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Abstract— This paper proposes a concept of feedback con-
cavification to the control of an underactuated autonomous
underwater vehicle (AUV) with 6-DOF, subject to actuator
saturation, to improve transient performance and robustness,
taking into account the presence of unknown model dynamics
and disturbances. To address the underactuated problem under
the dissipation framework, Euclidean geometry is utilized to
match the dimensions of the input and output. Therefore, an
interconnected architecture for the AUV system is proposed,
enabling the AUV system to be transformed into interconnected
passive systems via feedback within this architecture with
guaranteed asymptotic stability. The concave passivity is then
applied to the interconnected passive systems to handle uncer-
tainties, disturbances, and actuator saturation problems. The
proposed method with assigned concavity is effective in different
scenarios with fast transient response and the decreasing L2-
gain under actuator saturation. Numerical simulations have
demonstrated the effectiveness of the proposed interconnected
passive architecture and the feedback concavification approach
in improving the control performance of the underactuated
AUV.

I. INTRODUCTION

The underactuated AUV is a typical and highly used
underactuated system. Underactuated AUVs are more widely
used in practical applications because of the low energy con-
sumption, cost, and weight compared to fully actuated AUVs
and over-actuated AUVs [1]. The control of underactuated
AUVs is still a challenging problem due to the presence
of external disturbances, model uncertainties, coupling non-
linearities, underactuated characteristics and actuators’ con-
straints (See [2]–[10] for the details). To address these issues,
it’s crucial to design a highly robust controller for AUV
systems. Those research tend to opt for simplified numerical
models such as 3-DOF, 4-DOF, and 5-DOF configurations.
Nevertheless, it is crucial to emphasize that the complete 6-
DOF dynamic model holds significant importance and offers
a broader perspective in the field of AUVs [5]. Extending the
control methods from the lower-DOF model to the higher-
DOF model is tough. On the contrary, the control methods
for 6-DOF model can be easily extended to the lower-DOF
model by enforcing some states to be zero. For this purpose,
this paper focuses on the underactuated 6-DOF dynamic
model of a realistic mini-AUV developed and identified by
TUHH [11]. There is some research on this model as shown
in [12]–[14], where a PD controller is deployed, but without
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incorporating considerations for robustness. With that PD
controller, it is difficult to take the other tough tasks [12]–
[14], e.g. tracking different kinds of references with different
velocities or amplitudes. This motivates the authors to design
a robust controller with multiple functions.

The control system always requires the total energy to be
dissipative to guarantee stability and control performance.
Dissipation inequalities introduced by Willems in [15] are
widely used for the analysis and design of interconnected
nonlinear systems, particularly the passive system with the
quadratic supply rate which is always utilized to guarantee
the stability and robustness (L2-gain), and the related theo-
rem and techniques are fairly mature (See [16]–[18] for the
details). Dissipativity describes input-output properties, and
the associated supply rate is a one-dimensional map from
input and output to the real number. Though the definition
of a dissipative system does not explicitly require input
and output to have the same dimensions, it is generally as-
sumed when designing interconnected passive systems with
quadratic supply rate, as presented in [18], [19]. However,
due to the underactuated properties, the input dimension
and the output (interconnection) dimension do not match.
Thankfully, the Euclidean vector provides a way to transform
a 3D vector into a one-dimensional vector together with a
direction vector, which enables the underactuated AUV to
unify the dimensions of input and output (interconnection).
This inspired the authors to develop an interconnected pas-
sive architecture for underactuated AUVs. In addition, for
the existing framework of the passive system, assigning a
globally desired L2-gain requires sufficient actuator’s efforts,
which cannot be satisfied due to the actuator’s saturation.
Thus, to enhance the robustness and transient response within
the actuators’ saturation, the feedback concavification idea is
introduced to the passive system with a decreasing L2-gain
towards to the desired convergence equilibrium by using the
proposed concave factor.

This paper offers two notable contributions. Firstly, it
defines an interconnected passive structure for AUVs utiliz-
ing Euclidean vectors. Within this framework, it becomes
straightforward to allocate and design performance (L2-
gain) through the feedback methods. Secondly, it introduces
feedback concavification techniques to tackle issues arising
from uncertainties, disturbances, and actuator saturation. It
is important to emphasize that concavity is determined in
relation to the Lyapunov function or storage function rather
than the system states.
Notation: Throughout this paper, the set R, R+, and R≥0

denote the set of real numbers, positive real numbers, and
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Fig. 1. 6 DOF velocities u, v, w, p, q and r in the body-fixed frame {b}
of the Hippocampus and inertial reference frame {n}.

non-negative real numbers, respectively. Rn denotes the n-
dimensional Euclidean space. || · || denotes the Euclidean
norms. λ(·) denotes the eigenvalues of a square matrix (·).
λ̄(·) and

¯
λ(·) denote the maximum and minimum eigenvalue

of a square matrix (·), respectively. M ≺ (≻)0 implies M is
negative (positive) definite. V̇ = dV

dt . The set of real-valued
square-integrable signals u : [0,∞) → Rm is denoted by
Lm2 [0,∞), with L2e[0,∞) denoting the associated extended
signal space [18]. For a vector ν ∈ R3, ν∗ ∈ R denotes the
Euclidean distance by the notation ∗. For a Euclidean vector
a⃗ := [a1, a2, a3]

⊤ ∈ R3, then define

a⃗ = ||⃗a||Γ(θa, ψa) = a⃗∗Γ(θa, ψa)

Γ(θa, ψa) :=

cos(θa) cos(ψa)cos(θa) sin(ψa)
− sin(ψa)


where θa := atan2(−a2,

√
a21 + a22), ψa := atan2(a2, a1).

II. UNDERACTUATED AUV AND PROBLEM
FORMULATION

A. Underactuated AUV Modeling

This paper considers the Hippocampus, an autonomous
underwater vehicle developed at TUHH [11] with actuator
saturation (See Fig.1). The 6-DOF mathematical representa-
tion of the AUV is derived and characterized in reference to
[11], drawing from the well-known handbook on underwater
vehicles [3]. It can be expressed as follows:

Σ :

{
η̇ = J(Θ)υ

Mυ̇ = −C(υ)υ −D(υ)υ − g(η) + τd + τ
(1)

with η = [ X⊤ Θ⊤ ]
⊤ ∈ R6, υ =

[
ν⊤ ω⊤ ]⊤ ∈ R6,

where X = [ x y z ]
⊤ is the position vector which

represents the distance from the inertial frame {n} to
the body fixed frame {b}, expressed in NED coordinates
(See Fig.1), Θ = [ ϕ θ ψ ]

⊤ is the orientation vector
which denotes the three Euler angles in three-dimensional
space, ν = [ u v w ]

⊤ describes the linear velocity,
and ω = [ p q r ]

⊤ denotes the angular velocity. τd ∈
R6 denotes the uncertainties and disturbance and τ =[
f 0 0 τroll τpitch τyaw

]⊤ denotes the control in-
put vector with underactuated property, which includes the
thrust force f and three moments τroll, τpitch, τyaw. Define

τs := [ f τroll τpitch τyaw ]⊤, where τs satisfies the
saturation τs = LSat(T ) with T ∈ R4 is the torque vector of
four deployed motors, and L is a matrix map from the torque
vector to the input vector τs. J (η) = diag (R (Θ) , T (Θ)) is
the block diagonal matrix consisting of the linear velocity
transformation matrix R (Θ) between {b} and {n}, and the
angular velocity transformation matrix T (Θ). M ∈ R6×6

represents the combined mass matrix, C(υ) ∈ R6×6 rep-
resents the matrix of Coriolis effects, D(υ) ∈ R6×6 is the
hydrodynamic damping matrix, and g(η) ∈ R6 describes the
hydrostatic load for a neutrally buoyant underwater vehicle.
Those values are identified by [20].

B. Problem Formulation
Assume the underactuated AUV can reach and track an

admissible position reference trajectory Xref (t) : R≥0 →
R3 starting from any admissible initial position states X(0).
The maximum velocity of the AUV model is constrained
by the actuator saturation. Thus, the comprehensive velocity
of Xref (t) should within this constraint. Considering the nu-
merical dynamic model (1) with the unknown disturbance τd,
design τ under the input saturation so that the underactuated
AUV can converge to the reference trajectory such that

lim
t→∞

∥X(t)−Xref (t)∥ ≤ δ (2)

where δ is positive and arbitrarily small.

III. CONCAVE PASSIVE SYSTEMS

This section presents the formulation of a concave passive
system with the help of the concave factor and concave factor
matrix. As a reminder, we uses separate notations in this
section.

A. Concave Factors and Concave Factor Matrices
Firstly, we introduce the definition of a concave factor.

Definition 1 (Concave factor). For a smooth concave func-
tion F (ρ) = fc(ρ)ρ, where f(ρ) : R≥0 → R+ is bounded
and smooth for ρ ∈ [0,∞), f(ρ) is called a concave factor
with respect to ρ, and we have d

dρfc(ρ) < 0.

The concave factor can be considered as the ’gain’ which
increases as ρ decreases. This paper will utilize the properties
of the concave factor. Here we propose a slider-like concave
factor function, such that

fc(ρ) =
β1kminρ

α + β2kmax
β1ρα + β2

(β1, β2 > 0, 0 < α ≤ 1)

where the low gain kmin is selected to address the input
saturation, a larger control gain kmax to ensure the perfor-
mance, and β1, β2 can shift the sliding speed from kmin to
kmax with the decrease of ρ. Then, we extend it to the vector
space as the concave factor matrix.

Definition 2 (Concave factor matrix for quadratic function).
For a quadratic convex function V = x⊤Px with x ∈ Rn
and P ≻ 0, if and only if F (x) := x⊤M(x)x is concave
with respect to V with M(x) ≻ 0, M(x) is called a concave
factor matrix with respect to the quadratic convex function
V for the vector x, which satisfies d

dV M(x) ≺ 0.
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B. Concave Passivity

Now, we introduce the concave passive system with the
help of the concave factor matrix. Consider the continuous-
time nonlinear system as follows

Σp :

{
ẋ = f(x, u)

y = h(x)
(3)

with state x ∈ X ⊆ Rn, input u ∈ U ⊆ Rm and output y ∈
Y ⊆ Rm. The maps f and h are assumed to be sufficiently
smooth and all input functions u(·), y(·) ∈ Lm2e[0,∞). The
system is assumed to be fully controllable for all x ∈ X .
Moreover, we assume f(0, 0) = 0 and h(0) = 0, such that
(ue, xe, ye) = (0, 0, 0) is an equilibrium. We propose the
concave output strictly passive system based on the passivity
presented in [18].

Definition 3 (Concave output strictly passive system). For
a system as Σp, suppose it is dissipative with respect to
the supply rate s(u, y) := u⊤Sy − y⊤Q(x)y with a non-
negative convex storage function V , where s : U × Y → R
and V : X → R≥0, and u and y have the same dimensions.
System Σp is called a concave output strictly passive system
if Q(x) ≻ 0 is a concave factor matrix with respect to the
storage function V (V has the quadratic form) for the vector
y that d(Q(x))

dV ≺ 0.

In the above definition, if Q(x) is a constant matrix that
d(Q(x))

dV ≡ 0, then system Σp is called a output strictly
passive system.

C. Benefits of the Concave Output Strictly Passive System

The concave output strictly passive system is proposed to
improve the robustness and convergence rate under the input
saturation. Now, we analyze its robustness represented by
L2-gain.

Proposition 1. Σp has the L2-gain G(y, u) ≤
√
λ̄
SS⊤

¯
λQ(x)

if it
is concave output strictly passive.

Proof: Based on the definition, for the concave output
strictly passive system, we have the dissipation inequality

d

dt
V (x) ≤ u⊤Sy − y⊤Q(x)y ≤ u⊤Sy −

¯
λQ(x)||y||2

≤u⊤Sy −
¯
λQ(x)||y||2 +

∥∥∥∥∥
√

1

2
¯
λQ(x)

S⊤u−
√

¯
λQ(x)

2
y

∥∥∥∥∥
2

≤ λ̄SS⊤

2
¯
λQ(x)

||u||2 − 1

2¯
λQ(x)||y||2

= ¯
λQ(x)

2

((√
λ̄SS⊤

¯
λQ(x)

)2

||u||2 − ||y||2
)

which implies Σp has the L2-gain G(y, u) ≤
√
λ̄
SS⊤

¯
λQ(x)

which
is similar to the relevant proof presented in [18].

Due to the concavity, we obtain d
dV

(√
λ̄
SS⊤

¯
λQ(x)

)
> 0. This

implies for the concave output strictly passive system, its
L2-gain decreases as V decreases, such that the robustness
is enhanced towards to the convergence equilibrium.

Generally, u in system Σp is considered as the external
disturbance. Thus, we can evaluate the convergence perfor-
mance with the dissipation inequality by assuming u ≡ 0.
Therefore, we have

d

dt
V (x) ≤ −y⊤Q(x)y (4)

Suppose V (x) = y⊤M̂y with M̂ ≻ 0. Then, we have

d

dt
V (x) ≤ −¯

λQ(x)

λ̄M̂
V (x), V0 = V (x(0)) (5)

Therefore, V (x(t)) ≤ e
− ¯

λQ(x)

λ̄
M̂

t
V0. This implies the conver-

gence rate increases as V decreases.

IV. CONTROLLER DESIGN BY FEEDBACK

This section, we design the feedback control law with
the concave passivity. To assign the desired passivity in the
underwater vehicle, an interconnected architecture for AUV
is proposed with four subsystems.

A. An Interconnected Architecture for AUV With the Reduced
Dimension

Without any simplification, we can split the whole system
Σ into four subsystems, such that

Σ1 :

{
Ẋ = R(Θ)ν

y1 = h1(X)

Σ2 :

{
M1ν̇ = −C1(ν)ω −D1(ν)ν − g1(η) + τd1 + τ1
y2 = h2(ν)

Σ3 :

{
Θ̇ = T (Θ)ω

y3 = h3(Θ)

Σ4 :

{
M2ω̇ = −C1(ν)ν − C2(ω)ω −D2(ω)ω − g2(η) + τd2 + τ2
y4 = h4(ω)

where

C(υ) =

[
03×3 C1(ν)
C1(ν) C2(ω)

]
D(υ) =

[
D1(ν) 03×3

03×3 D2(ω)

]
where C1(ν), C2(ω) ∈ R3×3 are skew-symmetric matrices,
M = diag(M1,M2) with M1,M2 ≻ 0 ∈ R3×3, g(η) =
[g1(η), g2(η)]

⊤ with g1(η), g2(η) ∈ R3,τd = [τd1 , τd2 ]
⊤ with

τd1 , τd2 ∈ R3,τd = [τ1, τ2]
⊤ with τ1, τ2 ∈ R3. Due to

the underactuated properties τ1 = [f, 0, 0]⊤, the dimension
condition y2 ∈ R should hold to assign a passive system.
Moreover, the interconnection between Σ1 and Σ2 should be
reduced to be one dimensional to match the size for assigning
passive interconnected systems. Then, define

ν := Γ(θν , ψν)ν
∗ τd1 := Γ(θτd1 , ψτd1 )τ

∗
d1

where ν∗, τ∗d1 ∈ R. Define the interconnection that y2 := ν∗,
y3 := Θ, y4 := ω, then we can obtain an interconnected
system as shown in Fig.2. Moreover, y1 should be designed
later.
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Fig. 2. The equivalent interconnected system

B. Passivity by Feedback

We transform the four interconnected subsystems
Σ1,Σ2,Σ3,Σ4 into four passive interconnected subsystems
denoted by Σp1,Σ

p
2,Σ

p
3,Σ

p
4 by feedback. The designed

equivalent passive interconnected system is shown as Fig.3
with the associated connections û1 = ŷ2 and û3 = ŷ4,
where the other parameters will be introduced later. Each
passive subsystem Σpi (i = {1, 2, 3, 4}) is dissipative with
respect to the supply rate si(ûi, ŷi) := û⊤i Siŷi − ŷ⊤i Qiŷi
with the storage function Vi, where Qi ≻ 0. The key is to
find suitable ûi, ŷi, Si, Qi, Vi where Qi is the parameter to
be tuned for obtaining the desired control performance.

Fig. 3. The equivalent passive interconnected system

1) Passivity for Σ1: We design: V1 := 1
2∥X − Xref∥2,

ŷ1 := Γ⊤(θν , ψν)R
⊤(Θ)(X − Xref ), û1 := ν∗ + Q1ŷ1 +

ν∗refSref , where

Sref = −Γ⊤(θνref , ψνref )R(Θ)Γ̂−⊤
ν Γ(θν , ψν)

νref = Ẋref , Γ̂ν := Γ(θν , ψν)Γ
⊤(θν , ψν).

Thus, we have

V̇1 =
(
R(Θ)ν − Ẋref

)⊤
(X −Xref )

=
(
ν∗Γ⊤(θν , ψν)R

⊤(Θ)− ν⊤ref

)
(X −Xref )

= û1ŷ1 −Q1ŷ
2
1

(6)

Hence, S1 = 1 and the designed û1, ŷ1 can formulate a
output strictly passive system Σp1.

2) Passivity for Σ2: Let ν∗f := Q1ŷ1 + ν∗refSref . Design
û2 := τ∗d1 , V2 := 1

2 ŷ2Γ
⊤(θν , ψν)M1M1Γ(θν , ψν)ŷ2. Thus,

V̇2 = (−C1(ν)ω −D1(ν)ν − g1(η)−
dM1Γ(θν , ψν)ν

∗
f

dt︸ ︷︷ ︸
H

+ û2Γ(θτd1 , ψτd1
) + fΓ(0, 0))⊤M1Γ(θν , ψν)ŷ2

= (H⊤ + fΓ⊤(0, 0))M1Γ(θν , ψν)ŷ2 + û2S2ŷ2

with S2 = Γ⊤(θτd1 , ψτd1 )M1Γ(θν , ψν). Then, define

(H⊤ + fΓ⊤(0, 0))M1Γ(θν , ψν) = −Q2ŷ2 (7)

Solving equation (7), we obtain the solution

f = −Q2ŷ2 +H⊤M1Γ(θν , ψν)

Γ⊤(0, 0)M1Γ(θν , ψν)
(cos(θν) cos(ψν) ̸= 0) (8)

Clearly, cos(θν) cos(ψν) = 0 if and only if u = 0, v2+w2 ̸=
0. Generally speaking, −π

4 ≤ θν , ψν ≤ π
4 due to v, w come

from the Coriolis effect.
3) Passivity for Σ3: Although Σp1 is output strictly pas-

sive, the asymptotic stability can not be guaranteed, which is
related to the configuration of Θ. Assume the configuration
Θd is sufficient to achieve the asymptotic stability and
Θd = 0 when X = Xref . Design ŷ3 := y3 − Θd,
V3 := 1

2 ŷ
⊤
3 ŷ3, S3 := T⊤(Θ), and û3 := ω − ωf where

ωf := T−1(Θ)
(
−Q3ŷ3 + Θ̇d

)
. Therefore,

V̇3 = û⊤3 T
⊤(Θ)ŷ3 + ω⊤

f T
⊤(Θ)ŷ3 − Θ̇⊤

d ŷ3

= û⊤S3ŷ3 − ŷ⊤3 Q3ŷ3

This implies the designed parameters can lead to a passive
system Σ3

p.
4) Passivity for Σ4: Design V4 := 1

2 ŷ4M2M2ŷ4, û4 :=
τd2 , S4 :=M2. Let O := −C1(ν)ν − C2(ω)ω −D2(ω)ω −
g2(η). Hence,

d

dt
V4 = û⊤

4 M2ŷ4 +
(
O⊤ − ẇ⊤

f M2 + τ⊤2

)
M2ŷ4

For obtaining a passive system, we design M2O −
M2M2ω̇f +M2τ2 = −Q4ŷ4. Hence, we have

τ2 =M−1
2 (−Q4ŷ4 −M2O +M2M2ω̇f ) (9)

Thus, we obtain the control law based on the passivity,

τs =

[
f
τ2

]
=

[
−Q2ŷ2+H

⊤M1Γ(θν ,ψν)
Γ⊤(0,0)M1Γ(θν ,ψν)

M−1
2 (−Q4ŷ4 −M2O +M2M2ω̇f )

]
. (10)

Consequently, we can assign the interconnected passive
system as shown in Fig.3 by executing the control law (10).
This system is output strictly passive with respect to the
supply rate s = s1 + s2 + s3 + s4 with the storage function
V = V1 + V2 + V3 + V4.

C. Stability analysis

1) Stability for τd ≡ 0: For τd ≡ 0, we have

V̇ =

[
ŷ1
ŷ2

]⊤ [
−Q1

S⊤
1
2

S1
2

−Q2

] [
ŷ1
ŷ2

]
+

[
ŷ3
ŷ4

]⊤ [
−Q3

S⊤
3
2

S3
2

−Q4

] [
ŷ3
ŷ4

]
Define Z :=

[
X⊤
e Θ⊤ ν⊤ ω⊤]⊤ with Xe := X−Xref ,

and Y :=
[
ŷ1 ŷ2 ŷ⊤3 ŷ⊤4

]⊤
. We can easily design the

sufficient large Q1, Q2, Q3, Q4, such that[
−Q1

S⊤
1

2
S1

2 −Q2

]
≺ 0,

[
−Q3

S⊤
3

2
S3

2 −Q4

]
≺ 0. (11)

Proposition 2. Suppose the condition (11) holds.
The AUV is asymptotically stable at Z = 0, if
Γ⊤(θν , ψν)R

⊤(Θ)Γ⊤(θXe
, ψXe

) ̸= 0 holds ∀Z ̸= 0.

Proof: Since the inequality (11) holds, then we have
lim
t→∞

Y = 0, such that lim
t→∞

ŷi = 0 (i = 1, 2, 3, 4). Since
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Γ⊤(θν , ψν)R
⊤(Θ)Γ⊤(θXe

, ψXe
) ̸= 0 holds ∀Z ̸= 0, then

ŷ1 = 0 implies Xe = 0, such that Θd = 0. Hence, lim
t→∞

Θ =

0. Therefore, lim
t→∞

Z = 0. This completes the proof.

Thus, to avoid Γ⊤(θν , ψν)R
⊤(Θ)Γ⊤(θXe

, ψXe
) = 0, we

can design Θd =
[
0 −θXe ψXe − π

]⊤
.

2) For τd ̸= 0: For this case, similarly, we have

V̇ =


ŷ1
ŷ2
τ∗d1
ŷ3
ŷ4
τd2


⊤


−Q1
S⊤
1
2

S1
2

−Q2
S⊤
2
2

S2
2

−Q3
S⊤
3
2

S3
2

−Q4
S⊤
4
2

S4
2


︸ ︷︷ ︸

Π


ŷ1
ŷ2
τ∗d1
ŷ3
ŷ4
τd2



where the blank block in Π denotes the zero matrix with
appropriate dimensions. If the disturbance weight S2, S4

satisfies Π ≺ 0, then the system is asymptotically stable
under the same condition of Proposition 2. If S2, S4 are
available, then it is easy to solve Q1, Q2, Q3, Q4 satisfying
Π ≺ 0. If S2, S4 are unknown, we can obtain the L2-gain
from τd to the output Y such that

G(Y,

[
τ∗d1
τd2

]
) ≤ max

 S1

Q1
,
|S2|
Q2

,

√
λ̄S3S

⊤
3

¯
λQ3

,

√
λ̄S4S

⊤
4

¯
λQ4

 (12)

D. Assigning Concave Passivity

According to (12), we know that the larger Qi will lead to
a smaller L2-gain and the better transient speed. However,
the larger Qi requires sufficient large control effort as
shown in (10), which is not guaranteed since the actuator’s
saturation exists. Thus, we introduce the concave output
strict passivity by designing each Qi as a concave factor or
concave factor matrix. In order to clarify the difference, we
define Qci as a concave factor (matrix), such that we design
dQc

i

dVi
≺ 0. Taking Qc4 as an example, using the proposed

slider-like concave factor function, we design Qc4 :=

diag(
β1
1k

1
minV4+β

1
2k

1
max

β1
1V4+β1

2
,
β2
1k

2
minV4+β

2
2k

2
max

β2
1V4+β2

2
,
β3
1k

3
minV4+β

3
2k

3
max

β3
1V4+β3

2
)

where the associated parameters satisfy the condition
of the concave factor function. Then, we have

¯
Qc4 ≤ Qc4 ≤ Q̄c4 with

¯
Qc4 = diag(k1min, k

2
min, k

3
min)

and Q̄c4 = diag(k1max, k
2
max, k

3
max). Therefore, as V4

converges to zero, Qc4 increases, such that the associated
L2-gain of the passive subsystem Σp4 decreases.

¯
Qc4 should

be sufficient small to handle the input saturation and Q̄c4 is
sufficient large to guarantee the control performance. The
other Qci follows the same guidance. With desired Qci , we
can achieve good control performance even when Ẋref and
Θ̇d are unavailable.

V. NUMERICAL SIMULATION

This section demonstrates the effectiveness of the feed-
back concavification concept and the proposed architec-
ture of the interconnected passive systems in the appli-
cation of the underactuated AUVs compared with a PD
controller used in [12]–[14]. All the simulation files of

this paper are available at the link1. The detailed model
parameters of Hippocampus are published and avail-
able at [20]. The reference trajectory is infinity-shaped as
Xref (t) =

[
ax sin(

π
15 t) ay(

π
30 t) 0.1t

]⊤
. To evaluate the

robustness, the disturbance is selected as τd = [0.2 sin(0.1t+
1), 0.1 sin(0.15t + 0.9), 0.1 sin(0.1t + 0.5), 0.1 sin(0.05t +
1), 0.1 sin(0.1t + 2), 0.1 sin(0.15t + 3)]⊤. The parameters
of the passive controller is designed as Q1 = 8, Q2 =
10, Q3 = diag(0.01, 5, 8), Q4 = diag(0.001, 0.1, 0.1).
We select the slider-like concave factor to assign the con-
cavity for the concave passive controller where the pa-
rameter α = 1. The parameters of the the concave pas-
sive controller is designed as: Qc1 = 8V1+0.5

V1+0.01 , Qc2 =
10V2+1.6
V2+0.02 , Qc3 = diag( 0.01V3+1

V3+1 , 5V3+0.2
V3+0.01 ,

8V3+0.6
V3+0.02 ), Q

c
4 =

diag( 0.001V4+0.01
V4+1 , 0.001V4+0.2

0.01V4+0.02 ,
0.001V4+0.2
0.01V4+0.02 ).

For a fair comparison, all the parameters of the above
controller are well-tuned under the reference trajectory with
ax = 4, ay = 8 when τd = 0. Moreover, the limit of
each motor is defined as T̄i = 3. For τd = 0, the tracking
results are shown in Fig.4 and Fig.5. When τd = 0, all
controllers perform well. From Fig.5, we can find that the
passive controller outperforms the PD controller, and the
feedback concavification techniques can improve the tracking
performance and reduce the tracking error under the input
saturation.

Fig.6 and Fig.7 display the simulation results with τd ̸= 0.
From Fig.6, we can observe that the PD controller becomes
invalid when the disturbance is considering. However, the
passive controller consistently demonstrates reliable per-
formance. It is evident that the feedback concavification
techniques can significantly enhance tracking performance
and robustness.

Remark 1. We compared the controllers with different ref-
erence trajectories with different ax, ay . From those results,
the concave passive controller consistently outperforms the
other controllers. Nevertheless, sometimes, the PD controller
becomes invalid when we change the reference. The adapt-
ability and robustness of the concave passive controller
are evident. One can check with the provided files at
https://github.com/shuyuanfan/Hippocampus-Concavity.git.

VI. CONCLUSION

The paper introduces a novel approach for controlling
underactuated Autonomous Underwater Vehicles (AUVs) us-
ing feedback concavification based on the passivity theorem.
With the help of the Euclidean vector, an interconnected
passive architecture of the 6-DOF underactuated AUV is
proposed, simplifying the analysis and the assignment of
closed-loop behavior. Simulation results effectively illustrate
the effectiveness of this proposed passive structure for AUV
control. After introducing the concavity, the control perfor-
mance experiences a significant enhancement. The authors
plan to further explore the potential of feedback concavifi-
cation in other scenarios.

1https://github.com/shuyuanfan/Hippocampus-Concavity.git
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Fig. 4. Tracking results without disturbance where ’C-Passive’
denotes the concave passive controller
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Fig. 5. Results of tracking error without disturbance

Fig. 6. Tracking results with disturbance
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Fig. 7. Results of tracking error with disturbance
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[6] F. Muñoz, J. S. Cervantes-Rojas, J. M. Valdovinos, O. Sandre-
Hernández, S. Salazar, and H. Romero, “Dynamic neural network-
based adaptive tracking control for an autonomous underwater vehicle
subject to modeling and parametric uncertainties,” Applied Sciences,
vol. 11, no. 6, p. 2797, 2021.

[7] C. Wang, W. Cai, J. Lu, X. Ding, and J. Yang, “Design, modeling,
control, and experiments for multiple auvs formation,” IEEE Trans-
actions on Automation Science and Engineering, vol. 19, no. 4, pp.
2776–2787, 2022.

[8] T. Elmokadem, M. Zribi, and K. Youcef-Toumi, “Trajectory tracking
sliding mode control of underactuated auvs,” Nonlinear Dynamics,
vol. 84, pp. 1079–1091, 2016.

[9] A. Wadi, S. Mukhopadhyay, and J.-H. Lee, “A novel disturbance-
robust adaptive trajectory tracking controller for a class of underactu-
ated autonomous underwater vehicles,” Ocean Engineering, vol. 189,
p. 106377, 2019.

[10] T. Elmokadem, M. Zribi, and K. Youcef-Toumi, “Terminal sliding
mode control for the trajectory tracking of underactuated autonomous
underwater vehicles,” Ocean Engineering, vol. 129, pp. 613–625,
2017.

[11] A. Hackbarth, E. Kreuzer, and E. Solowjow, “Hippocampus: A micro
underwater vehicle for swarm applications,” in 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2015,
pp. 2258–2263.

[12] D. A. Duecker, A. Hackbarth, T. Johannink, E. Kreuzer, and
E. Solowjow, “Micro underwater vehicle hydrobatics: A submerged
furuta pendulum,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 7498–7503.

[13] K. Yao, N. Bauschmann, T. L. Alff, W. Cheah, D. A. Duecker,
K. Groves, O. Marjanovic, and S. Watson, “Image-based visual ser-
voing switchable leader-follower control of heterogeneous multi-agent
underwater robot system,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 5200–5206.

[14] D. A. Duecker, C. Horst, and E. Kreuzer, “From aerobatics to hydro-
batics: Agile trajectory planning and tracking for micro underwater
robots,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 8617–8624.

[15] J. C. Willems, “Dissipative dynamical systems part i: General theory,”
Archive for rational mechanics and analysis, vol. 45, no. 5, pp. 321–
351, 1972.

[16] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive nonlin-
ear control. Springer Science & Business Media, 2012.

[17] B. Brogliato, R. Lozano, B. Maschke, O. Egeland et al., “Dissipative
systems analysis and control,” Theory and Applications, vol. 2, pp.
2–5, 2007.

[18] A. Van der Schaft, L2-gain and passivity techniques in nonlinear
control, 3rd ed. Springer, 2016.

[19] J. W. Simpson-Porco, “Equilibrium-independent dissipativity with
quadratic supply rates,” IEEE Transactions on Automatic Control,
vol. 64, no. 4, pp. 1440–1455, 2019.

[20] D. A. Duecker, E. Kreuzer, G. Maerker, and E. Solowjow, “Parameter
identification for micro underwater vehicles,” PAMM, vol. 18, no. 1,
p. e201800350, 2018.

3231


