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Abstract— We investigate the convergence properties of Tem-
poral Difference (TD) Learning on Markov Reward Processes
(MRPs) with new structures for incorporating hidden state
information. In particular, each state is characterized by both
observable and hidden components, with the assumption that
the observable and hidden parts are statistically independent.
This setup differs from Hidden Markov Models and Partially
Observable Markov Decision Models, in that here it is not possi-
ble to infer the hidden information from the state observations.
Nevertheless, the hidden state influences the MRP through the
rewards, rendering the reward sequence non-Markovian. We
prove that TD learning, when applied only on the observable
part of the states, converges to a fixed point under mild
assumptions on the step-size. Furthermore, we characterize this
fixed point in terms of the statistical properties of both the
Markov chains representing the observable and hidden parts
of the states. Beyond the theoretical results, we illustrate the
novel structure on two application setups in communications.
Furthermore, we validate our results through experimental
evidence, showcasing the convergence of the algorithm in
practice.

I. INTRODUCTION

Reinforcement learning (RL) has emerged as an important
paradigm in machine learning, unlocking solutions for a vast
array of problems, from optimizing operations in industrial
settings to developing strategies for complex games [1].
Its essence lies in the ability to learn optimal actions by
interacting with an environment, a capability that draws
parallels with how humans and animals learn from their
experiences. Within RL, Temporal Difference (TD) learning
stands as a central technique. Bridging the divide between
dynamic programming methods and Monte Carlo methodolo-
gies, TD learning provides a mechanism to learn from direct
experiences, which is particularly beneficial in scenarios
where crafting an explicit environmental model is either
challenging or not feasible.

While TD learning has been successful in many appli-
cations, it often operates on the premise of complete state
observations [1]–[3]. This assumption may not always hold,
especially in more intricate environments characterized by
hidden or latent states. These states introduce an added
layer of complexity due to inherent partial observability,
which challenges the process of value estimation. This has
motivated various studies of TD learning with hidden state
information.
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In previous research on TD learning with hidden states,
there is a common assumption that there exists a corre-
lation between the hidden states and the observed data.
This assumption is often derived from the framework of
the Hidden Markov Model (HMM) [4]–[6]. Bridging the
gap between the traditional TD learning framework and
the existence of hidden states with correlated observations
presents a promising avenue for more robust and accurate
value estimation in partially observable systems. Within the
framework of realization theory for HMMs, two concomitant
yet distinctly delineated quandaries manifest: the formulation
of an HMM based on empirical data, and the prospective
streamlining of a preexisting model, when feasible, into a
more compact equivalent form. Regarding the first one, [7]
suggests including non-consecutive correlations to extend
HMM parameter estimation without significantly increasing
computational cost. The contribution in [8] addresses two
core challenges in HMMs: the HMM partial realization
problem, which deals with characterizing minimal-order
HMMs based on finite sequences of joint densities and
learning HMMs from finite output observations of stochastic
processes. Regarding the second one, the research work
in [9] presents an algebraic approach to model reduction
HMMs, ensuring that the reduced model maintains its HMM
characteristics. It delves into the algebraic structures and their
representations in a more comprehensive manner.

As researchers tackle these challenges in the realm of hid-
den states, the exploration of hidden states and their relation-
ships with observable data extends beyond TD learning and
HMMs, presenting a rich field of research with broad appli-
cations. This exploration coincides with the advancements in
Partially Observable Markov Decision Processes (POMDPs),
derived from HMMs [10], [11], extend the Markov Decision
Process (MDP) framework by acknowledging the inherent
imperfection in decision makers’ ability to fully observe
the world state. Since POMDPs often face the ”curse of
dimensionality” with their large state and action spaces,
the contribution in [12] addresses the ”curse of ambiguity,”
stemming from the challenges in precisely quantifying and
defining exact transition probabilities. In [13], they intro-
duced a methodology for synthesizing policies that fulfill
a linear temporal logic formula within a POMDP. Beyond
advancements in enhancing POMDPs, there is a plethora of
applications across various domains. The survey by Lauri
et al. [14] aims to connect POMDP model development
with its utilization in robot decision tasks. This endeavor
involves aligning task characteristics with the mathematical
and algorithmic aspects to enable effective modeling and
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problem-solving.
In all of the work discussed above, there is a key assump-

tion that it is possible to estimate the full state information
from observable states. However, in some applications, there
is a hidden state that is independent of the observable states
while still influencing the reward. For example, in communi-
cations, it is common that unknown Markov environmental
noise influences communication performance.

The key contribution of this paper is to study the con-
vergence properties of TD learning on Markov Reward
Processes (MRPs) with a novel structure for incorporating
hidden state information. In particular, each state is char-
acterized by both observable and hidden components, with
the assumption that the observable and hidden parts are
statistically independent. We prove that when TD learning
is applied to the observable part of the states, it converges
to a new optimal cost-to-go function that can be expressed
analytically based on the statistical properties of the ob-
servable and hidden Markov chains. We illustrate our novel
MRP structure on two application setups in communications.
Furthermore, we validate our results through experimental
evidence, showcasing the convergence of the algorithm in
practice. In this paper, we focus on examining this new
structure for MRP. However, our upcoming research will
explore decision-making in MDPs within a similar structure.

The paper is organized as follows. Section II gives an
explanation of the basic requirements that are necessary
for understanding the main contributions of this study.
Section III introduces the Markov Reward Process (MRP)
with hidden states, elucidating its conceptual framework and
highlighting two exemplifications of its practical utility. In
Section IV, we delve into the Temporal Difference (TD)
learning algorithm tailored to this model and proffer formal
demonstrations pertaining to the estimation of cost-to-go.
Section VI is dedicated to the investigation of simulation
outcomes and the scrutiny of the convergence behavior
of cost-to-go estimations towards theoretical underpinnings.
Finally, Section VII summarizes our findings, highlights the
main contributions, and suggests potential areas for future
investigation.

A. Notation
To represent non-random vectors and matrices, we use

lowercase and uppercase bold letters, respectively. Given a
vector v ∈ Rn and a matrix A ∈ Rn×m, the notation v(i)
refers to the i-th entry of v, and A(i, j) refers to the entry
in the i-th row and j-th column of A. For a vector x ∈ Rn

we denote by Diag(x) the n × n diganoal matrix with x
on its diagonal. We use calligraphy to represent sets. For a
probability distribution p(·) we use the notation X ∼ p(·) to
indicate that X is a random variable sampled from the p(·).
For a random variable X ∼ p(·), we denote by Pr [X ∈ X ]
denote the probability of X being in the set X . We denote
the Total Variation between distributions using the notation,
i.e, for distributions µ(·) and κ(·) on X we have

||µ− κ||TV =
1

2

∑
x∈X

|µ(x)− κ(x)|.

II. PRELIMINARIES

A. Markov Chains

We begin by outlining key properties of Markov chains,
drawing from Chapter 1 of [15]. A Markov chain is a pair
(S, p(·)) where S is a finite state space and p(·) is a transition
function. More formally,

p : S × S → [0, 1]

is the state transition probability function where p(s′|s)
indicates the probability of transitioning from state s ∈ S
to state s′ ∈ S. In particular, for a given s ∈ S we have that
p(s′|s) ≥ 0 for all s′ ∈ S and∑

s′∈S
p(s′|s) = 1.

It will be useful to introduce the Markov chain transition
matrix representation P ∈ Rn×n, where

P(s, s′) = p(s′|s).

A specific sequence or trajectory of the states is represented
by the sequence of random variables:

S0, S1 . . . , Sk, . . . , (1)

where Pr [Sk+1 = s′|Sk = s] = p(s′|s). For t ∈ N, the
notation

pt(s′|s) := Pr [Sk+t = s′|Sk = s],

denotes the probability of transitioning to state s′ after t time
steps, given that the initial state was s. It is easily verified
that for any k we have pk(s′|s) = Pk(s′, s) where Pk(i, j)
refers to the entry in the i-th row and the j-th column in the
matrix Pk.

A Markov chain (S, p(·)) is said to be irreducible if for
any two states s, s′ ∈ S there exists k ∈ N such that
pk(s′|s) > 0. For each state s ∈ S define the set

T (s) = {t ≥ 1|pt(s, s) > 0}.

The period of a state s ∈ S is defined to be the greatest
common divisor of T (s). In an irreducible Markov chain, all
states share the same period, which is subsequently referred
to as the period of the entire Markov chain. The chain is
called aperiodic if all states have the period 1. The following
results will be useful [15]:

Proposition 1: Suppose that (S, p(·)) is an irreducible and
aperiodic Markov chain. Then there is a unique distribution,
π ∈ R|S| satisfying π(s) > 0, for all s ∈ S, and∑

s∈S
π(s) = 1, and π = PTπ.

Moreover, we have for each s, s′ ∈ S that

π(s′) = lim
k→∞

pk(s′|s).

We call π the invariant distribution of the Markov chain.
Proposition 2: A Markov chain (S, p(·)) is irreducible

and aperiodic if and only if there exists a K ∈ N such that
pk(s′|s) > 0 for all s, s′ ∈ S and k ≥ K.
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B. Markov Reward Process (MRP)

A Markov Reward Process (MRP) is a tuple M =
(S, p(·), r, γ) where S is a finite state space; p(·) is the
Markov chain transition function; r ∈ R|S| is a reward
vector/function where r(s) signifying the immediate reward
for occupying state s ∈ S; and γ ∈ [0, 1] is a discount factor
that determines the weight we assign to immediate rewards
relative to those observed later.

A specific sequence or trajectory of the MRP is repre-
sented by the sequence of random variables:

S0, R0, S1, R1 . . . , Sk, Rk, . . . (2)

where k ∈ N is a time index and Rk = r(Sk). A central task
in an MRP is value estimation, i.e., computing the cost-to-go
of each state s ∈ S. Formally, we denote the cost-to-go by
the vector v ∈ R|S| where

v(s) = E

[ ∞∑
k=0

γkRk|S0 = s

]
.

It is well known that [16]

v = (I− γP)−1r.

However, in many real-life situations, we do not know the
transition probability or the rewards of the MRP. Instead, we
might only have access to a sample trajectory in Equation (2).

C. Temporal Difference (TD) Learning

A well-regarded stochastic method to estimate the value
v from a sample trajectory is the Temporal Difference (TD)
evaluation algorithm. The algorithm is based on iteratively
updating an estimation vk ∈ Rn of v based on each sample
(Sk, Rk, Sk+1) from the MRP trajectory. In particular, we
can take any initialization v0 ∈ R|S|. After that, for each k,
we update the k + 1-th estimate as follows

vk+1(s)=

{
vk(s)+αk(Rk+γvk(Sk+1)−vk(s)) if s = Sk

vk(s) if s ̸= Sk

where αk > 0 is a step-size. It is well known that this algo-
rithm’s iterates converge to the cost-to-go under appropriate
step size selection:

Assumption 1: The step sizes αk are non-negative, deter-
ministic, and satisfy

∞∑
k=0

αk = ∞ and
∞∑
k=0

α2
k < ∞. (3)

Under this assumption on the step-size and given that the
(S, p(·)) is irreducible and aperiodic, it is well known that
the algorithm converges to the following fixed point with
probability one [16]:

lim
k→∞

vk = v = (I− γP)−1r. (4)

III. MARKOV REWARD PROCESS WITH HIDDEN STATES

In this paper, we study MRPs M = (S, p(·),R, γ) with
hidden states. Specifically, the state space S is of the form
S = O × H, where O represents the observable part of
the state and H represents the hidden part of the state, a
part that remains unknown to the agent. Distinct from the
conventional partially observable MRPs (or MDPs), in our
setup, it is infeasible to deduce any information about the
complete state s = (o, h) ∈ O × H from the observable
states o. To be precise, we examine a scenario where the
observable states and hidden states are independent of each
other. This is encapsulated in the subsequent assumption.

Assumption 2: The transition probability of moving from
state s = (o, h) to s′ = (o′, h′) can be decomposed as

p(s′|s) = pO(o
′|o)pH(h′|h). (5)

where pO : R × O → [0, 1] and pH : R × H → [0, 1] are,
respectively, the transition distributions for the observable
and hidden states.

This assumption implies that the sequence of observable
states Ok and hidden states Hk are independent and can
be represented with independent Markov chains (O, pO(·))
and (H, pH(·)). However, the reward function still depends
on both observable and hidden states. This dependency is
captured in the reward matrix R ∈ R|O|×|H|, where for s =
(o, h) ∈ O ×H, R(o, h) signifies the immediate reward for
occupying observable state o ∈ O provided that we are in
the hidden state h ∈ H.

To our knowledge, MRP (or Markov Decision Processes)
with similar hidden states with the structure in Assumption 2
have not been studied before. However, it is easy to envision
application examples where there is a hidden state indepen-
dent of the observations. In this regard, the sets of observable
and hidden states can be modeled as follows:

• The set of observable states:

O = {1, 2, . . . , O}

• The set of hidden states:

H = {1, 2, . . . ,H}

where O is the number of observable states, and H is the
number of hidden states. In the following, we will provide
two examples from communications below.

A. Example I: Communication Over a Noisy Channel

In communication systems and wireless sensor networks,
nodes often transmit packages periodically over a noise
channel. In such systems, both the package size and the
channel noise might change at each time period, and both
can be modeled with Markov chains. Usually, the package
size is known, and the corresponding Markov chain could
be modeled with the observable Markov chain (O, pO(·)).
The channel noise is, on the other hand, often not known
and could be modeled with the hidden state Markov chain
(HH, ph(·)). For illustration, we might consider a simple
system where both Markov chains have only two states.
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For example, with O = {SMALL,LARGE} and H =
{LOW,HIGH} where the package size is either SMALL or
LARGE and the channel noise is either LOW or HIGH.

To increase the reliability of the packet communications,
error correction codes are commonly used to detect and
correct the errors on the received packets. The level of error
correction can be tuned, but the size of packets and the level
of channel noise influence the code’s performance [17]. This
is due to the fact that error correction codes can detect and
correct a limited number of errors. For example, if a big
packet is transmitted over a channel with a high noise level,
the error probability could be increased, affecting the error
correction procedure. For a given error correction code, the
performance can be measured based on observing the success
of the communicated packets. This is modeled in the reward
R(o, h), a function of both the packet size (the observable
state o) and the channel noise (the hidden state h). Ideally,
we would like to be able to estimate the accumulated rewards
so we know the value of different error-correction strategies.

B. Example II: Resource Allocation in Networks

In intelligent networks, a common task is to optimally
allocate hardware resources for client services [18]. For
example, in a host center, there might be O servers that can
be used to provide services to up to H clients over multiple
time periods. It takes time to shut down or start servers, so
the number of servers per time step is stochastic but depends
on the number of servers available during the previous time
step, i.e., the number of servers is a Markov chain (O, pO(·)).
Similarly, it is often natural to model the number of clients
per time step as a Markov chain (H, pH(·)). The number
of servers is typically known by the host center, while the
number of clients is often not known. Thus, they are naturally
modeled, respectively, with observable and hidden Markov
chains.

It is costly to keep servers running, so ideally, the number
of servers should be kept down while trying to service the
demand. The service performance can thus be measured in a
reward R(o, h), which depends both on the number of servers
and clients. A key goal for the host center is to find the
optimal decision-making policy for scheduling the number
of servers. In this paper, we look at the first step towards that
problem, finding the accumulated reward for a fixed policy.

IV. ALGORITHM AND MAIN RESULTS

For MRPs with hidden states, it is challenging to estimate
the full value function. This complexity arises due to our lack
of knowledge about the hidden part of the states, and given
the independence between observable and hidden states, their
estimation becomes futile. Our sole source of information
comes from the trajectory of observed states and rewards,
represented as:

O0, R0, O1, R1 . . . , Ok, Rk, . . . , (6)

where Rk = R(Ok, Hk). Conversely, the hidden states:

H0, H1, . . . ,Hk, . . . (7)

remain elusive and are beyond the scope of utilization.
Our main contribution is to show that the TD algorithm

discussed above for standard MPR can still be applied even
if we only use it on the observable part of the states. In
particular, we consider the following TD algorithm:

vk+1(o)=

{
vk(o)+αk(Rk+γvk(Ok+1)−vk(o)) if o=Ok

vk(o) if o ̸=Ok

(8)

where v0 ∈ R|O| is some initialization. We will show that
even under unknown hidden states, this algorithm still con-
verges to a fixed point. However, this fixed point is different
from the fixed point of the traditional TD algorithm in
Equation (4), as it will depend on some statistical properties
of the hidden states dynamics. To derive our results, we
need the following assumption on the observable and hidden
Markov chains.

Assumption 3: The Markov chains MO = (O, pO(·)) and
MH = (H, pH(·)) are irreducible and aperiodic.

The assumption ensures that both Markov chains MO and
MH have an invariant distribution (see our discussion in Sec-
tion II-A). We can now establish the following convergence
results for the TD algorithm under hidden states.

Theorem 1: Consider a MRP with hidden states and sup-
pose that Assumption 2 and 3 hold true. Then the TD policy
evaluation algorithm in Equation (8) under the step-size
selection in Assumption 1 converges to the following point
with probability one:

lim
k→∞

vk = (I− γPO)
−1RπH (9)

where πH is the invariant distribution of the Markov chain
MH.

Proof: The proof is found in Section V.
The theorem asserts that the TD algorithm remains valid

when applied exclusively to the observable parts of the states.
In simpler terms, TD learning can be effective in situations
where full access to the entire state information is lacking,
as long as the observable and hidden states are independent
of each other. Moreover, the theorem characterizes the fixed
point with respect to the characteristics of both the observ-
able and hidden Markov chains. In particular, the dependence
on the hidden Markov chain appears in the term RπH, which
is essentially an average of the columns of the reward matrix
R weighted by the invariant distribution πH.

V. PROOF OF THEOREM 1
The proof builds on the following classic results for

establishing convergence of stochastic algorithms, see, e.g.,
Proposition 4.8 in [1].

Proposition 3: Let (X , q(·)) be a finite state Markov chain
with state space X and a state trajectory

X0, X1, . . . , Xk, . . . .

Consider the functions A : X → Rn×n and b : X → Rn

and the algorithm with iterates vk ∈ Rn that progress as

vk+1 = vk + γk(A(Xk)vk + b(Xk)), (10)
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with step-size γk > 0 and initialization v0 ∈ Rn. Suppose
that the following holds:
a) The step-sizes γk are deterministic and satisfy Equa-

tion (3) in Assumption 1.
b) The Markov chain (X , q(·)) has an invariant (steady-

state) distribution denoted by π ∈ [0, 1]|X |.
c) The matrix defined by A = EX∼π[A(X)] exists and is

negative-definite.
d) There exists a constant K such that ||A|| ≤ K and ||b|| ≤

K for all X ∈ X , where b = EX∼π[b(X)].
e) There exist scalars C ∈ R+ and ρ ∈ [0, 1) such that

∥E[A(Xk)|X0 = X]−A∥ ≤Cρk

∥E[b(Xk)|X0 = X]− b∥ ≤Cρk

for all k ∈ N and X ∈ X .
Then, the algorithm’s iterate converges with probability one
to the following point:

lim
k→∞

vk = −A−1b.

The proof of our Theorem 1 is based on establishing that
the TD algorithm in Equations (8) can be written in the form
of the algorithm in Equation (10), and all the conditions of
Proposition 3 hold true. To this end, set

X = {(o, o′, h) ∈ O ×O ×H| pO(o′|o) > 0}

and define the transition distribution indicating the proba-
bility of going from state x = (o1, o2, h) ∈ X and x′ =
(o′1, o

′
2, h

′) ∈ X by

q(x′|x) =

{
pO(o

′
2|o2)pH(h′|h) if o2 = o′1

0 otherwise.

Clearly, (X , q(·)) is a Markov chain. Moreover, the state tra-
jectory Xk = (Ok, Ok+1, Hk) generates the trajectories (6)
and (7) for our MRP with hidden states. With this in mind,
we can write the TD algorithm in Equations (8) as follows.
For a sample Xk = (Ok, Ok+1, Hk) define

A(Xk) =γeO(Ok)eO(Ok+1)
T − eO(Ok)eO(O

T
k ) (11)

b(Xk) =eO(Ok)eO(Ok)
TR eH(Hk), (12)

where eO(j) ∈ R|O| and eH(j) ∈ R|H| are all zero vectors
except they have 1 in the j-th entry. It can be verified that
the algorithm in Equation (10) with A(·) and b(·) from
Equations (11) and (12) is equivalent to the TD algorithm in
Equations (8).

In subsections V-A and V-B, we show that (X , q(·)) has
an invariant distribution and establish that,

A =EX∼π(·)A(X) = γDOPO −DO (13)
b =EX∼π(·)b(X) = DORπH (14)

where DO = Diag(πO), and we have that,

−A−1b =(DO (I− γPO))
−1

DORπH

=(I− γPO)
−1

RπH.

Therefore, if we can establish that the conditions a)-e) of
Proposition 3 hold true, then we have proved Theorem 1.
Note that condition a) trivially holds true; the step-size
is chosen according to Assumption 1. In the following
subsections, we prove that conditions b)-e) also hold true.

A. Condition b)

We now show that the Markov chain (X , q(·)) has an
invariant distribution π. From Proposition 1 in Section II-
A above, it suffices to show that (X , q(·)) is irreducible and
aperiodic. We now establish that this is indeed the case due
to our Assumption 3.

Lemma 1: If Assumption 3 holds true, then the Markov
chain (X , q(·)) is irreducible and aperiodic.

Proof: We follow the notation from Section II-A. By the
independence of the hidden and observable state dynamics
as described in Assumption 2, for any x = (o1, o2, h) and
x′ = (o′1, o

′
2, h

′) in X we have

qk(x′|x) = pkO(o
′
2|o2)pkH(h′|h).

To prove the above equation, it is sufficient to write and
develop the right side of the equation

qk(x′|x) = Pr [Xk=x′|X0=x]

= Pr [Xk=(o′1, o
′
2, h

′)|X0=(o1, o2, h)]

= Pr [Ok+1=o′2, Ok=o′1, Hk = h′|O1=o2, O0=o1, H0 = h].

By using the chain rule property we get that

Pr [Ok+1=o′2, Ok=o′1, Hk = h′|O1=o2, O0=o1, H0 = h]

= Pr [Ok+1=o′2|Ok=o′1, Hk = h′, O1=o2, O0=o1, H0 = h]

Pr [Ok=o′1|Hk = h′, O1=o2, O0=o1, H0 = h]

Pr [Hk = h′|O1=o2, O0=o1, H0 = h].

Then by Markov chain property and independence of hidden
and observable states from Assumption 1 we have

qk(x′|x) = Pr [Ok+1=o′2|Ok=o′1]

Pr [Ok = o′1|O1 = o2]Pr [Hk = h′, |H0 = h]

= Pr [Ok+1 = o′2|O1 = o2]Pr [Hk=h′, |H0=h]

= pkO(o
′
2|o2)pkH(h′|h),

where the second equation is derived from the chain rule
property. Now since both Markov chains (O, pO(·)) and
(H, pH(·)) are irreducible and aperiodic (Assumption 3) we
know from Proposition 2 that there exists K ∈ N such that
pkO(o

′
2|o2) > 0 and pkH(h

′|h) > 0 for all k ≥ K and o ∈ O
and h ∈ H. This, in turn, ensures qk(x′|x) > 0 for all k ≥ K
and x, x′ ∈ X . Therefore, by using the other direction of
Proposition 2 we can conclude that (X , q(·)) is irreducible
and aperiodic.
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B. Conditions c) and d)

We start by proving that Equations (13) and (14) hold true.
Note that for states o, o′ ∈ O then eO(o)eO(o)

T is a n× n
matrix that is everywhere zero except it has 1 on the diagonal
element corresponding to state o. Similarly, eO(o)eO(o′)T is
a n×n matrix that is everywhere zero except it has 1 on the
row and column corresponding, respectively, to the states o
and o′. Therefore, if we take X = (O,O′, H) ∼ π(·), i.e.,
O ∼ πO(·) and O′ ∼ pO(·|O = o), then we get

EX∼π(·)eO(O)eO(O)T =Diag(πO) = DO (15)

EX∼π(·)eO(O)eO(O
′)T =DOPO. (16)

Equation (13) now follows directly from the definition of
A(·) in Equation (11). In the same way, Equation (14) is
obtained by merging Equation (15) and the definition in
Equation (12), given the independence between hidden and
observable states. Additionally, EX∼π(·)eH(h) = πH.

We next prove that A is negative definite. To that end, we
show that wTAw < 0 for all w ∈ R|O| \ {0}. In particular,
we have that

wTAw =wT (γDOPO −DO)w

=γwTDOPOw −wTDOw. (17)

Let D1/2
O ∈ R|O|×|O| be the diagonal matrix whose entries

are the element-wise square roots of the corresponding
elements in DO. Then, by the Cauchy–Schwarz inequality,
we obtain

wTDOPOw =
(
D

1/2
O w

)T

D
1/2
O POw

≤ ||D1/2
O w||2||D1/2

O POw||2. (18)

By considering the norm

||w||DO =
√
wTDOw

and using that ||D1/2
O w||2 = ||w||DO

for all w we have that

wTDOPOw ≤ ||w||DO
||POw||DO

.

It is easily verified that ||POw||DO ≤ ||w||DO for all
w ∈ R|O|, see, e.g., Lemma 1 in [16]. This, together with
Equations (17) and (18) ensures that

wTAw ≤ γ||w||2DO
− ||w||2DO

= (γ − 1)||w||2DO
.

Since γ < 1, it follows that wTAw < 0 for all w ∈ R|O|.
Finally, we establish that there exists K ∈ R such that

||A|| ≤ K and ||b|| ≤ K. To that end, note that the
state space X is finite, thus A(x) and b(x) can only take
finite values, and must thus be bounded for all x ∈ X ,
i.e., there exists K ∈ R such that A(x) ≤ K for all
x ∈ X . This means that ||A|| = ||EX∼π[A(X)]|| ≤ K
and ||b|| = ||EX∼π[b(X)]|| ≤ K, so A and b are bounded.

C. Condition e)

From Lemma 1 proved above, the Markov chain (X , q(·))
is both irreducible and aperiodic. Therefore, by the Conver-
gence Theorem for Markov chains, see, e.g., Theorem 4.9
in Chapter 4 in [15], there exist α ∈ (0, 1) and C > 0 such
that for all x ∈ X we have

max
x∈X

||qk(·|x)− π||TV ≤ Cαk for all n ∈ N.

Therefore, recalling from above that there exists K ∈ R such
that ||A(x)|| ≤ K for all x ∈ X , we have

∥E[A(Xk)|X0=x0]−A∥ =

∥∥∥∥∥∑
x∈X

A(x)(qk(x|x0)−π(x))

∥∥∥∥∥
≤

∑
x∈X

∥A(x)∥|qk(x|x0)− π(x)|

≤ K
∑
x∈X

|qk(x|x0)− π(x)| = 2K||qk(·|x0)− π||TV

≤ 2KCαk.

Therefore, the first inequality in part e) of Proposition 3 is
established. The second inequality follows similarly

∥E[b(Xk)|X0 = x0]− b∥ ≤K
∑
x∈X

|qk(x|x0)− π(x)|

≤2KCαk.

As a result, both inequalities of part e) are established, which
concludes the proof.

VI. NUMERICAL EXPERIMENTS

We now evaluate the algorithm in simulation by consid-
ering problems similar to the two application examples in
sections III-A and III-B. We demonstrate the algorithm’s con-
vergence towards its theoretically defined limit as specified in
Equation (9). In both instances, the algorithm is executed 100
times, allowing for a comprehensive evaluation of its average
performance. You can find the code for implementing these
two examples by following the link provided below1.

For investigating the employment of TD learning for the
example in Section III-A, we consider the Markov chains
with the following observable and hidden transition and
reward matrices:

PO =

(
0.3 0.7
0.2 0.8

)
PH =

(
0.9 0.1
0.8 0.2

)
R =

(
0 −1
−1 0

)
To compute the true fixed point, we note that the invariant
distribution of the hidden Markov chain can be computed
from PH, it is πh = [8/9, 1/9]T. Note that none of the ma-
trices above is known by the algorithm. We experimentally
tuned the step-size as αk = 10/k, γ = 0.5, and run the
algorithm for 5000 iterations.

In Figure 1, we visualize the algorithm’s convergence
for each individual state. The figures clearly indicate that
the cost-to-go for each observable state steadily approaches

1https://github.com/mohsen1amiri/
MRP-with-Hidden-States/tree/main.
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the theoretical limit value as postulated in Theorem 1. This
convergence trend becomes evident after approximately 5000
iterations of the algorithm delineated in Equation (8).

Figure 2 illustrates the convergence of the algorithm to the
limit v∗ = (I−γPO)

−1RπH. In particular, we illustrate the
convergence to the proportional error

∥vk − v∗∥2
∥v∗∥2

. (19)

The figure shows that the algorithm converges, and the error
approaches zero as the number of iterations increases. After
roughly 4000 iterations, the proportional estimation error has
almost reached 1%.

(a) The estimation of the cost-to-go function for observable state 0
in each algorithm iteration.

(b) The estimation of the cost-to-go function for observable state 1
in each algorithm iteration.

Fig. 1: The estimation of the cost-to-go function of the
observable states, for example III-A using the algorithm in
Equation (8). The solid red line shows the mean value across
all iterations and the shaded red area shows the standard
deviation. The blue line represents the optimal cost-to-go
function.

We next investigate the application of TD learning for the
example in Section III-B, with O = 10 and H = 11. The
transition matrices for the observable and hidden Markov

Fig. 2: The average behavior of convergence of the difference
(Equation (19)) in the cost-to-go vector estimation in each
iteration with the theoretical limit for the observable states
in example III-A’s setup. Here, the M is 100 and shows the
number of times that the algorithm is repeated. The solid
blue line shows the mean value across all iterations and the
shaded blue area shows the standard deviation.

chains are randomly generated.The reward matrix is defined
as

R(o, h) =

{
1 if o = h or (o = 10 and h = 11)

0 otherwise.
(20)

The step size is αk = 10/k, γ = 0.5, and we run the
algorithm for 50000 iterations.

In the context of Example III-B, we apply the established
experimental setup to examine the convergence behavior of
the algorithm for an individual observable state, as depicted
in Figure 3. Evidently, the cost-to-go function consistently
approaches its theoretical limit through the iterative execu-
tion of the algorithm. On a broader scale, Figure 4 illustrates
the average behavior of the criterion expressed in Equation
(19), which converges to zero. This signifies that the cost-
to-go vector, encompassing the cost-to-go values for all
observable states, systematically converges to the specified
theoretical limit. Notably, the limited standard deviation
observed in these simulations implies the absence of any
divergence during the execution. It’s worth noting that in
this particular example, the convergence process proceeds at
a relatively slower pace, owing to the presence of numerous
observable states.

These simulation results collectively establish that running
the algorithm delineated in Equation (8) for MRPs with
hidden states, without leveraging information from these
hidden states, culminates in the convergence of the theo-
retical limit. This theoretical limit is calculated based on
the invariant distribution of the hidden states’ Markov chain,
and the results offer compelling evidence of this convergence
phenomenon.
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Fig. 3: The algorithm convergence for an instance observable
state of the example III-B. The solid red line shows the mean
value across all iterations and the shaded red area shows the
standard deviation. The blue line represents the optimal cost-
to-go function.

VII. CONCLUSION

Reinforcement learning, with TD learning as its prominent
algorithm, has emerged as a powerful paradigm in ma-
chine learning, bridging dynamic programming and Monte
Carlo methods for knowledge acquisition in challenging
environments. However, the assumption of complete state
observations is limiting, particularly in situations involving
hidden states. This contribution introduces a novel model for
MRPs, segregating states into observable and hidden com-
ponents, with their independence assumed. Despite a lack of
information about hidden states, the reward signal intricately
depends on both observable and hidden components. The
study achieves an analytical representation of the cost-to-go
function, revealing the surprising accuracy of the TD learning
algorithm in estimating it. Beyond theory, we validate the
model in practical scenarios and highlight its potential for
addressing complex problems. Future work will explore the
application of similar structures as we considered here MRP
to more general Markov Decision Processes.
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