenge in passive threat discrimination
is caused by attacks with vanishing amplitude, for example,
stealthy attacks [6], [7] that exponentially decay with time
and only slightly alter the system outputs, the effects of
which can be easily inundated by disturbances and noise.
How to improve the effectiveness of passive approaches
for threat detection and discrimination, particularly in the
presence of stealthy attacks, has been of increasing interest
recently. By using passive adaptive observer techniques, [8]
proposes a discrimination methodology that can identify
faults from the potential fault scenarios though it cannot
identify stealthy attacks. The scheme in [9] is also based
on an adaptive observer and is capable of identifying both
stealthy attacks and constant faults. Passive discrimination of
stealthy attacks and time-varying physical faults remains an
open problem, to the best of the authors’ knowledge, and is
to be studied by this paper.

In this paper, the threat discrimination problem for sys-
tems with disturbances is addressed by considering threats
including stealthy cyber attacks and general physical faults.
An adaptive observer-based threat discrimination strategy
that is able to handle stealthy integrity attacks, is proposed.
Dual adaptive observers serving as threat discriminators with
dynamic adaptation gains (the concept introduced in [10])
are exploited to provide additional design freedoms in struc-
ture. Compared with integral-type adaptive observers using
constant gains, the proposed structure of adaptive observer
provides additional flexibility in frequency loop shaping and
therefore improves threat discrimination capabilities. A loop-
shaping method to tune the dynamic adaptation gain has been
presented, which allows the balance of high sensitivity to
threats and robustness to disturbances.
Notations: For a constant vector x ∈ Rn, ∥x∥22 = xT x. For
a time-varying signal x(t) ∈ Rn and a finite time interval
[τ, τ + T0], the root mean square is defined as ∥x(t)∥2RMS =
1

T0

∫ τ+T0

τ
xT (t)x(t)dt. For a constant matrix A ∈ Rn×m, ∥A∥2 =

σmax(A) where σmax represents the maximum singular value.

II. Problem Formulation

A. Cyber-Physical System Description

Two types of threats: cyber attacks and physical faults,
are considered in this paper, and their combination results
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in three threat scenarios: the attack-only scenario, the fault-
only scenario and the fault-and-attack scenario. For concise
presentation, we denote by t0 the threat occurring time, and
let β(t − t0) : R≥0 → {0, 1} be the indicator function, i.e.,
β(t − t0) = 1 for t ≥ t0, and otherwise, 0. Two indicators:
βa ≜ βa(t − t0) and β f ≜ β f (t − t0), are defined to indicate
the occurrence of attacks and faults respectively. Then, the
pair β ≜ (β f , βa) indicates the threat scenario, and satisfies

β ∈ {(1, 0), (0, 1), (1, 1)} . (1)

Note that β = (0, 0) is not considered since the threat
discrimination process is initiated only after a threat is
detected.

Consider the dynamical system under the aforementioned
threats described by

χ̇ = Aχ + Bµ + βaBaa(t) + β f ( fp(t) + B fa(t)) + Bdη(t), (2a)

ζ = Cχ + Dµ + βaD̄aa(t) + β f fs(t) + Ddη(t), (2b)

where χ ∈ Rnx is the state of the physical plant with χ(t0) =
χ0; µ ∈ Rnu is the control input; ζ ∈ Rny represents the
sensor measurement received from the network. A, B, C, Bd

and Dd are known by the defender, and the pair (A,C) is
observable. The η ∈ Rnd represents the lumped disturbances
and measurement noise, satisfying the following assumption.

Assumption 1. Let d(t) ≜
∫ t

0 η(t)dt. Then, d is assumed to
be uniformly bounded. Moreover, for a given time length T0,
there exists a constant δd > 0 such that

1
T0

∫ τ+T0

τ

dT (t)d(t)dt ≤ δd, ∀ τ ≥ 0, (3)

where δd is known by the defender. ▲

Note that Assumption 1 characterizes an average energy
property of d(t). A variety of signals satisfies Assumption 1
such as harmonic oscillations and white noise.

In the fault scenario, multiple types of faults are taken
into consideration. In (2), fp, fa and fs represent the pro-
cess, actuator, and sensor faults, respectively. Let f (t) ≜
[ f T

p (t), f T
a (t), f T

s (t)]T ∈ Rn f , which allows re-writing fp(t) +
B fa(t) = B f f (t) in (2a) with B f = [I, B, 0], and fs = D f f in
(2b) with D f = [0, 0, I]. In addition, f satisfies the following
assumption.

Assumption 2. There exists a set of known and bounded
regressors φ f ,1(t), · · · , φ f ,n f (t) ∈ R such that

f (t) = φ f (t)θ f , (4)

where φ f (t) = diag
(
φ f ,1(t), · · · , φ f ,n f (t)

)
∈ Rn f×n f and θ f ∈

Rn f is the unknown parameter vector. ▲

Assumption 2 essentially requires that the potential fault
can be parametrized by some known time-varying regressors,
which can be determined through experiments. In practice,
this parametrization does not need to be perfect since the
effects of the parametrization error can be modelled by
process disturbances.

B. Attack Scenarios

The signal a(t) ∈ Rna in (2) represents the cyber attacks.
More specifically, a type of stealthy integrity attacks (re-
ferred to as undetectable attacks in [6]) are considered and
characterized by the following equation

ζ(t, t0, χ0, β
f f , η, a) = ζ(t, t0, χ0 + ∆χ0, β

f f , η, 0),

∀ t ≥ t0, f ∈ Rn f , η ∈ Rnd , β f ∈ {0, 1}, (5)

for some ∆χ0 , 0. The left and right-hand sides represent
the output trajectories of the system (2) driven by the initial
condition χ0, β f f , η and βa = 1, and by the initial condition
χ0 + ∆χ0, β f f , η and βa = 0, respectively. Some specific
attacks, for example, the zero dynamics attacks in [7], the
covert attacks in [6] and the replay attacks in [11], [12]
satisfy (5). We only consider the case in which ∆χ0 , 0.
For the case in which ∆χ0 = 0, the attacker is required to
be able to disrupt all sensor and actuator communication
channels, which is impractical and therefore not considered
in this paper (interested readers can refer to [11] for details).

C. Problem Setup

Recalling (5), the effect of a considered attack on the
system output can be described by an impulsive response.
Instead of studying the system (2) under the attack, an
integrator is introduced to compute the integral of the output
signal ζ and retain the effect of the stealthy attacks. Then, by
connecting the output of (5) to an integrator, the new output
y is generated by the following dynamical system:

ẋ = Ax + Bu + βaBaϕaθa + β f B fϕ f θ f + Bdd, (6a)

y = Cx + Du + βaDaϕaθa + β f D fϕ f θ f + Ddd. (6b)

where Ba = I and Da = 0, and x is a new state x , χ or
x ,

∫ t
td
χdτ. In the system (6), y and u, ϕa and ϕ f are available

signals for discriminator design. It is worth pointing out that
the difference of the frequency spectrums of φ f and φa is
retained in ϕ f and ϕa, respectively. Moreover, ϕa(t) does not
converge to zero and is unvanished as expected.

This paper aims to develop a threat discriminator such
that when initiated at td, it can identify online the occurring
threat scenario from the prescribed threat scenario set (1).
The detailed objectives are summarized below:

(i) Design two specific adaptive observer-based dis-
criminators that are equipped with a so-called dy-
namic adaptation gain, allowing additional degrees
of freedom in structure for tuning the sensitivities
to threats and robustness to disturbances;

(ii) Tune the dynamic adaptation gain and perform
loop-shaping for the residual sensitivity so as to
manifest the threats and suppress the disturbances
and noise, according to their distinct spectrums.

III. Threat Discrimination Design

A. Threat Discrimination Strategy

The proposed threat discrimination scheme is composed
of an attack discriminator Da and a fault discriminator D f .
Each discriminator Ds, s ∈ {a, f }, is equipped with an
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adaptive observer Os. The adaptive observer Os uses ϕs as
the regressor of its estimation model. Once the discriminators
are activated, the adaptive observer Os, s ∈ {a, f } adopts its
estimation model with the associated regressor ϕs to estimate
the threat function. Ideally, when the regressor ϕs matches
the threat regressor, the generated residual rs goes below
the threshold J s

th, while the residual rs goes above J s
th when

the ϕs does not match the threat regressor. Consequently,
the discrimination problem boils down to observing which
residual signal triggers the mismatch condition.

B. Adaptive Discriminator Design

The threat discriminators are activated once any threat is
detected at td. Let s ∈ {a, f } denote the threat type. Motivated
by the adaptive law with a dynamic adaptation gain in [10],
We start by designing the adaptive observer for the system
(6) with the threat s as follows:

˙̂xs = Ax̂s + Bu + Bsϕsθ̂s + Lsϵ s, (7a)
˙̂ps = Proj

(
p̂s, As

p p̂s + Bs
pϕ

s(t)ϵ s,Γs
)
, (7b)

θ̂s = C s
p p̂s, (7c)

ŷs = Cx̂s + Dsϕs(t)θ̂s, (7d)

where x̂s ∈ Rnx and ŷs ∈ Rny are the estimates of x and y
of the system (6), respectively, and θ̂s ∈ Rns is the estimate
of βsθs, ϵ s ≜ y − ŷs denotes the output estimation error. The
matrix C s

p = [0, Ins ], and Ls ∈ Rnx×ny , As
p ∈ Rnp×np , Bs

p ∈

Rnp×ns , are design parameters. The matrix Γs = ΓsT > 0 is
a learning gain matrix. The observer is activated at t = td
and the initial values of x̂s and θ̂s are respectively chosen
as x̂s(td) = 0 and θ̂s(td) = 0. The projection operator “Proj”
restricts the trajectories of p̂s to a predefined compact and
convex set, which is closely related to the set Θs to which
θs belongs. More specifically, in the special case where θ̂s is
restricted in a hypersphere Ps with radius Ms, Θs is selected
as hypersphere with radius Ms. The parameter adaptation
process is described by (7b), with

Proj ( p̂s, τs,Γs) =
(
I − ΠsΓs p̂s p̂sT

p̂sTΓs p̂s

)
τs, (8)

where τs ≜ As
p p̂s + Bs

pϕ
sϵ s and

Πs ≜

 0, if | p̂s| < Ms or | p̂s| = Ms and p̂sTτs ≤ 0,
1, if | p̂s| = Ms and p̂sTτs > 0.

(9)

The general PAA with DAG provides more design pa-
rameters, thereby more freedoms, allowing to guarantee the
convergence of the estimation errors and simultaneously
improve the robustness of the observer to disturbance d and
the sensitivity to the attacks and faults. A key requirement for
a valid PAA candidate for asymptotic regulation/observation1

is that there should exist an equivalent system that can
generate arbitrary output signals identical to the output of
the PAA after applying a constant shift θ ∈ Θ, under the

1We call it a PAA candidate for conciseness hereafter.

same input signal to the PAA. Consider now a general form
of linear PAAs as follows.

˙̂ps = As
p p̂s + Bs

pvs, θ̂s = C s
p p̂s + Ds

pvs, (10)

where p̂s(t) ∈ Rnp , vs(t) ∈ Rns , θ̂s(t) ∈ Rns , and np ≥ ns. The
requirement for (10) to be a PAA candidate can be stated
as: for all θs ∈ Θs, there exists some ps ∈ Rnp , such that the
equations

˙̃ps = As
p p̃s + Bs

pvs, θ̃s = C s
p p̃s + Ds

pvs, (11)

holds, where p̃s ≜ p̂s−ps, θ̃s ≜ θ̂s−θs. Eqs. (11) describe the
equivalent adaptation error system. We now provide sufficient
conditions for (10) to be a PAA candidate below.

Proposition 1. System (10) is a PAA candidate if Θs ⊆

C s
p ker As

p.

Proof. The statement Θs ⊆ C s
p ker As

p can be equivalently
stated as for any θs ∈ Θs, there exists ps ∈ ker As

p such that
C s

p ps = θs. Computing the adaptation error system from (10)
yields

˙̃ps = As
p p̃s + As

p ps + Bs
pvs = As

p p̃s + Bpvs, (12a)

θ̃s = C s
p p̂s − θs + Ds

pvs = C s
p p̃s + Ds

pvs, (12b)

which is equivalent to (11), and hence proves the claim. □

Theorem 1. System (10) is a PAA candidate if 1) 0 is an
eigenvalue of As

p with geometric multiplicity equal to ns; and
2)

(
As

p,C
s
p

)
is observable.

Proof. Condition 1) implies that there exists an np × ns,
full-column-rank matrix V such that As

pV = 0. Noting
condition 2) and invoking the PBH observability lemma
yields

rank
λI − As

p

C s
p

∣∣∣∣∣∣
λ=0

= np. (13)

Note also that −As
p

C s
p

 V =
 0
W

 , (14)

one can immediately see that W is a full-rank ns × ns matrix
such that C s

pV = W. Hence C s
p ker As

p = Rns ⊃ Θs and
invoking Proposition 1 proves the theorem. □

C. Convergence of Error Systems

This subsection will establish the convergence of error
signals when the occurring threat matches the regressor in
the observer (7). Let x̃s ≜ x − x̂s, and p̃s ≜ ps − [0, θ̂sT ]T .
Then, in the presence of the threat s ∈ {a, f }, the error system
is described as follows:

˙̃xs = As
0 x̃s + (Bs − LsDs)ϕs(t)θ̃s + (Bd − LsDd)d, (15a)

˙̃ps = As
p p̃s + Bs

pϕ
s(t)ϵ s − ΠsΓs p̂s p̂sT

p̂sTΓs p̂s τ
s, (15b)

θ̃s = C s
p p̃s, (15c)

ϵ s = Cx̃s + Dsϕs(t)θ̃s + Ddd, (15d)
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Fig. 1. Schematic representation of the closed-loop system.

where As
0 ≜ A− LsC. An equivalent feedback representation

of the error system (15) is depicted in Fig. 1. The bound-
edness of the signals in (15) is established by the theorem
below.

Theorem 2. In the threat s ∈ {a, f } case, if there exist Ls ∈

Rnx×ny , As
p ∈ Rnz×nz , Bs

p ∈ Rnz×ni such that
(i) (Strictly Positive Real Condition [13, Lemma 6.3])

there exists Ps
0 = PsT

0 > 0, K s
0 and W s

0 , and a
positive constant εs such that

Ps
0AsT

0 + As
0Ps

0 = −K sT
0 K s

0 − ε
sPs

0, (16a)

Ps
0(Bs − LsDs) = CT − K sT

0 W s
0 , (16b)

W sT
0 W s

0 = Ds + DsT , (16c)

(ii) the matrices Ap and Cp satisfy the conditions in
Theorem 1 and there exists Ps

p = PsT
p > 0 and K s

p
such that

Ps
pAsT

p + As
pPs

p = −K sT
p K s

p, (17a)

Ps
pBs

p = C sT
p , (17b)

then, in the absence of the disturbance, i.e., d = 0, the state
estimation error x̃s converges to zero asymptotically. In the
presence of the disturbance, the errors x̃s, p̃s, ϵ s and θ̃s are
uniformly bounded.

The proof of this theorem is omitted due to the space
limitation.

D. Loop Shaping Algorithm for Sensitivity and Robustness

In this subsection, a DAG tuning method is presented for
shaping the loops of the attack and fault threat discriminators,
thus, improving the sensitivity to threats and robustness to
disturbances. Typically, the frequencies of threats have a
narrow band in a low-frequency range, whereas the frequency
spectrum of disturbances is usually distributed over a high-
frequency range. To characterize the frequency spectrum of
threats and disturbances, ϖl > 0 is used as the centre of the
frequency band for the threats, and [ϖh,∞) with ϖh > 0 is
used to represent the frequency range of the disturbances.

For two systems P1 and P2, we use Fl(P1, P2) to denote
the closed-loop system with feedforward system P1 and

feedback system P2. In addition, the residual for threat
discrimination is chosen as the output estimation error of the
adaptive observer, i.e., rs ≜ ϵ s. Let ∆ϕsh ≜ ϕs − ϕh where
s, h ∈ {a, f } and s , h, denote the difference between ϕs and
ϕh. Then, in the presence of the threat case h ∈ {a, f }, rs for
s ∈ {a, f } can be written as

rs =
[

F s
1Fl(1, ϕsF s

PAAϕ
s) Fl(F s

2, ϕ
sF s

PAAϕ
s)

]  d

∆ϕshθh

 ,
(18)

where F s
1 ≜ (As

0, Bd − LsDd,C,Dd) and F s
2 ≜

(As
0, B

s − LsDs,C,Ds). Moreover, F s
1Fl(1, ϕsF s

PAAϕ
s) and

Fl(F s
2, ϕ

sF s
PAAϕ

s) represent the system from d and ∆ϕshθh

to rs, respectively, which are depicted by (a) and (b) in Fig.
2, respectively.

Fig. 2. Schematic representation of (a) system F s
1Fl(1, ϕsF s

PAAϕ
s): distur-

bance to error path and (b) system Fl(F s
2, ϕ

sF s
PAAϕ

s): mismatched regressor
to error path.

For pre-determined F s
1 and F s

2, the gains of
Fl(1, F s

2ϕ
sF s

PAAϕ
s) in the high and low-frequency ranges

significantly affect the ability to discriminate the threats. To
improve the discrimination abilities, we explore increasing
the gain at ϖl and decreasing the gain in the frequency
region [ϖ,∞). In the following, we focus on the single input
and single output case of the system Fl(1, F s

2ϕ
sF s

PAAϕ
s),

and ϕs(t) is supposed to have an averaging constant 1. The
superscript s is omitted in this section when no confusion
is caused.

We proceed with the design in the frequency domain
below, and start by writing F2, FDAG and FPAA as transfer
function form in the frequency domain as follows:

F2 =
N( jω)
D( jω)

, FDAG =
R( jω)
S ( jω)

, FPAA =
FDAG( jω)

jω
, (19)

where N, D, R and S are monic polynomials with respect
to jω, NN ,ND,NR,Ns ∈ N≥0 are degrees of N, D, R and S ,
respectively. For given F2, N( jω) and D( jω) are determined,
R( jω) and S ( jω) of the DAG are to be designed. For the
system Fl(1, F2FPAA), the sensitivity function P( jω) and the
complementary function M( jω) ≜ 1 − P( jω) can be written
as

P( jω) ≜ Fl(1, F2FPAA) =
jωD( jω)S ( jω)

W( jω)
, (20a)

M( jω) ≜ 1 − Fl(1, F2FPAA) =
N( jω)R( jω)

W( jω)
, (20b)
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where W( jω) represents the polynomial specifying the de-
sired closed-loop poles, and W( jω), D( jω) and R( jω) satisfy
the diophantine equation:

jωD( jω)S ( jω) + N( jω)R( jω) = W( jω). (21)

In this work, the desired closed-loop poles W( jω) are
divided into three parts:

W( jω) = WD( jω)WH1( jω)WH2( jω), (22)

where WD( jω) defines the dominant poles, WH1( jω) and
WH2( jω) define the auxiliary poles. In order to improve
the robustness to high-frequency disturbances, WH1( jω) are
chosen as follows:

WH1( jω) = ( jω +ϖh)nWH1 , (23)

where the degree nWH1 ∈ N≥0. Furthermore, R( jω) is divided
into two parts as below:

R( jω) = RD( jω)RH( jω), (24)

where RH( jω) is the pre-specified part of the DAG. To im-
prove the sensitivity to threats at the specific frequency ϖ0,
the gain of the complementary sensitivity function M( jω)
must decrease at ϖ0, which can be achieved by designing
RH( jω) and WH2 ( jω). In this work, we choose RH( jω) and
WH2 ( jω) to form a second-order notch filter [14], given as
follows:

RH( jω)
WH2( jω)

=
( jω)2 + 2 jξnumϖlω +ϖ

2
l

( jω)2 + 2 jξdenϖlω +ϖ
2
l

, (25)

where ξnum, ξden ∈ (0, 1). An attenuation around ω0 is
obtained for ξnum < ξden, and the maximal attenuation is
given by

min
ω∈R≥0

∣∣∣∣∣ RH( jω)
WH2( jω)

∣∣∣∣∣ = ∣∣∣∣∣ RH( jϖl)
WH2( jϖl)

∣∣∣∣∣ = ξnum

ξden
. (26)

Until now, the pre-specified terms RH , WH1 and WH2 are
determined. We turn to present the algorithm to determine
RD and S for the given W in Algorithm 1.

IV. Discrimination Decision Rule

The threat discrimination decision rule is presented in
this section. To this end, the residual, its evaluation and the
corresponding adaptive threshold are determined. The output
estimation error ϵ s, s ∈ {a, f } is chosen as the residual, i.e.,
rs ≜ ϵ s = y − ŷs, ∀ s ∈ {a, f }. The root mean square of rs

in finite time interval T is chosen as the evaluation function,
i.e., J s = ∥rs∥RMS. Then, an adaptive threshold can be chosen
as

J s
th(t) ≜ e−λ

s(t−td)δ0 + γ
s∥d∥RMS,

s.t. γs = max
ω∈[ϖh,∞)

∥F s
1( jω)P( jω)∥2, (27)

where λs > 0 satisfies |eAs
0(t−td)| ≤ e−λ

s(t−td), δ0 ≥ ∥x(td)∥2,
and P is given in (20a). From Assumption 1, we derive the
adaptive threshold as follows:

J s
th(t) = e−λ(t−td)δ0 + γ

sδd. (28)

Algorithm 1: DAG design via loop shaping
Inputs : Desired pole polynomials WD( jω), Degree

nWH1 of WH1( jω), damping ratios ξnum and
ξden (0 < ξnum < ξden) < 1, center frequency
of threats ϖl, and frequency range [ϖ,∞)
of disturbances

Outputs: Zero polynomial R( jω) of DAG and pole
polynomial S ( jω) of DAG

1 Give zero and pole polynomials WH1, WH2 and RF :
WH1( jω)← ( jω −ϖ j)nWH1 ,
WH2( jω)← ( jω)2 + 2 jξnumϖlω +ϖ

2
l ,

RF( jω)← ( jω)2 + 2 jξdenϖlω +ϖ
2
l ;

2 Get degrees of pre-specified zero and pole
polynomials: nWD ← deg(WD), nRF ← deg(RF),
ND ← nWD + nWH1 + 2;

3 Determine the degrees of Q-parameterization
polynomial Q(s): nR0 ← nRF + nD, nR0 ← nD,
nQ ← nRF − 1;

4 Solve the Diophantine equation:
RD( jω)RF( jω) − jωD( jω)Q( jω) = R0( jω);

5 Compute R( jω) and S ( jω):
R( jω) = R0( jω) + jωD( jω)Q( jω),
jωD( jω)S ( jω) + N( jω)R( jω) = W( jω).

Based on the above defined rs and J s
th, we present the rule in

Tab. I. The threat discrimination is done column-wise based
on the second and third rows, and β given in (1) can then
be determined and given in the fourth row.

TABLE I
Signature matrix of threat discrimination.

Residual & Threshold Attack Fault Fault and Attack
|ra(t)|RMS > Ja

th 0 1 1
|r f (t)|RMS > J f

th 1 0 1
β (0,1) (1,0) (1,1)

V. Simulation Result

In this section, a numerical example is presented. The
system matrices are given as follows:

A =
[
−1 2
1 0

]
, B = B f =

[
1
0

]
, Bd =

[
1
1

]
, C = [ 1 0.5 ] , Dd = 1.

In this simulation, the threat happens at t0 = 20 s.
The fault vector f (t) satisfying Assumption 2 is assumed
to be approximated by φ(t) = sin(2π × 0.5t) with ϖl =

2π × 0.5 rad/s. For the simulation purpose, the disturbance
satisfying Assumption 1 is given by d = sin(2π × 10t) with
its frequency spectrum distributed in high frequencies and
ϖh = 2π × 10 rad/s.

To show the improvement of the threat discrimination
ability by using the proposed adaptive observer with DAG,
the singular values of the sensitivity function P( jω) defined
in (20a) for the adaptive observers with DAG and classical
constant adaptation gain (Classical AG) are shown in Fig. 3,
respectively. It shows that at the centre frequency of the fault,
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i.e., ϖl = 2π × 0.5 rad/s, the gain of the adaptive observer
with DAG is much higher than the one with Classical AG.
Their gains in the high-frequency range [ϖh,∞) are similar.
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Fig. 3. Singular values of the sensitivity function P( jω) for adaptive
observers with DAG and Classical AG.

In this simulation, a stealthy zero-dynamics attack is used
and is given by a(t) = e−0.5(t−t0). The attack and/or the fault
is considered to be detected by an anomaly detector at td =
22 s and thus, the discrimination schemes are activated at
td = 22 s. The three threat scenarios considered in this paper
are verified distinctively, and due to the space limitation, we
present two of them in the following simulation results.
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Fig. 4. Residuals and adaptive thresholds in the pure attack scenario.

1) Attack-only case: The discrimination result is shown
in Fig. 4 and indicates by Tab. I that β = (0, 1). Thus, we
can conclude that the occurring threat type is an attack.

2) Fault-and-attack case: The discrimination result is
shown in Fig. 5 and indicates based on Tab. I that β = (1, 1).
Hence, both fault and attack are occurring.

VI. Conclusion
In this paper, the threat discrimination problem for cyber-

physical systems with disturbances has been studied. Threats
including stealthy cyber attacks and general physical faults
have been considered. An adaptive observer-based threat
discrimination strategy that can handle stealthy integrity
attacks, has been proposed. Dual adaptive observers serv-
ing as threat discriminators with dynamic adaptation gains

25 30 35 40 45 50 55 60
0

2

4

6

8

25 30 35 40 45 50 55 60
0

2

4

6

8

The attack-only scenario is identified initially

The decision is updated to

fault-and-attack scenario

Fig. 5. Residuals and adaptive thresholds in the fault-and-attack case.

have been introduced to provide additional design freedoms
in structure. Compared with adaptive observers with pure
integral-type adaptation algorithms, the proposed structure of
adaptive observer provides additional flexibility in frequency
loop shaping and therefore improves threat discrimination
capabilities. A loop-shaping method to tune the dynamic
adaptation gain has been presented, which allows the balance
of high sensitivity to threats and robustness to disturbances.
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