
Towards Fully Autonomous Orbit Management for Low-Earth Orbit
Satellites based on Neuro-Evolutionary Algorithms and Deep

Reinforcement Learning

Alexander Kyuroson, Avijit Banerjee, Nektarios Aristeidis Tafanidis,
Sumeet Satpute and George Nikolakopoulos

Abstract— The recent advances in space technology are fo-
cusing on fully autonomous, real-time, long-term orbit manage-
ment and mission planning for large-scale satellite constellations
in Low-Earth Orbit (LEO). Thus, a pioneering approach for
autonomous orbital station-keeping has been introduced using
a model-free Deep Policy Gradient-based Reinforcement Learn-
ing (DPGRL) strategy explicitly tailored for LEO. Addressing
the critical need for more efficient and self-regulating orbit
management in LEO satellite constellations, this work explores
the potential synergy between Deep Reinforcement Learning
(DRL) and Neuro-Evolution of Augmenting Topology (NEAT)
to optimize station-keeping strategies with the primary goal to
empower satellite to autonomously maintain their orbit in the
presence of external perturbations within an allowable tolerance
margin, thereby significantly reducing operational costs while
maintaining precise and consistent station-keeping throughout
their life cycle. The study specifically tailors DPGRL algo-
rithms for LEO satellites, considering low-thrust constraints
for maneuvers and integrating dense reward schemes and
domain-based reward shaping techniques. By showcasing the
adaptability and scalability of the combined NEAT and DRL
framework in diverse operational scenarios, this approach
holds immense promise for revolutionizing autonomous orbit
management, paving the way for more efficient and adaptable
satellite operations while incorporating the physical constraints
of satellite, such as thruster limitations.

I. INTRODUCTION

Recent advancements in satellite miniaturization and their
utilization in various fields such as communication and Earth
observation have created the need for long-term orbit man-
agement and mission planning for LEO satellite constella-
tions. To address these demands, Machine Learning (ML) [1]
and Deep Learning (DL) [2] have gained exponential atten-
tion within the aerospace community for their applications in
autonomous and real-time Guidance, Navigation and Control
(GNC) systems [3] for future deployment over the past
decades. Such pioneering direction represents a departure
from conventional methods, offering real-time onboard capa-
bilities that pave the way for more autonomous and resilient
decision-making with long-duration missions [4]. Notably,
the application of ML and DL in GNC systems is expected to
allow for the execution of diverse periodic operations such as
maneuver planning for station-keeping, ensuring the satellite
formations stability in the presence of orbital perturbations,

Robotics and AI Group, Department of Computer, Electrical
and Space Engineering, Luleå University of Technology
Luleå Sweden akyuroson@gmail.com, {nektaf,
aviban,sumsat,geonik}@ltu.se

thereby enabling precise control to actively maintain the
desired relative position of satellite within the constellation.
Such advancements enable more fuel-efficient maneuvers
with more effective and independent control, marking a
significant leap forward in space exploration.

After the final orbital insertion to relocate the satellite from
its parking orbit to its desired orbit, continuous perturbations
necessitate periodic corrections to ensure the satellite remains
within an acceptable tolerance range of its intended trajec-
tory. To address this, defining a trajectory tracking problem
involves using the nominal satellite trajectory, unaffected by
perturbations, as the reference path. The goal is to determine
the necessary maneuver plan or the control input to keep the
satellite aligned with this reference trajectory. However, such
station-keeping maneuvers become extremely complex given
that the satellite is part of a constellation and its relative state,
i.e., position and velocity, must be maintained with respect
to other satellites within the formation [5]. Furthermore,
other factors, such as fuel consumption and the duration of
orbital correction, must be considered as they will impact
operational capabilities.

DRL has been shown as a promising framework to not
only autonomously control the movements of a satellite while
maintaining it within its designated orbit but also reduce
operational costs and maximize mission returns [6]. It must
be noted that DRL algorithms can continuously learn and
optimize control strategies by receiving feedback from the
environment such as the position of satellite and its orbital
dynamics, thereby making optimal state-dependent decisions
accordingly [7]. DRL algorithms can be designed to consider
various parameters such as gravitational forces, orbital per-
turbations, and other dynamic factors affecting the position
of satellite. Such state-dependent learning processes allow
the satellite to adapt to dynamic and unstable environmental
conditions and execute maneuvers that optimize station-
keeping, reducing the need for constant manual interventions.

Furthermore, due to the size of trained policies, which
are based on Multi-Layered Perceptron (MLP) network ar-
chitectures and therefore are computationally efficient, DRL
agents can be deployed on platforms with limited computing
power, to achieve autonomous capabilities such as collision
avoidance [8], path-planning, trajectory optimization [9] as
well as station-keeping [10]. Expanding on this concept, a
complex model-free data-driven policy based on Proximal
Policy Optimization (PPO) was proposed for propulsion-

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1641

less maneuvers that leverage differential drag states to solve
multi-satellite constellation problems [5]. Moreover, sim-
ilar DRL algorithm was used to perform station-keeping
maneuvers for a satellite operating near a Sun-Earth L2

Southern quasi-halo trajectory in an ephemeris model while
utilizing Bayesian optimization for guided parameter selec-
tion to achieve a policy with high accuracy in a deterministic
fashion [11].

Given the advantages mentioned above of DRL for use
in orbit management, this work investigates the feasibility
of utilization of DRL in combination with NEAT [12],
[13] for station-keeping, which can lead to more adaptive
and efficient control strategies, while enhancing the ability
of satellite to autonomously manage its position within a
tolerance range of its orbital parameters, thereby reducing
operational costs and ensuring precise and consistent station-
keeping throughout the mission. Therefore, the main con-
tributions of this study are as follows: (a) A novel satel-
lite environment for real-time simulation of orbital station-
keeping that includes non-linear orbital dynamics and pertur-
bations. (b) Employing NEAT for topology and parametric
optimization as well as the creation of an expert agent for
comparison with optimal policy achieved by DRL in the
proposed environment under mission-specific constraints. (c)
Utilization of model-free DPGRL algorithms in conjunction
with LEO satellites with low-thrust constraints for maneuvers
to the desired orbit, while incorporating dense reward scheme
and reward shaping based on domain knowledge. (d) A pre-
liminary comparative analysis of Deep Deterministic Policy
Gradient (DDPG) [14], Twin Delayed Deep Deterministic
Policy Gradient (TD3) [15] and NEAT to further improve
learning while fine-tuning the system constraints and address
catastrophic inference.

The remainder of this article is structured as follows.
Section II outlines the related theories to implement the pro-
posed framework. Thereafter, Section III presents a detailed
description of the implemented DRL and NEAT framework
and discusses the agent and environmental design for solv-
ing LEO satellite station-keeping. Furthermore, a detailed
evaluation of achieved simulation results is presented in
Section IV. Finally, we conclude this article by discussing
the achieved results and future work in Section V.

II. BACKGROUND

In this Section, the orbital dynamics, encompassing both
the equations of motion and the perturbations affecting the
satellite, are presented. Moreover, a detailed description of
the DRL algorithms that are employed for orbital station-
keeping within the satellite orbital environment is provided,
followed by an overview of evolutionary algorithms, specif-
ically NEAT, for its use for Reinforcement Learning (RL).

A. Orbital Dynamics

The orbital environment model for the satellite, used in
both training as well as testing of the RL agent, is described
in the Earth Centered Inertial (ECI) (J200) frame of reference

Fig. 1: The ECI and LVLH reference frames.

and is as follows [16], [17]:

r̈(t) = − µ

||r||3
r+ at + a3b + adrag + ag + asrp, (1)

where at = RI
H

U
m , and the satellite position r(t) =

[rx, ry, rz]
T and velocity v(t) = [vx, vy, vz]

T are repre-
sented in ECI reference frame defined as I = {X,Y, Z}
as depicted in Figure 1. Additionally, µ denotes the Earth’s
gravitational parameter, and ||r|| indicates the distance of
the satellite from the center of the Earth. The satellite is
orbiting around the Earth, primarily under the influence of
the gravitational field. However, its motion is affected under
the influence of various perturbation factors such as non-
spherical gravity ag due to Earth’s oblateness, atmospheric
drag adrag , influences of the third body a3b such as the Sun
and Moon as well as the solar radiation pressure asrp. In
the context of station-keeping for the LEO region, the non-
spherical Earth’s gravitational field and the air drag are the
primary influential factors. To account for the effects of dis-
turbances while maintaining the station-keeping objectives,
controlled actuation, at, is considered provided by the on-
board low-thrust electric propulsion system. The thrust force
is expressed as U = [FR, FT , FN]T in the Local-Vertical
Local-Horizontal (LVLH) reference frame H = {R, T,N},
where RI

H denotes the corresponding transformation matrix
from H to I.

External perturbations continuously deviate the satellite
from its desired orbit. A brief description of the perturbation
models used to construct the orbital environment is described
in the following part.

Earth’s Gravitational Perturbation: The gravitational
field can be described as a potential, whose gradient provides
acceleration due to gravity. The higher degree spherical
harmonics gravity accelerations are given as [16]:

ag = ∇µ
r

∞∑
n=2

n∑
m=0

H1H2, (2)

where H1 = Pnm(sinφ) (Cnm cosmλ+ Snm sinmλ),
H2 =

(
RE
r

)n
, and n and m are the degree and order

of spherical harmonics, RE is the Earth’s radius, r is the
geocentric distance of the satellite, Pnm is the Legendre
polynomial with argument sinφ, φ and λ are the respective
latitude and longitude of the satellite and Cnm and Snm

1642

are the harmonic coefficients of the potential. The Earth’s
gravity potential can be modeled accurately, using the higher
degree and order Earth’s Gravity Model (EGM). The EGM96
gravity model provides the data for spherical harmonic
coefficients complete to the degree and order 360 [18].

Atmospheric Drag: Given that the satellite is operating
in LEO, the acceleration drag experienced is calculated ac-
cording to Equation 3, where vrel = v−

(
0, 0, ΩEarth

)T ×
r is the relative velocity of the satellite and earth, and
ΩEarth, is the Earth’s rotation, Cr, is the drag coefficient,
and Ad, the flat plate area in nominal attitude.

adrag = −0.5ρ
(
AdCd

m

)
||vrel||2

(
vrel

||vrel||

)
. (3)

Third Body Perturbation: The third-body gravity pertur-
bations are exerted by the Sun and Moon. Thus, the gravity
acceleration due to the third body effects can be expressed
as [16]:

ai = µi

(
ris
||ris||3

− ri
||ri||3

)
, (4)

where i represents Sun or Moon, and µ corresponds to
their respective gravitational parameters. Furthermore, ris =
ri−r are the respective position vectors from the satellite to
the Sun and Moon, and ri is the respective position vector
from the Earth to the Sun and Moon. The position of the Sun
and Moon is required to calculate the third body acceleration,
where a3b = amoon + asun. The position vectors of the
celestial bodies were calculated via the SPICE Toolkit.

Solar Radiation Pressure: For the Solar Radiation Pres-
sure (SRP) induced acceleration, the cannonball disturbance
model and dual conical shadow model [19] are considered.
The SRP induced acceleration is given by:

asrp =

(
SCrAs

m

)
−rss
||rss||3

, (5)

where S is the solar flux calculated from the conical
shadow model, Cr is the surface reflectivity coefficient, As

is the exposed area, c is the speed of light, and m is the
mass of the spacecraft.

B. Deep Reinforcement Learning

DRL can be described as a learning paradigm, where an
agent attempts to learn an optimal policy, π, by interacting
with its environment, E ; see Figure 2. Based on received
observations, xt, at each time-step, t, the agent takes an
action, at ∈ Rn, which will result in a scalar reward
feedback, rt. The resulting policy maps each state to a
probability distribution for a given action, π : S → P(A). By
utilizing the Markov Decision Process (MDP), the DRL can
be modeled based on state space, S, action space A, initial
state distribution P(s1), transition dynamics P(st+1|st, at),
a reward function R(st, at) and a discount factor γ ∈ [0, 1].
To obtain the optimal policy by maximizing the expected
return from the initial distribution, J = Eri,si∽E,ai∽π[R1]
is the main goal in DRL framework.

1) DDPG: DDPG can be described as an off-policy RL
algorithm that has adopted an actor-critic architecture as
shown in Figure 3. By combining elements of value-based

Fig. 2: The layout of the proposed DRL framework.

and policy-based methods, it can concurrently learn a Q-
function and a policy based on the sampled batches from
its experience pool [14]. By directly taking specific actions
based on the current state, the actor-network learns a deter-
ministic policy. Moreover, experience replay is employed to
stabilize training, and target networks are used to compute
more stable Q-value estimates. Critic Network updates its
parameters, θQ, based on the Temporal Difference (TD)
method, where the loss function for the critic network is
given by:

L(θQ) =
1

N

∑
i

(
Q(si, ai|θQ)− yi

)2
, (6)

where yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

) is the target
value for the critic network and γ the discount factor.

2) TD3: To address the overestimation of Q-value, which
can be observed in actor-critic methods such as DDPG, TD3
adopts an improved clipping variant of double Q-learning
by utilizing two critic networks that have access to the
same pool of sampled experiences [15]. To update the critic
networks, the minimum Q-value is selected based on the
following expression:

L =

(
r + γ min

i=1,2
Q′(st+1, at+1|θQ′

i)−Q(st+1, at+1|θQ′
i)

)2

, (7)

where θQ1 and θQ2 represent the corresponding parameters
of critic networks and θQ′

1 and θQ′
2 are the parameters of the

target networks. Moreover, r(st, at) is the reward feedback
based on the deterministic action at = µ(st|θµ). To minimize
the loss function, Equation 7 is used to update both θQ1
and θQ2 . Furthermore, by adding exploration noise, ϵ, to the
action, the value function can be updated in a smoother
manner while reducing the Q-function error exploitation. It
must be noted that based on the domain-specific problem, ϵ
can be either represented by uncorrelated Gaussian distribu-
tion [15], N (0, σa), where σa represents the standard devia-
tion observed in n steps, or temporally correlated noise such
as Ornstein-Uhlenbeck (OU) process [14]. The regularization
of at+1 by adding clipped noise, ϵ, can facilitate the smooth-
ing of the target policy and increase the exploration ability of
the algorithm. The TD3 employs the delayed target network

1643

Fig. 3: DDPG algorithm architecture flowchart.

update method by using State–Action–Reward–State–Action
(SARSA)-style regularization technique to prevent accumu-
lations of error and to ensure small TD error during the
training. The soft update rule for the target network is given
by θQ′

i ← τ ·θQi +(1−τ)θQ′
i , where θQi , θQ′

i and τ represent
the parameters of the main and the target network and the
updating rate, respectively.

C. Neuro-Evolutionary Topology Optimization

NEAT can be described as an evolutionary algorithm,
where both the weights and topologies of Neural Networks
(NNs) are evolved such that for any given control prob-
lem [20], it can discover an optimal policy without any
reliance on indirect inference based on the value function.
Furthermore, it has been shown that NEAT can efficiently
survey policy space for the environments where the gradients
are complex and difficult to calculate [12]. Combined with
its capability to mitigate the impact of initialization as
well as initial topology configuration of NNs on learning
performance, NEAT has been considered to be vital for
the optimization of domain-specific MLPs in DRL frame-
work [21]. However, due to its initialization approach, where
extremely rudimentary NNs without any hidden layers are
utilized to gradually evolve into highly sophisticated net-
works, it has been deemed sample inefficient [12]. Therefore,
other variations of NEAT such as Hypercube-based Neuro-
Evolution of Augmenting Topology (HyperNEAT) [22] and
adaptive HyperNEAT [23] were proposed to address some
of the shortcomings of NEAT.

The topology optimization via NEAT is achieved by incre-
mentally augmenting the initial population of generated NNs
via mutation operators in addition to adding nodes and links
after each generation assessment [13]. Thus, discovering the
most optimal topology with the minimum required number
of nodes and their related weights for a given environment.
Furthermore, NEAT utilizes speciation by measuring the
number of excess, E, and disjoint, D, genes between a given
pair of genomes to calculate their compatibility distance,
δ, thus avoiding any topological override between different
populations for any given species [12]. The compatibility
distance can be expressed as δ = c1

E
N + c2

D
N + c3W ,

where c1, c2, and c3 are the associated weights to adjust the
importance of each factor while W and N represent the aver-
age weight differences of matching genes and the number of
genes, respectively. During the reproduction phase, NEAT
leverages explicit fitness sharing, thereby preventing the
takeover of the entire population by any single species to

allow possible future evolution and crossovers [20]. The
adjusted fitness, f ′i , for given organism, i, is given by:

f ′i =
fi∑n

j=1 sh (δ(i, j))
, (8)

where sh(δ(i, j)) ∈ {0, 1} and represents the sharing
function that depending on the compatibility threshold, δt,
reduce

∑n
j=1 sh (δ(i, j)) to the number of organisms in

a given species. It must be noted that based on f ′i , the
number of offsprings are adjusted such that the lowest
performing species are eliminated before generating the next
generation [22].

III. METHODOLOGY

In this Section, the proposed orbital environment and its
related constraints are presented. Moreover, a brief descrip-
tion of DRL algorithms as well as NEAT and their related
hyperparameters are provided. The reward function design
for addressing the station-keeping problem is given in detail,
and its subsequent components are further analyzed.

A. Station-keeping in DRL Framework

Figure 2 illustrates the proposed architecture of the satel-
lite environment and its utilization in conjunction with DRL
framework for autonomous orbital management, specifically
optimal station-keeping. To determine the optimal maneuvers
required for driving the satellite back to its nominal reference
trajectory based on its current state, x(t), the desired nominal
trajectory without any perturbations is calculated and utilized
as the target state in DRL algorithm to determine the optimal
control input, U, for maintaining the satellite on its reference
trajectory. Furthermore, the reward feedback, R, is proposed
based on the convergence towards the nominal state and
allows the optimization of the policy, π, during the training
phase by interacting with the simulated environment that
encompasses the satellite dynamics.

1) Experiment Setup: The station-keeping problem can be
described as the optimal trajectory tracking problem and is
given by:

min
U

V (s(t)) =
∫ tf
τ=t
∥(s(τ)− sd(τ)∥Q2 + ∥U(t)∥R2)dτ, (9)

where tf denotes a specific final time, while sd(τ) and
s(τ) represent the desired and actual states of the spacecraft
at any given time instance τ , respectively. Furthermore,
Equation 9 is subjected to ṡ(t) = As(t) + 1

mBU + D,
where U(t) ∈ [Fmin, Fmax] represents the thrust magnitude
with its minimum and maximum thresholds. In the proposed
environment, the low-thrust constraints are applied such that

1644

Fig. 4: Satellite trajectory tracking, where δr is the error
between the reference and actual position at time-step Tn.

the maximum thrust magnitude is 18 mN. The time-step Tn
is set to 10 s with the thrust duration also fixed at 10 s.
Moreover, the state initialization is randomized such that
the initial velocity and position of the satellite have been
affected by the perturbations without any prior interference
with position error, δr ≤ 45km, as illustrated in Figure 4.

2) Action & Observation Space: The state observation for
a given satellite is determined based on satellite dynamics
and the perturbations present in its environment, as depicted
in Figure 2. The observation space, x(t), contains both the
velocity vector, v(t), as well as the position vector, r(t),
of the satellite in a given time-step and is obtained from
the orbital propagator. Both velocity and position vectors are
included in observation space for the DRL algorithm due
to the station-keeping problem formulation, where both the
position and velocity of the satellite must be tightly tracked
to maintain a nominal orbit.

Furthermore, the action vector, at, is the control input,
which is expressed as at = [FR, FT, FN] in LVLH
reference frame and corresponds to the exerted forces from
the satellite thrusters. The normalized thrust vector elements
with their corresponding range ∈ [−1, 1] are denoted by FR,
FT and FN . By considering six onboard thrusters, which are
aligned with all three axes of LVLH frame of reference, the
actuation command for the combined thrusters located on the
same axis can be described as acceleration and deceleration
along a given axis for a given state.

3) Reward Function Design: The reward function and
its design is a crucial element of DRL framework as it
directly impacts the learning outcomes of a given agent [17].
Therefore, a well-formulated reward function is required to
enable the agent to efficiently explore the environment for
optimal policy convergence. To comply with the standard
reward formulation based on policy gradient frameworks

TABLE I: Hyperparameters for the DRL algorithms.
Parameters DDPG Values TD3 Values
Learning rate critic 0.00025 0.0001
Learning rate actor 0.000025 0.00001
Discount factor 0.99 0.99
Update interval 2 2
Target network update rate 0.001 0.001
Batch size 64 64
OU noise (σ) 0.15 0.15
OU noise (ζ) 0.0 0.0
OU noise (ϕ) 0.2 0.2

of RL and MDP, a policy given as πθ can be found such that
the agent must optimize the parameter θ by maximizing the
expected accumulated reward J (θ) = Ês∽ρπ,a∽πθ [r(s, a)].
According to the policy gradient theorem, the gradient of
J (θ) with respect to θ can be expressed as following:

∇θJ (πθ) = Ês∽ρπ,a∽πθ [∇θlogπθ(s, a)Q
π(s, a)], (10)

where Qπ represents the state-action value function.
To realize fully autonomous station-keeping, state-specific
thresholds for both position and velocity are defined such
that extreme divergence from optimal orbit will result in
the termination of the simulation with an extremely high
penalty. Furthermore, the reward function, Rtot, has been
decomposed into multiple segments to achieve fuel-optimal
maneuvers to reach the nominal trajectory within the least
feasible steps. Therefore, a dense reward scheme is proposed
to facilitate the agent in its exploration endeavor while
minimizing the samples required to reach an optimal policy.
The total reward function is expressed as a combination of
linear and exponential functions and is formulated as follows:

Rtot(s, a) = Rstate +Rposition +Rbound +Raction −Rstep, (11)

where Rstate represents the unified state reward based on{
st, st+1, starget

}
and is given by:

Rstate = −ln (∥st+1 − starget∥) + ln (∥st − starget∥) . (12)

Moreover, Rposition is a compounded reward to assess
the approximation to the nominal position by exponentially
rewarding the agent trajectory for given actions. This will
result in closer proximity to the desired orbit and can be
expressed as:

Rposition = e(20−
∥δr∥
ψ), (13)

where ψ = 103 is a scaling factor and δr = r̄t+1− r̄target
represents the error between the reference and actual position
as shown in Figure 4. Equation 13 provides an auxiliary
reward when the agent crosses the maximum tolerable tra-
jectory threshold, δr ≤ 20km. Furthermore, to minimize the
consumption of propellant, the agent is rewarded based on
the magnitude of control input, which is given by:

Raction = β · (1− ∥ā∥), (14)

where β = 102 is an empirical weight chosen such that the
fuel consumption is scaled with respect to Rposition, thereby
resulting in less fuel utilization when the satellite is within
the desired boundary threshold, δr ≤ 1km. To ensure that the
exploration is performed in an optimal and sample-efficient
fashion, the Rbound is utilized to incentivize any exploration
where the satellite exceeds its initial divergence outside of
selected boundaries. Therefore, Rbound is solely activated
when the achieved error between the nominal and actual
position in a new state, r̄t+1 ≥ 35km, and is calculated
as follows:

Rbound = −
(
10 · ψ + e(

∥δr∥
ψ −40)

)
. (15)

To minimize the number of steps while achieving the
desired orbit, Rstep is used to encourage the agent to
converge to the solution by minimizing its effort and can

1645

be expressed by Rstep = γ · κ, where γ = 5 · 10−4 is an
empirically selected weight and κ represents the current step.

4) Terminal Constraints: The terminal constraints play a
significant role in the DRL training process, as it prevents
sample-inefficient training. Therefore, the terminal position
error is defined as follows:

Tconstraints =

{
True ∥r̄t+1 − r̄target∥ ≥ 50km

False Otherwise.
(16)

Given that the terminal criterion is reached, the training
episode is halted, and the agent is penalized and receives a
−104 penalty. Furthermore, in any successful episode, where
∥δr∥ ≤ 1km, the agent is rewarded with an additional 104

points.
5) Exploration Noise: The exploration of the environment

by the agent is facilitated by incorporating noise into the
control inputs generated by the actor-network as depicted
in Figure 3. This strategy increases the efficacy of DRL
based control by effectively expanding the agent exploration
into previously unseen state-action space during the training
process [14]. Furthermore, the addition of noise creates
inherent robustness in the generated model for real-world
scenarios, given the existence of noise in the acquired data
during live missions.

The OU process, which models the velocity of Brownian
particles in the presence of friction, is utilized during the
training phase for both DDPG and TD3 as temporally
correlated noise. The OU process is formulated as follows:

δa = ϕ(ζ − a) + σN (0, 1), (17)

where ϕ, ζ, and σ represent the decay rate, long-term
mean, and variation of the generated noise, respectively [14].
The associated values for each parameter of OU process for
both DRL algorithms are provided in Table I.

6) Hyperparameters: Both DDPG and TD3 have been
considered as DRL algorithm candidates to evaluate the
proposed satellite environment and obtain an optimal policy
for the station-keeping problem. The main driving factor for
selecting these algorithms is their wide utilization in applica-
tion with both observation and action space in the continuous
domain [14]. The topology for actor and critic networks
for both algorithms was selected after experimenting with
networks of various sizes. A similar network topology is used
throughout all training and evaluation phases to maintain
neutrality and accurately assess the capabilities of both
algorithms. Specifically, the actor and critic networks are
constructed with two deep, fully connected layers comprising
400 and 300 neurons, respectively, activated by the ReLU
function. Furthermore, the output layer utilizes the hyper-
bolic tangent function, tanh, as its activation mechanism,
enabling the clipping of the thrust vector, at, within its
predetermined bounds. Details regarding the remaining hy-
perparameters for both algorithms are provided in Table I.

B. Station-keeping with NEAT

Similar to the proposed DRL framework depicted in
Figure 2, NEAT algorithm is used to leverage the proposed

Fig. 5: NNs topology from NEAT for the best-achieved
fitness with two hidden layers, where yellow nodes indicate
clusters of neurons while the color of edges, red and black,
indicate a negative or positive correlation, respectively.

satellite environment for autonomous orbit management,
specifically addressing the station-keeping problem with de-
fined constraints as stated briefly in the previous section.

1) Experiment Setup: A similar environment and ex-
perimental setting as DRL framework is deployed, where
the main goal is evolution and optimization of the feature
network, thereby determining the optimal topology for the
defined problem to study the correlation between state and
action space.

2) Hyperparameters: NEAT has been employed to obtain
an optimal policy that satisfies similar constraints and crite-
ria as DRL algorithms. Furthermore, the initial number of
hidden layers was set to 2 so that similar MLP as DDPG
and TD3 actor-network is created to further investigate
the selected NNs architecture and possibly discover other
optimal topology for the station-keeping problem for low-
thrust satellites. It must be noted the termination condition
was selected such that given the maximum population, the
average fitness of the species must be ≥ 104. The remaining
hyperparameters to configure NEAT are provided in Table II.

IV. RESULTS

In this section, the results from both DRL algorithms as
well as NEAT for station-keeping are presented. Further-
more, the component-wise residual for the state vector is
provided to analyze the behavior of policy generated by
both methods. It must be noted that both the environmental
framework and the agents have been implemented in the
Python 3.8 environment, while Pytorch is used for the
implementation of DRL algorithms.

TABLE II: Hyperparameters for NEAT algorithm.
Parameters Values
Population size (p) 50
Max generations n2 100
Add node rate (mn) 0.02
Add connection rate (ml) 0.5
Weight init mean 0.0
Weight init std 1.0
Weight mutate rate (mw) 0.3
Weight mutate power 0.81
Activation functions ReLU & tanh
Aggregation functions mean, max & sum
Crossover rate (c) 0.1

1646

Fig. 6: Correction of satellite trajectory utilizing DRL
and NEAT.

Fig. 7: Close-up view of a segment of satellite trajectory
based on DRL and NEAT.

A. Evaluation of Reward

The average episodic reward for both DDPG and TD3
during the training process is shown in Figure 8. As Fig-
ure 8 illustrates, although both DRL algorithms are capable
of solving the station-keeping task, DDPG has the most
unreliable performance due to catastrophic inference, which
is one of the primary challenges of DRL algorithms given
non-stationary data stream. To combat these issues, several
strategies were devised for continual learning that align with
the main reasons that TD3 was adopted due to its stable
learning and faster convergence to the solution.

B. Evaluation of DRL & NEAT

The optimal policy from TD3 is utilized to compare the
trajectory and velocity error between the DRL framework
and NEAT. It must be noted that optimized NNs topology
devised by NEAT closely resembles the MLP architecture
proposed for TD3 [15] as shown in Figure 5. Moreover, it has
been shown that in the context of station-keeping, some state
elements are not vital for achieving the nominal trajectory
and velocity; see Figure 5.

Figure 6 and 7 illustrate the nominal trajectory of the
satellite without perturbations as well as trajectory correction
performed by TD3 and NEAT for station-keeping for a given

Fig. 8: Average episodic training reward for DDPG and TD3.

Fig. 9: Component-wise trajectory error for TD3.

Fig. 10: Component-wise trajectory error for NEAT.

1647

Fig. 11: Component-wise velocity error for TD3.

satellite in the presence of perturbations. It must be noted that
the target orbit for this study is considered to be a circular
orbit with a radius of 600 km, and an inclination of 70 deg.
Furthermore, Figure 9 and 10 depict the residual between the
target and the actual position of satellite for TD3 and NEAT
as the correctional maneuver is performed. Similarly, the
error between the desired and the actual velocity of the
satellite for TD3 is shown in Figure 11. NEAT algorithm
produces similar velocity residuals, which indicates that both
algorithms can perform trajectory maneuvers such that the
nominal trajectory is reached in the presence of perturba-
tions.

V. CONCLUSIONS

This article introduces a novel approach towards achieving
a fully autonomous orbital station-keeping for LEO satellites
through the amalgamation of NEAT and DRL. The quest
for complete autonomy becomes essential in response to the
pressing need for an autonomous decentralized orbit man-
agement strategy for vast satellite constellations. Towards
this, the proposed methodology provides a framework for
continuous, precise, and adaptable positioning of satellites
without consistent human intervention. By synergizing DRL
and NEAT while integrating dense reward schemes, the
proposed approach strives to optimize the orbital deviation
to empower satellites to independently maintain their or-
bits despite external perturbations, staying within acceptable
tolerance margins. The proposed concept showcases the
potential of AI-driven solutions in advancing autonomous
control systems for complex real-world applications, depart-
ing from conventional methods and paving the way for more
efficient and resilient satellite operations. Population-based
optimization, prioritized replay buffer, and other variations
of NEAT can be investigated to optimize the results further.

REFERENCES

[1] B. Li, J. Huang, Y. Feng, F. Wang, and J. Sang, “A machine learning-
based approach for improved orbit predictions of LEO space debris
with sparse tracking data from a single station,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 56, no. 6, pp. 4253–4268,
2020.

[2] H. Li, S. Chen, D. Izzo, and H. Baoyin, “Deep networks as approx-
imators of optimal low-thrust and multi-impulse cost in multitarget
missions,” Acta Astronautica, vol. 166, pp. 469–481, 2020.

[3] D. Izzo, M. Märtens, and B. Pan, “A survey on artificial intelligence
trends in spacecraft guidance dynamics and control,” Astrodynamics,
vol. 3, pp. 287–299, 2019.

[4] H. Li, H. Baoyin, and F. Topputo, “Neural networks in time-optimal
low-thrust interplanetary transfers,” Ieee Access, vol. 7, pp. 156 413–
156 419, 2019.

[5] B. Smith, R. Abay, J. Abbey, S. Balage, M. Brown, and R. Boyce,
“Propulsionless planar phasing of multiple satellites using deep rein-
forcement learning,” Advances in Space Research, vol. 67, no. 11, pp.
3667–3682, 2021.

[6] A. Harris, T. Teil, and H. Schaub, “Spacecraft decision-making au-
tonomy using deep reinforcement learning,” in 29th AAS/AIAA space
flight mechanics meeting, hawaii, 2019, pp. 1–19.

[7] Y. Cai, E. Zhang, Y. Qi, and L. Lu, “A review of research on the
application of deep reinforcement learning in unmanned aerial vehicle
resource allocation and trajectory planning,” in 2022 4th International
Conference on Machine Learning, Big Data and Business Intelligence
(MLBDBI), 2022, pp. 238–241.

[8] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep
control policies for autonomous aerial vehicles with MPC-guided
policy search,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 528–535.

[9] C. J. Sullivan and N. Bosanac, “Using reinforcement learning to design
a low-thrust approach into a periodic orbit in a multi-body system,”
in AIAA Scitech 2020 Forum, 2020, p. 1914.

[10] D. Miller and R. Linares, “Low-thrust optimal control via reinforce-
ment learning,” in 29th AAS/AIAA Space Flight Mechanics Meeting,
vol. 168. American Astronautical Society Ka’anapali, Hawaii, 2019,
pp. 1817–1834.

[11] S. Bonasera, N. Bosanac, C. J. Sullivan, I. Elliott, N. Ahmed, and
J. W. McMahon, “Designing sun–earth l2 halo orbit stationkeeping
maneuvers via reinforcement learning,” Journal of Guidance, Control,
and Dynamics, vol. 46, no. 2, pp. 301–311, 2023.

[12] Y. Peng, G. Chen, H. Singh, and M. Zhang, “NEAT for large-scale
reinforcement learning through evolutionary feature learning and pol-
icy gradient search,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 490–497.

[13] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2019.

[15] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

[16] D. A. Vallado, Fundamentals of astrodynamics and applications.
Springer Science & Business Media, 2001, vol. 12.

[17] J. Hu, H. Yang, S. Li, and Y. Zhao, “Densely rewarded reinforcement
learning for robust low-thrust trajectory optimization,” Advances in
Space Research, 2023.

[18] NASA and NIMA, “EGM96 the NASA GSFC and
NIMA joint geopotential model.” [Online]. Available:
https://cddis.nasa.gov/926/egm96/egm96.html

[19] E. Gill and O. Montenbruck, Satellite orbits: Models, methods and
applications. Springer, 2013.

[20] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through
evolutionary complexification,” J. Artif. Int. Res., vol. 21, no. 1, p.
63–100, feb 2004.

[21] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl,
“Automatic feature selection in neuroevolution,” in Proceedings of the
7th annual conference on Genetic and evolutionary computation, 2005,
pp. 1225–1232.

[22] S. Risi and K. O. Stanley, “Enhancing ES-hyperNEAT to evolve more
complex regular neural networks,” in Proceedings of the 13th annual
conference on Genetic and evolutionary computation, 2011, pp. 1539–
1546.

[23] S. Risi and K. O. Stanley, “Indirectly encoding neural plasticity as a
pattern of local rules,” in International conference on simulation of
adaptive behavior. Springer, 2010, pp. 533–543.

1648

