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Abstract—The network stabilization problem in a hetero-
geneous multi-agent system with diffusive connections is in-
vestigated in this paper. It is demonstrated that, under the
assumption that the agents are finite-gain L2–stable and zero
state observable, the interconnection is zero input asymptotically
stable, and all agents’ dynamics converge to the origin. The
stability analysis is based on small-gain theory. We provide the
maximum bound on the L2–gain of the controller using various
optimization methods when the L2–gain of each agent is known.
A study on the variation of L2–gain bound of the controller with
the Laplacian eigenvalues of the underlying graph is provided.
Numerical examples, which support and illustrate the analytical
results, are also included.

Index Terms—Diffusively connected network, small-gain the-
orem, interconnected system, edge dynamics, Networked dy-
namical system (NDS).

I. INTRODUCTION

A multi-agent system (MAS) is a group of autonomous
systems (agents) which collaborate to achieve a common
shared objective. Collaboration usually happens by shar-
ing their information with the other agents, e.g., position,
velocity, etc., through a communication channel. However,
the information exchange between agents is costly while
working in large-scale MASs. Therefore, it is preferable to
often restrict this communication among a smaller group of
agents, such as neighbors. Control techniques that rely on the
information received by an agent from its neighboring agents
are referred to as distributed methods. In this work, we study
a class of distributed control laws in which only the exchange
of relative measurements among neighbors is permissible.
In other words, each agent can only access the difference
between its output and the output of its neighboring agents.
Such control laws are referred to as diffusive, and the systems
they regulate are referred to as diffusively connected.

Control of diffusively connected systems has been fre-
quently studied in the context of many MAS applications,
such as distributed remote sensing, aerial exploration, sensor
localization, etc. The application of these techniques becomes
crucial when the absolute measurements are unavailable or
difficult to obtain [1]–[3]. Collectively, such systems can also
be described as networked dynamical systems (NDS). The
most effective way to model these systems is as a graph,
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where each node represents a separate dynamical system, and
the edges of the graph reflect the communication topology
between them. Recent advancements in the theory of NDS
have led to the emergence of several applications, some
of which may require even disparate dynamical systems to
work in tandem in order to successfully complete a mission.
Therefore, the stability of such an interconnection of possibly
heterogeneous dynamical systems is a crucial problem that
needs to be addressed.

In the last decade, there has been significant progress
in extending the passivity framework as a powerful tool
for assessing the stability of coupled dynamical systems.
The notion of equilibrium-independent passivity (EIP), which
includes nontrivial equilibria that are often desired in inter-
connected systems [4], [5], has proved to be useful in the
analysis of multi-agent systems. In [6], the stabilization of
an NDS, that constitutes passivity-short systems, was shown
to be related to a pair of dual network optimization problems
that were not necessarily convex. It was demonstrated in
[7] that network-only passivation of passivity short systems
was comparable to a convex optimization problem, given
that the sum of the passivity indices over the nodes was
positive, by using only network-level variables to regularize
the network optimization issue. The authors in [8] showed
the global asymptotic convergence to desired outputs for
NDS constituting multi-input multi-output (MIMO) node
dynamics, and a connection between the global convergence
and network optimization problem was established. Authors
in [9] studied the stability issue of network control systems
using the small-gain theorem. To check the stability, they
used a scalar called the network gain. Some of the related
results that have looked beyond passivity or have considered a
dissipativity-based paradigm for NDS are [10], [11]. The au-
thors in [12] generalized the nonlinear small-gain theorem for
a network of coupled input-to-state stable systems, while in
[13], the authors addressed the problem in a more generalized
dissipativity framework and provided a geometrical approach
to construct ISS Lyapunov functions. In [14], the authors have
shown the stability of a linear interconnected system in the
presence of disturbance, using H∞ control method. Authors
in [15] have studied the internal stability of heterogeneous
linear networked systems, in the presence of unstable poles,
via edge analysis. However, these results did not provide any
algorithm for designing networked controllers that ensured
stability.

Despite the proliferation of the NDS paradigm along sev-
eral directions over the last few years, the theory of NDS still
has several open questions that have remained unresolved to
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this day. Stability in the presence of heterogeneous dynamical
systems in the network is one such question that will be
addressed in this paper. In light of the above discussions, the
contributions of this work may be summarized thus:

• First, we formulate the network stabilization problems
for a class of heterogeneous multi-agent systems, which
differs from existing approaches.

• We present a small-gain-based approach towards dis-
tributed control of diffusively connected NDS.

• We provide a sufficient criterion for the asymptotic
stability of the diffusively connected system.

II. MATHEMATICAL PRELIMINARIES AND
PROBLEM STATEMENT

This section presents some basic concepts of graph theory
and diffusively connected networked dynamical systems.

A. Notation
Z and R represent the sets of integer and real numbers,

respectively, with subset Nn := {𝑖 ∈ Z | 1 ≤ 𝑖 ≤ n}. Using
𝐼n and 1n, we denote the n × n identity matrix and the n–
dimensional vector of all ones, respectively. We use 𝐼 and 1
when the dimension is clear from the context. The transpose
of a matrix 𝐴 is denoted by 𝐴𝑇 . The maximum eigenvalue
for a symmetric positive semi-definite matrix, 𝐴, is denoted
by ∥𝐴∥2

2. The notation diag(𝐴𝑖) represents a block-diagonal
matrix with block diagonal elements being 𝐴𝑖 .

B. Algebraic graph theory
The interaction topology of a networked dynamical system

is modeled via graphs. Throughout this work, we will assume
that the graphs are connected and undirected.
Definition 1. A graph is an ordered pair G = (V,E), where
V denotes the node set of G with V = {v1, v2, v3, ..., vn}, and
E ⊆ V×V denotes the edge set of G with E ⊂ {{vi, vj}|vi, vj ∈
V and i ≠ j}, corresponding to the communication links
among the agents [16].
Definition 2. The incidence matrix for a graph with rows and
columns indexed by the vertices and the edges, respectively
is given as

E(G)𝑖𝑘 :=


1 if an edge 𝑒𝑘 emanates from node vi;
−1 if an edge 𝑒𝑘 terminates at node vi;
0 otherwise

C. Diffusively connected NDS
An NDS is described by a 𝑞-tuple of dynamical systems

(plant and controller ensemble) interconnected with each
other via a network. This work describes this intercon-
nection network by an (undirected) graph. An NDS with
distributed control inputs can be described as follows: for
all 𝑖 = 1, 2, 3, ...., n

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖 (𝑥𝑖) + 𝑔𝑖 (𝑥𝑖)𝑢𝑖; 𝑦𝑖 = ℎ𝑖 (𝑥𝑖), (1a)

𝑢𝑖 =
∑︁

vj∈N(vi )
K𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗 ), (1b)

where 𝑦𝑖 denotes the output of each node vi, and N(vi) ⊆ V
denotes the set of neighboring nodes of vi, 𝑢𝑖 is the dis-
turbance/reference input to node vi, and K𝑖 𝑗 are coupling
coefficients. To put it more specifically, we consider n
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Fig. 1: Diffusively connected feedback setup.

continuous-time linear or non-linear time-invariant agents P𝑖 ,
who communicate over a network, G, with n nodes and
m edges. In this structure, agents 𝑖 and 𝑗 are neighbors if
they share an edge. A general diffusively connected MAS,
originating in [17], is shown in Fig. 1. It comprises the
block-diagonal aggregate plant 𝑃 := diag (P𝑖) of n blocks,
a block-diagonal static edge controller K𝑒 := diag

(
K𝑖 𝑗

)
with

𝜇 blocks, and pre- and post-processing blocks based on the
incidence matrix E associated with G. The overall feedback
path K̂ : 𝑦 ↦→ 𝑢 is thus defined as,

K̂ := EK𝑒E𝑇 .

However, with a slight abuse of notations, we shall use (1b)
to denote dynamic controller as well, where each K𝑖 𝑗 needs
to be viewed as an operator on the suitable L-spaces. In such
case, one may write the 𝜈′

𝑖
–order dynamical controller K𝑒 as

¤𝑧𝑖 = 𝜙𝑖 (𝑧𝑖) + Γ𝑖 (𝑧𝑖)𝜇𝑖 , (2a)
𝜂𝑖 = 𝜓𝑖 (𝑧𝑖), (2b)

where 𝜙𝑖 is locally Lipschitz and 𝜓𝑖 is continuous for all
𝑧𝑖 ∈ R𝜈′𝑖 , and 𝜇𝑖 ∈ Rm; 𝑧𝑖 , 𝜇𝑖 , and 𝜂𝑖 are the state, input,
and output of the controller, respectively with 𝑧𝑖 = 0 as an
equilibrium point.
Remark 1. The analysis that follows is predicated on the
NDS, being well-posed, i.e., both the plants and the controller
have some underlying state-space descriptions with inputs 𝑢𝑖
and 𝜇𝑖 and outputs 𝑦𝑖 and 𝜂𝑖 , respectively and the internal
signals of the feedback loop, namely 𝑢𝑖 and 𝜇𝑖 , are uniquely
defined for every choice of the system state variables 𝑥𝑖 and
𝑧𝑖 . That is, the interconnection does not bring in singularity
of solutions. See [18] for more on well-posedness. Note that
due to the absence of a direct feedthrough term in the output
equations of the plant and the controller, the interconnection
is guaranteed to be well-posed, (see Ex. 6.12 of [18]).

The general question of interest in this paper is: under what
conditions on the agents P𝑖 , the edge controllers K𝑒 stabilize
the diffusively connected system shown in Fig. 1. We now
present a motivating example for the current work.
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D. A motivating example

We consider a cycle of three heterogeneous agents. The
agents evolve according to

P1 : = ¤𝑥1 = −𝑥1 + 𝑢, 𝑦 = 0.04𝑥1,

P2 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = −𝑥1 − 2𝑥2 + 𝑢, 𝑦 = 0.06𝑥1 + 0.07𝑥2,

P3 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = 𝑥3; ¤𝑥3 = −𝑥1 − 4𝑥2 − 5𝑥3 + 𝑢, 𝑦 = 0.04𝑥1,

where 𝑥𝑖 , 𝑦, 𝑢 ∈ R represent the state, output, and input of
the concerned agent. The goal is to ensure the asymptotic
stability of the interconnected system formed by these agents.
However, it is assumed that each agent has only information
about its neighbors, that is the agents whose indices belong
to a set N(vi).

Towards that, we choose a controller as 𝑢𝑖 = −EK𝑒E𝑇 𝑦𝑖 ,
where K𝑒 is a diagonal matrix that needs to be designed.
If we choose K𝑒 = diag(100 190 290), then it does not
ensure stability of the interconnected system. Despite the
fact that each system was individually stable, stability of the
interconnected system was not guaranteed. One can readily
verify this by calculating the eigenvalues 𝐴 − 𝐵EK𝑒E𝑇𝐶,

where, 𝐴, 𝐵, 𝐶 are system, input, and output matrix of the
aggregate system.

In this paper, we investigate this phenomenon of instability
arising due to the interconnection of individual stable plants
over a network, where the communication links are possibly
dynamic in nature. We show that the generalization of the
small-gain theorem provides sufficient conditions for stable
interconnection.

Problem. Consider block-diagonal aggregate plant 𝑃 :=
diag (P𝑖) with n blocks, and a diagonal edge controller
K𝑒 := diag

(
K𝑖 𝑗

)
, as shown in Fig. 1. Formulate all the

admissible controllers, K𝑒 such that the network intercon-
nection is asymptotically stable.

III. NETWORK SMALL GAIN THEOREM

Consider the 𝜈𝑖–order time-invariant system

¤𝑥𝑖 = 𝑓𝑖 (𝑥𝑖) + 𝑔𝑖 (𝑥𝑖)𝑢𝑖 , (3a)
𝑦𝑖 = ℎ𝑖 (𝑥𝑖), (3b)

𝑢𝑖 =
∑︁

vj∈N(vi )
K𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗 ) (3c)

where 𝑓𝑖 is locally Lipschitz and ℎ𝑖 is continuous for all
𝑥𝑖 ∈ R𝜈𝑖 , and 𝑢𝑖 ∈ Rn with 𝑥𝑖 = 0 as the equilibrium point.

Assumption 1. There exist constant signals 𝑢, 𝑦, 𝜇, 𝜂 such
that 𝑢 = E𝜂, and 𝜇 = E𝑇 𝑦 and each node (dynamical system)
(3) is finite gain L2–stable with L2–gain ≤ 𝛾𝑖 . Also, let the
controller K𝑖 𝑗 be finite gain L2–stable with L2–gain ≤ 𝑘𝑖 ,
Hence, define K𝑒 := diag(𝑘𝑖) ∈ Rm×m.

Assumption 2. Suppose that both the plant and the edge
controllers in (3) and (2) are zero-state observable. That is,
ℎ𝑖 (𝑥𝑖) ≡ 0 ⇔ 𝑥𝑖 ≡ 0 and 𝜓𝑖 (𝑧𝑖) ≡ 0 ⇔ 𝑧𝑖 ≡ 0.

Theorem 1. Consider a dynamical network depicted in
Fig. 1, and suppose Assumptions 1 and 2 hold, then the
interconnection is zero input asymptotically stable if

𝐼n

𝛾2∥E∥2
2
− EK𝑒E𝑇 ⪰ 0, (4)

where, E is node-edge incidence matrix and 𝛾 := max (𝛾𝑖)
for 𝑖 = 1, · · · , n.

Proof: By Assumption 1, for all 1 ≤ 𝑖 ≤ n there
exists V𝑖 : R𝜈𝑖 → R, positive semi-definite storage function
corresponding to each node such that

¤V𝑖 (𝑥𝑖) ≤ 𝛾2
𝑖 𝑢

𝑇
𝑖 𝑢𝑖 − 𝑦𝑇𝑖 𝑦𝑖 . (5)

Selection of positive semi-definite, V𝑖 , together with As-
sumption 2, implies V𝑖 positive definite. Since 𝛾 := max (𝛾𝑖)
for 1 ≤ 𝑖 ≤ n, (5) can be rewritten as

¤V𝑖 (𝑥𝑖) ≤ 𝛾2𝑢𝑇𝑖 𝑢𝑖 − 𝑦𝑇𝑖 𝑦𝑖 . (6)

Define V(𝑥) = ∑
𝑖∈N V𝑖 (𝑥𝑖), where 𝑥 = [𝑥1, · · · , 𝑥n]𝑇 , 𝑢 =

[𝑢1, · · · , 𝑢n]𝑇 , and 𝑦 = [𝑦1, · · · , 𝑦n]𝑇 . Therefore,

¤V(𝑥) ≤ 𝛾2𝑢𝑇𝑢 − 𝑦𝑇 𝑦. (7)

Also, as the controller, K𝑒, is L2 stable with L2–gain ≤ 𝑘𝑖 ,
therefore for each K𝑒 : 𝜇 ↦−→ 𝜂, ∃ a positive semi-definite
storage function W𝑖 : R𝜈′𝑖 → R, such that,

¤W𝑖 (𝑧𝑖) ≤ 𝑘2
𝑖 𝜇

𝑇
𝑖 𝜇𝑖 − 𝜂𝑇𝑖 𝜂𝑖 . (8)

Positive semi-definiteness of W𝑖 , together with Assump-
tion 2, makes W𝑖 positive definite. Next we define 𝜇 =

[𝜇1, 𝜇2, · · · , 𝜇m]𝑇 and 𝜂 = [𝜂1, 𝜂2, · · · , 𝜂m]𝑇 where m is
the number of edges in the network. Therefore, (8) can be
rewritten as

¤W(𝑧) ≤ 𝑘2
𝑖 𝜇

𝑇𝜇 − 𝜂𝑇𝜂. (9)

Using the relation 𝜇 = E𝑇 𝑦, (9) is further written as

¤W(𝑧) ≤ 𝑦𝑇EK𝑒E𝑇 𝑦 − 𝜂𝑇𝜂. (10)

By taking the Euclidean norm of 𝑢 = E𝜂, one may obtain
∥𝑢∥2

2 ≤ ∥E∥2
2∥𝜂∥

2
2, which is equivalent to

−𝜂𝑇𝜂 ≤ − 1
∥E∥2

2
𝑢𝑇𝑢. (11)

Substituting (11) in (10) one may obtain

¤W(𝑧) ≤ 𝑦𝑇EK𝑒E𝑇 𝑦 − 1
∥E∥2

2
𝑢𝑇𝑢. (12)

On multiplying (6) by 1/∥E∥2
2 and (12) by 𝛾2 and adding,

we get

1
∥E∥2

2

¤V(𝑥) + 𝛾2 ¤W(𝑧) ≤ 𝛾2𝑦𝑇EK𝑒E𝑇 𝑦 − 1
∥E∥2

2
𝑦𝑇 𝑦. (13)

Define S(𝑥, 𝑧) to be a storage function such that

S(𝑥, 𝑧) :=
1

∥E∥2
2
V(𝑥) + 𝛾2W(𝑧). (14)
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Note that, due to Assumption 2 and positive definiteness of
V(𝑥) and W(𝑧), S(𝑥, 𝑧) is also positive definite. Therefore,
¤S(𝑥, 𝑧) =

(
1/∥E∥2

2
) ¤V(𝑥) + 𝛾2 ¤W(𝑧), which implies

¤S ≤ −𝑦𝑇
[

𝐼n

∥E∥2
2
− 𝛾2EK𝑒E𝑇

]
𝑦. (15)

Using the relation in (4), we get ¤S ⪯ 0. Here, ¤S is only
negative semi-definite and ¤S = 0, implies 𝑦 = 0. Following
the relation in (14), one may write

¤S ≤ 1
∥E∥2

2
𝛾2𝑢𝑇𝑢 − 1

∥E∥2
2
𝑦𝑇 𝑦 + 𝛾2𝑘2

𝑖 𝜇
𝑇𝜇 − 𝛾2𝜂𝑇𝜂. (16)

Using the zero input condition and substituting 𝑢 = 0 and
𝜇 = 0, in (16), we get

¤S ≤ − 1
∥E∥2

2
𝑦𝑇 𝑦 − 𝛾2𝜂𝑇𝜂. (17)

By Assumption 2 we consider the set 𝐸 = {(𝑥, 𝑧) | ¤S = 0}.
Now let 𝑀 ⊆ 𝐸 be the largest invariant set, then 𝑀 = 0 by
Assumption 2. From Lasalle’s Invariance Principle [18], all
solutions of the dynamical system in (3) and (2) converge to
𝑀 as 𝑡 → ∞, therefore the origin is asymptotically stable.
This concludes the proof.

IV. EDGE CONTROLLER DESIGN: LMI FORMULATION

In this section, we will use Theorem 1 to formulate the
L2–gain of the edge controller, K𝑒. More specifically, we
exploit the LMI structure of the sufficient condition given in
Theorem 1 to pose several optimization problems that will
instill the edge controllers with certain desirable properties
in addition to ensuring stability of NDS.

Optimization 1. Consider that Assumption 1 holds. Then,
solve the following:

maximize trace(K𝑒) s. t.
𝐼n

∥E∥2
2
− 𝛾2EK𝑒E𝑇 ⪰ 0, K𝑒 ⪰ 0.

In order to get the maximum value of controller gains we
attempt to maximize the feedback gain K𝑒 for a given value
of 𝛾, which is obtained from the plant specifications. This is
motivated by the desirability of the high gain controllers that
instill the closed loop system with properties like high speed,
and low error. etc. Alternatively, to obtain the maximum value
of the controller gains, one may choose to maximize the
Frobenious norm of K𝑒 subjected to the constraint (4). This
is presented as the next optimization problem.

Optimization 2. Consider that Assumption 1 holds. Then
solve the following:

maximize
m∑︁
𝑖=1

𝑘2
𝑖 s. t.

𝐼n

∥E∥2
2
− 𝛾2EK𝑒E𝑇 ⪰ 0, K𝑒 ⪰ 0

The knowledge of 𝛾 is necessary in order to get a K𝑒 that is
positive definite. Also, the LMI condition in (4) implies that

the knowledge of 𝛾 is beneficial for robustness against non-
linearity and disturbance. Next, we endeavor to maximize 𝛾

by designing the graph using a convex optimization problem.

Optimization 3. Consider that Assumption 1 holds. Then
solve the following:

maximize 𝛾 s. t.
In

𝛾2∥E∥2
2
− EKeET ⪰ 0, Ke ⪰ 0

The above optimization problem is solved in a similar
manner to the eigenvalue minimization problem given in
Sec. 2.2.2 of [19]. The solution to this problem provides
the largest value of 𝛾 for which a valid K𝑒 exists.

The edge controller can also be characterized by optimiz-
ing it over different network conditions for a known value
of 𝛾. This can be achieved by fixing 𝛾 in Optimization 3
and maximizing trace (K𝑒) or

∑m
𝑖=1 𝑘

2
𝑖

for different standard
graphs. One can solve this problem by varying ∥E∥2

2 in
Optimization 1 and Optimization 2.

The optimization problems can be efficiently solved using
numerical methods. The convex optimization problems, Op-
timization 1, Optimization 2, and Optimization 3 return the
maximum values for K𝑒 and 𝛾, respectively.

To solve the combinatorial problem of optimal edge con-
trol design via selection of the most suitable network, the
following proposition provides a possible tool.

Proposition 1. If the dynamics in (2) are heterogeneous and
finite gain L2–stable, then (4) can be written as

𝐼𝑛

𝛾2∥E∥2
2
− 𝑘1E1E𝑇

1 − 𝑘2E2E𝑇
2 − · · · − 𝑘mEmE𝑇

m ⪰ 0, (18)

where, E𝑖 are the columns of the incidence matrix. Therefore,
the objective of obtaining the L2–gain, 𝑘𝑖 , of K𝑒, trans-
lates to that of finding the elements of a set S := {𝑘 :=(
𝑘1 · · · 𝑘m

)
∈ Rm | (4) is satisfied}

Proof: Consider a weighted undirected graph G =

(V,E), of n nodes and m edges. Let E be the node-edge
incidence matrix and K𝑒 be a diagonal matrix of order m.
Define E := [E𝑖], where 𝑖 = (1, 2, · · ·m) and K𝑒 := diag(𝑘𝑖)
for 𝑖 = (1, 2, · · ·m). Using Theorem 1 one can write

𝐼n

𝛾2∥E∥2
2
− [E𝑖] diag(𝑘𝑖) [E𝑖]𝑇 ⪰ 0.

=⇒ 𝐼n

𝛾2∥E∥2
2
− 𝑘1E1E𝑇

1 − 𝑘2E2E𝑇
2 − · · · − 𝑘mEmE𝑇

m ⪰ 0.

This completes the proof.

A. Variation of L2–gain of edge controller for different
standard graphs

In what follows, we show the variation of the normalized
value of trace (K𝑒) with the number of nodes in the graph,
keeping the value of 𝛾 fixed. The parameter trace(K𝑒)/n was
obtained for different graphs, namely path, star, and cycle
graph while keeping the number of nodes, n, as a variable
for each graph. The results are shown in Fig. 2. It may be seen
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Fig. 2: Variation of trace (K𝑒)/n.

that with the increase in the value of ∥E∥2
2 and n the value

of L2–gain of the controller, K𝑒, decreases. For a smaller
value of n the gain is less in the case of cycle graph. Even,
though the values of the trace (K𝑒)/n were comparable in all
the cases, the highest value of trace (K𝑒)/n was obtained in
the case of a cycle which implies that for a smaller n, the
value of trace (K𝑒)/n will be more for a graph with more
edges but the individual gains will be less.
Remark 2. The main results and the associated optimization
processes provide bounds on the gains of the edge controller
to guarantee stability. These bounds thus provide “safety
regions” while an edge controller is being designed to possi-
bly meet different network goals, e.g., formation. However,
our optimization algorithms can also be used for designing
stabilizing controllers, assuming a specific structure for these
controllers while keeping their gains as variable parameters
that eventually get fixed via the optimization algorithms.

V. WORKED OUT EXAMPLES

In this section, we present a simulation study to illus-
trate the performance of the proposed controller dynamics.
Towards that, we consider five dynamical systems (agents)
each being finite-gain L2–stable connected in a diffusive
manner with dynamic edge controller K𝑒 as shown in Fig. 1.
Furthermore, for the controller dynamics, a standard 1st order
transfer function is considered. Therefore, The controller
dynamics are given as

K𝑒 := diag(K𝑖 𝑗 ) = diag
(

𝑘 ′

(𝑠 + 𝑏𝑖)

)
, (19)

where 𝑘𝑖 = 𝑘 ′/𝑏𝑖 and −𝑏𝑖 are the dc-gain (also the L2–gains)
and pole locations of the respective controllers. The poles and
the 𝑘 ′ are chosen so as to satisfy the loop-gain criterion on
𝑘𝑖 = 𝑘 ′/𝑏𝑖 , where 𝑘𝑖 is obtained by solving (4). The agents’
dynamics evolve according to

P1 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = −2𝑥3
1 − 0.2𝑥2 + 𝑢, 𝑦 = 𝑥2,

P2 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = −0.9𝑥1 − 2𝑥3
2 + 𝑢, 𝑦 = 𝑥2,

P3 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = −0.96𝑥3
1 − 1𝑥2 + 𝑢, 𝑦 = 𝑥2,

P4 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = −0.5𝑥3
1 − 0.5𝑥3

2 + 𝑢, 𝑦 = 𝑥2,

P5 : = ¤𝑥1 = 𝑥2; ¤𝑥2 = −0.08𝑥1 − 0.02𝑥3
2 + 𝑢, 𝑦 = 𝑥2.

The initial condition of the plants are given as
[−2 − 3 4 − 1.9 1.4 − 1.6 1.5 − 3.2 3.5 − 4.3]. The
L2–gains of agents are 𝛾1 = 5, 𝛾2 = 0.5, 𝛾3 = 1, 𝛾4 = 2, and
𝛾5 = 50, hence 𝛾 = max (𝛾𝑖) = 50 for 1 ≤ 𝑖 ≤ 5. Therefore,
one needs to choose a controller of L2–gain ≤ 1/50 to
satisfy the loop gain criterion. For our examples, we have
chosen plant gain as 60 leading to an upper bound on
L2–gain equal to 1/60. The performance of controllers has
been studied for different graphs, namely cycle, path, and
star graphs. The simulation results are discussed as follows:

A. Cycle

Consider a network made of 5 nodes connected in a cycle
fashion, the node-edge incidence matrix is

E =


−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 .
The ∥E∥2

2 is obtained as 3.9021 while the L2–
gains of the controller obtained by solving (4) are
𝑘𝑖 = [2.123 2.122 2.124 2.132 2.112] × 10−5. As
there are 5 edges, therefore, 5 controllers are required.
The controller dynamics are chosen as per (19), with
[−0.02 0.04 0.03 − 0.1 0.43] as the initial conditions. The
poles in (19), obtained from relation 𝑏𝑖 = 𝑘 ′/𝑘𝑖 for 𝑘 ′ = 3 are
given as 𝑏𝑖 = [1.4131 1.4137 1.4124 1.4107 1.4209] × 105.
The performance of the interconnected network is shown
in Fig. 3a. It is observed that the edge controller is able
to stabilize the interconnection, and both the positions and
velocities approach zero asymptotically. It is also evident
from Fig. 4a, that the controller states, 𝑧𝑖 , converge to
zero asymptotically, which supports the claims made in
Theorem 1.

B. Path

For the network comprising 5 nodes connected in a path,
the node-edge incidence matrix is

E =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

 .
Since there are fewer edges than nodes, we would need
only 4 controllers in this case. The ∥E∥2

2 for a path is
obtained as 3.90, while the L2–gains of the controller ob-
tained by solving (4) are 𝑘𝑖 = [3.012 1.522 1.534 3.132] ×
10−5.The controller dynamics are chosen as per (19), with
[−0.02 0.04 0.03 − 0.01] as the initial conditions. The poles
in (19), obtained from relation 𝑏𝑖 = 𝑘 ′/𝑘𝑖 for 𝑘 ′ = 3
are given as 𝑏𝑖 = [9.4131 1.9137 1.9524 9.5107] × 105.
The performance of the network is shown in Fig. 3b. It
is observed that the edge controller is able to stabilize
the interconnection, and all the agent states approach zero
asymptotically. It is also seen in Fig. 4b, that the controller
states, 𝑧𝑖 , converge to zero asymptotically, as before.
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C. Star

Consider a network of 5 nodes connected in a star with its
center at node 2, the node-edge incidence matrix is obtained
as

E =


1 0 0 0
−1 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 ,
following which ∥E∥2

2 is obtained as 5 while the L2–
gains of the controller obtained by solving (4) are 𝑘𝑖 =

[1.123 1.112 1.114 1.132] × 10−5. The controller dynamics
are chosen as per (19), with [−0.02 0.04 0.03 − 0.01] as
the initial conditions. The poles in (19), obtained from
relation 𝑏𝑖 = 𝑘 ′/𝑘𝑖 for 𝑘 ′ = 3 are obtained as 𝑏𝑖 =

[2.7131 2.4137 2.6124 2.6507] × 105. The performance of
the network is shown in Fig. 3c. It is observed that the edge
controller is able to stabilize the interconnection, and both the
positions and velocities of individual plants approach zero
asymptotically, as well. As seen in Fig. 4c, the controller
states converge to zero asymptotically as well.

(a) Cycle. (b) Path. (c) Star.

Fig. 3: Node dynamics.
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Fig. 4: Edge controller dynamics.

Remark 3. It may be observed that for a fixed value L2–
gain 𝛾, with an increase in the number of edges for a graph
containing the same number of nodes, the value of L2–gain
of the controller decreases. One should note that any value of
gain 𝑘 ′ that satisfies the relation 𝑘𝑖 = 𝑘 ′/𝑏𝑖 can be chosen as
a controller parameter to further satisfy the loop gain criterion
according to (4).

VI. CONCLUSION

This paper proposed small-gain methods to derive a suf-
ficient condition on the asymptotic stability of networks
of diffusively connected finite-gain L2–stable systems, even
when each individual system/node admitted heterogeneous
nonlinear dynamics. Our findings show that, under the as-
sumption that the agents are finite-gain L2–stable and zero-
state observable, the interconnection is zero input asymptoti-

cally stable, and all agents dynamics converge to origin. Fur-
thermore, the L2–gain of the edge controllers was obtained
by solving a proposed LMI condition. The optimization prob-
lems posed in this work provide an upper bound on the family
of edge controllers that can be used for dynamic coupling.
Extensive simulation results are provided that demonstrate
the effectiveness of our theoretical results. Generalization
of the NDS problem in dissipativity framework and the
problem of network optimization over graphs are some of
the interesting future research directions.
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