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Abstract— This paper delves into the distributed estimator-
based Dynamic Average Consensus (DAC) control problem
within multi-agent systems (MASs) modeled by Partial Differ-
ential Equations (PDEs). The objective of DAC is for agents
to converge to time-varying average profiles, referred to as
dynamic average reference signals. Unlike prior research, this
study will use a distributed estimator to recover the average
reference signals for agents to track, which converges to the
desired average reference in finite time. The reference signal
with compact support employed in this study represents a more
generalized signal type compared to previous works. Based
on the distributed estimator, this research explores the DAC
problem within in-domain PDE control. In-domain control
is where input control acts within the governing equation.
To assess the stability of the closed-loop system, we employ
the Lyapunov technique for analysis. Finally, the proposed
control designs’ effectiveness in each section of the paper is
demonstrated through simulation examples.

Index Terms— Multi-Agent Systems, Distributed PDE Con-
trol, Dynamic Average Consensus, Distributed Estimator.

I. INTRODUCTION

An MAS refers to a group of autonomous agents that
interact with each other to achieve a common goal. Control
of MASs involves the coordination and regulation of the
behavior of these autonomous agents. The behavior of each
agent can be affected by the actions of other agents in the
system and this will make the control of the system very
complex [1]. There are several approaches to controlling
MASs, including centralized [2], decentralized [3], and dis-
tributed control. Distributed control involves agents making
decisions and coordinating their behavior with other agents
based on local information, without a central controller [4]-
[5].

The consensus-based control is a fundamental problem in
MASs, where a group of agents must reach an agreement on
a common value [6]. Various algorithms have been proposed
in the literature to address the consensus problem, each
with its advantages and limitations and one may refer to
different order of model such as first-order [7], second-order
[8], fractional-order [9], higher-order models [10] etc. The
average consensus problem is a fundamental problem in
MASs where the goal is for a group of agents to converge
to a consensus value or average of a given set of values
[11]. Average consensus has been investigated in two types of
static and dynamic. In static average consensus, the common
value is a constant where in most cases it is the average of
initial conditions of agents’ states [12].
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The DAC problem is an extension of the average consen-
sus problem, where the values to be averaged are not static
but rather vary over time [13]. Solving the DAC problem is of
significant interest in applications such as distributed control
of unmanned aerial vehicles (UAVs) [14] and coordinated
control of autonomous vehicles [15]. Several approaches
have been proposed to solve the DAC problem, including
event-triggered algorithms [16] and robust algorithms [17].
In the existing literature on DAC, most studies have focused
on systems described by Ordinary Differential Equation
(ODE) models [18]. This paper considers a PDE model
which describes MASs in a generalized way [19].

The control of PDEs is a challenging problem due to
the infinite-dimensional nature of the PDE models [20]. For
example, [5] investigates the problem of formation tracking
which is often formulated as determining a coordinated
control law that keeps the MASs maintain a desired, possibly
time-varying, formation while tracking a target or following
a reference orbit. In their research, [12] delved into the
PDE control of static average consensus where agents will
converge to the average of their initial condition.

Moreover, prior works typically consider a limited range
of reference signals that the system needs to track [13]. Also,
a significant limitation of prior research in the field of DAC is
the assumption that agents possess direct access to the aver-
age of reference signals [13]. In practice, this is unattainable
as agents lack the capacity for direct communication and data
sharing among themselves. This paper consider a distributed
estimator to address the limitations of previous works in this
area and the idea of solving this issue has been borrowed
from [21]. The distributed dynamic encirclement control for
MASs has been studied in [21].

• To the authors’ best knowledge, this work is the first
control design results on in-domain control of a PDE-
based model for MASs studying DAC problem.

• Compared with [13] and [18] in which studied DAC
problem for stable linear ODE model of MASs, the
main contribution of this paper is in considering general
PDE model for MASs.

• Compared to previous works such as [13] and [18],
our paper contributes significantly by introducing two
key elements. First, we employ a distributed estimator
for the average of reference signals to enhance system
stability. Second, we extend our focus to general signals
with compact Fourier transforms as reference signals,
allowing for more versatile applications of DAC.

• In contrast to [12], which primarily addressed the static
average consensus problem in PDE models of MASs,
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our main contribution lies in our dynamic approach to
average consensus.

The subsequent sections are organized as follows: Section
II introduces reference signals and the problem formulation.
Section III discusses the estimated average reference signal
estimator. The dynamics of the distributed PDE system as
an in-domain problem is detailed in Section IV. Section
V explores a simulation example, and finally, Section VI
concludes the paper and outlines future research directions.

II. PROBLEM FORMULATION

Consider each agent as a distinct node and each interaction
between agents as a single edge, forming an undirected
simple graph G(Ψ, E) where Ψ = {1, 2, ..., n} denotes
the set of nodes and E denotes the set of edges. A path
in this context refers to a sequence of unique edges and
nodes between two distinct nodes, ensuring no duplicated
edges or nodes within the sequence. If a path exists between
all distinct nodes, the graph is considered connected. For
any simple connected graph with n nodes, there exists a
unique adjacency matrix A(G) = [aij ] ∈ ℜn×n, where
aij = 1 if nodes i and j share an edge in between, and
aij = 0 otherwise. The graph Laplacian L associated with an
undirected graph G is symmetric and positive semi-definite
matrix for each connected graph.

A. System Formulation
Consider a group of n agents communicating with each

other under an undirected simple graph. The MAS is mod-
eled by a set of reaction-advection-diffusion PDE as

θt(t, x) = Aθxx(t, x) +Bθx(t, x) + Γθ(t, x) + u(t, x),
(1a)

θx(t, 0) = 0, θx(t, 1) = 0, (1b)
θ(0, x) = θ0(x). (1c)

In the context of (t, x) ∈ ℜ+ ×Ω and Ω = {x : 0 < x < 1}
and θ(x, t) ∈ ℜn is the collecting vector of states of agents
as

θ(t, x) = [θ1(t, x), θ2(t, x), · · · , θn(t, x)]T , (2)

and θi(t, x) ∈ ℜ is the state of i-th agent for i ∈ Ψ.
u(t, x) = [u1(t, x), u2(t, x), · · · , un(t, x)]

T ∈ ℜn is the
collecting vector of control inputs of agents. Note A =
diag(α1, α2, · · · , αn), B = diag(β1, β2, · · · , βn) , and Γ =
diag(γ1, γ2, · · · , γn) where ∀i ∈ Ψ, αi, βi, and γi are dif-
fusivity, advectivity, and reactivity coefficients respectively.
Consider that A is positive definite. The boundary conditions
are considered to be of Neumann type.

Definition 1: ( [13]) u(t, x) ∈ C[0,∞) × [0, 1] is a
Dynamic Average Consensus control for system modeled
by (1) such that ∀x ∈ (0, 1) the following holds

lim
t→∞

θ(t, x) = vavg(t), (3)

where vavg(t) is the collecting vector of average reference
signal defined as

vavg(t) = vavg(t)1n,

where vavg(t) is defined in (5).

B. Reference Signal

Reference signals that are with compact support and their
Fourier transform exist are considered in this paper. Also,
sinusoidal signals are considered as a periodic group of
reference signals. Let

vref(t) = [vref
1 (t), vref

2 (t), · · · , vref
n (t)]T ∈ ℜn, (4)

be the vector of all reference signals where vref
i (t) ∈ ℜ, t ⩾ 0

is the reference signal of agent i. Let

vavg(t) =
1

n
1T
n.v

ref(t), (5)

be the dynamic average reference signal.
Assumption 1: Assume that the Fourier transform of cho-

sen reference signal vref
i (t) exist as

v̄ref
i (ξ) =

∫ ∞

−∞
vref
i (t)e−i2πξtdt := F (vref

i (t)). (6)

Let v̄avg(ξ) be the Fourier transform of the average refer-
ence signal as

v̄avg(ξ) = F (vavg(t)). (7)

Lemma 1: Consider the Fourier transform of reference
signal and dynamic average reference signal proposed as
(6) and (7) respectively. vavg(t) is compactly supported on
a bounded set Υ. The integral is bounded and the measure
of the set is µ(Υ) > 0. The Fourier transform of average
reference signal and its first derivative have finite upper
bounds η1 and η2 respectively as

|v̄avg(ξ)| ⩽ µ(Υ) · ∥vavg(t)∥ := η1, (8)

| ˙̄vavg
(ξ)| ⩽ µ(Υ) · ∥ d

dt
vavg(t)∥ := η2, (9)

where ∥ · ∥ denotes the ∞-norm.
Remark 1: Periodic signals with bounded amplitude like

sinusoidal signal

vref
i (t) = bisin(ωit+ ϕi), (10)

doesn’t need to have compact support and their upper bound
is fixed at any time as

|vavg(t)| ⩽ 1

n

n∑
i=1

|bi| = η1, (11)

and

|v̇avg(t)| ⩽ 1

n

n∑
i=1

|bi| · |ωi| = η2. (12)

III. DISTRIBUTED AVERAGE REFERENCE SIGNAL
ESTIMATOR

Given that each agent communicates exclusively with its
local neighbors and lacks knowledge of the exact value of
vavg(t), the initial task for agents is to estimate the average
of reference signals. To tackle this challenge, each agent is
equipped with an average reference estimator designed to
compute the estimated average of reference signals denoted
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as v̂avg
i (t) ∈ ℜ. The dynamics governing this average

reference estimator is

v̂avg
i (t) = δi(t) + vref

i (t), (13a)

δ̇i(t) =


κ

n∑
j=1

aij
v̂avg
j (t)−v̂avg

i (t)

∥v̂avg
j (t)−v̂avg

i (t)∥ ,

if v̂avg
j (t) ̸= v̂avg

i (t), ∀t > 0,

0 if v̂avg
j (t) = v̂avg

i (t), ∃t > 0,

(13b)

in which δi(t) is the intermediate state of estimator and
δi(0) = 0, ∀i ∈ Ψ. κ > 0 is a design parameter. aij is the
relevant element of adjacency matrix of network topology.

Theorem 1: Consider the average reference estimator dy-
namic in equation (13), by designing κ > η2(n − 1). The
estimator (13) is convergent to the average of reference
signals in a finite and desirable time T as

lim
t→T

v̂avg
i (t) = vavg

i (t), i ∈ Ψ, (14)

where

T ⩽
2
√

1
2

∑n
i=1 e

2
i (0)

n1.5(κ− η2(n− 1))
, (15)

and ei(0) = v̂avg
i (0)− 1

n

n∑
i=1

v̂avg
i (0).

Proof: Define the error signal as

ei(t) = v̂avg
i (t)− 1

n

n∑
i=1

v̂avg
i (t). (16)

Choose the Lyapunov candidate as follows

V1(t) =
1

2

n∑
i=1

e2i (t).

The time derivative of V1(t) is

V̇1(t) =

n∑
i=1

ei(t)

(
˙̂vavg
i (t)− 1

n

n∑
k=1

˙̂vavg
k (t)

)

=

n∑
i=1

ei(t)

κ

n∑
j=1

aij
v̂avg
j (t)− v̂avg

i (t)

∥v̂avg
j (t)− v̂avg

i (t)∥

+ ˙̂vavg
i (t)− 1

n

n∑
k=1

˙̂vavg
k (t)

)

=

n∑
i=1

ei(t)

κ

n∑
j=1

aij
v̂avg
j (t)− v̂avg

i (t)

∥v̂avg
j (t)− v̂avg

i (t)∥


+

n∑
i=1

ei(t) ˙̂v
avg
i (t)−

n∑
i=1

ei(t)

(
1

n

n∑
k=1

˙̂vavg
k (t)

)
.

(17)

Define

f̂ji(t) :=
v̂avg
j (t)− v̂avg

i (t)

∥v̂avg
j (t)− v̂avg

i (t)∥
. (18)

For the first term in (17), we have

κ

n∑
i=1

n∑
j=1

aijei(t)
v̂avg
j (t)− v̂avg

i (t)

∥v̂avg
j (t)− v̂avg

i (t)∥

=κ

n∑
i=1

n∑
j=1

aij
(
v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)

)
f̂ji(t)

=
κ

2

n∑
i=1

n∑
j=1

aij
(
v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)

)
f̂ji(t)

+
κ

2

n∑
i=1

n∑
j=1

aij
(
v̂avg
j (t)− 1

n

n∑
k=1

v̂avg
k (t)

)
f̂ij(t)

=
κ

2

n∑
i=1

n∑
j=1

aij
(
v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)

)
f̂ji(t)

− κ

2

n∑
i=1

n∑
j=1

aij
(
v̂avg
j (t)− 1

n

n∑
k=1

v̂avg
k (t)

)
f̂ji(t)

=− κ

2

n∑
i=1

n∑
j=1

aij
(
v̂avg
j (t)− v̂avg

i (t)
)
f̂ji(t)

=− κ

2

n∑
i=1

n∑
j=1

aij∥v̂avg
j (t)− v̂avg

i (t)∥. (19)

In the third row of (19), the order of summations has been
switched from index i to j, and from f̂ji(t) to f̂ij(t). It’s
important to note that aij = aji. In the subsequent row, the
sign has been inverted due to the substitution of f̂ij(t) with
f̂ji(t), utilizing the fact that f̂ij(t) = −f̂ji(t). Regard of the
second term in (17), based on 12 we have

n∑
i=1

ei(t) ˙̂v
avg
i (t) ⩽ η2

n∑
i=1

∥v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)∥

⩽
η2
n

n∑
i=1

∥∥∥∥∥nv̂avg
i (t)−

n∑
k=1

v̂avg
k (t)

∥∥∥∥∥
≤η2

n∑
j=1,j ̸=i

max
i=1,2...,n

(∥∥v̂avg
i (t)− v̂avg

j (t)
∥∥)

≤(n− 1)η2 max
i,j=1,2...,n

∥∥v̂avg
i (t)− v̂avg

j (t)
∥∥

≤η2(n− 1)

2

n∑
i=1

n∑
j=1

aij∥v̂avg
j (t)− v̂avg

i (t)∥. (20)

For the third in (17) we have

n∑
i=1

ei(t)

(
− 1

n

n∑
k=1

˙̂vavg
k (t)

)

=

n∑
i=1

(
v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)

)(
− 1

n

n∑
k=1

˙̂vavg
k (t)

)

=

(
n∑

i=1

v̂avg
i (t)−

n∑
k=1

v̂avg
k (t)

)(
− 1

n

n∑
k=1

˙̂vavg
k (t)

)
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=

(
1

n

n∑
i=1

v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)

)(
−

n∑
k=1

˙̂vavg
k (t)

)

=

(
1

n

n∑
i=1

v̂avg
i (t)− 1

n

n∑
k=1

v̂avg
k (t)

)(
−

n∑
k=1

˙̂vavg
k (t)

)
= 0.

(21)

By adding (19), (20), and (21) we have

V̇1(t) ⩽− κ

2

n∑
i=1

n∑
j=1

aij∥v̂avg
j (t)− v̂avg

i (t)∥

+
η2(n− 1)

2

n∑
i=1

n∑
j=1

aij∥v̂avg
j (t)− v̂avg

i (t)∥

⩽−
(κ− η2(n− 1)

2

) n∑
i=1

n∑
j=1

aij∥v̂avg
j (t)− v̂avg

i (t)∥

⩽−
(κ− η2(n− 1)

2

)
n2 max

i,j∈Ψ

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥ ,
(22)

then κ > η2(n− 1) results in V̇1(t) ⩽ 0. On the other hand
we have∥∥∥∥∥v̂avg

i (t)− 1

n

n∑
k=1

v̂avg
i (t)

∥∥∥∥∥ ⩽
1

n

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥

⩽ max
i,j∈Ψ

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥ ,

which yields

V1(t) ⩽
n

2

(
max
i,j∈Ψ

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥ )2,

and the following is derived

n2

√
2

n

(κ− η2(n− 1)

2

)
V

1
2
1 (t)

⩽ n2
(κ− η2(n− 1)

2

)
max
i,j∈Ψ

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥ . (23)

By adding (23) to (22), we have

V̇1(t) + n2

√
2

n

(κ− η2(n− 1)

2

)
V

1
2
1 (t)

⩽−
(κ− η2(n− 1)

2

)
n2 max

i,j∈Ψ

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥

+ n2
(κ− η2(n− 1)

2

)
max
i,j∈Ψ

∥∥v̂avg
j (t)− v̂avg

i (t)
∥∥

⩽0. (24)

Based on Finite-Time Stability Theorem [22], estimator
(13) is convergent to the average of reference signals in a
finite time T as

lim
t→T

v̂avg
i (t) = vavg

i (t), i ∈ Ψ, (25)

then we have

T ⩽
2
√

1
2

∑n
i=1 e

2
i (0)

n
3
2 (κ− η2(n− 1))

. (26)

IV. IN-DOMAIN CONTROL

In some applications, input control is within the system’s
domain, known as ”in-domain control” where the system’s
governing PDE is involved as in (1). DAC is categorized as
a tracking problem where the aim is for the agents’ states
to follow a time-varying function referred to as the average
reference signal. To elaborate, denote ei(t, x) ∈ ℜ as the
error signal for agent i, which is defined as

ei(t, x) := θi(t, x)− vavg(t), (27)

and

e(t, x) = [e1(t, x), e2(t, x), · · · , en(t, x)]T ∈ ℜn, (28)

is the collective vector of error signals. Based on the error
signal definition (27), we have the following error dynamic

et(t, x) =Aexx(t, x) +Bex(t, x) + Γe(t, x)

+ Γvavg(t)− v̇avg(t) + u(t, x), (29a)
ex(t, 0) =0, ex(t, 1) = 0, (29b)
e(0, x) =e0(x), (29c)

where v̇avg(t) = v̇avg(t)12n. To achieve the DAC introduced
in Definition 1, the distributed input control

u(t, x) =− LKe(t, x)− Γv̂avg(t) + ˙̂vavg(t)

−Bex(t, x), (30)

is proposed where we have the control input as

u(t, x) =− LKθ(t, x)−Bθx(t, x)− (Γ− LK)v̂avg(t)

+ ˙̂vavg(t), (31)

where v̂avg(t) is the estimated average of reference signals
from (13) originated from the reference signal vref(t). L
is the Laplacian Matrix representing the communication
topology in the system. K = diag(k1, k2, · · · , kn) and
ki,∀i ∈ Ψ are design parameters.

Theorem 2: Consider the system modeled by (1) in con-
junction with the input control proposed in (31) which results
in the following closed-loop system

θt(t, x) =Aθxx(t, x) + (Γ− LK)θ(t, x)

− (Γ− LK)vavg(t) + v̇avg(t), (32a)
θx(t, 0) =0, θx(t, 1) = 0, (32b)
θ(0, x) =θ0(x). (32c)

By designing K in a way that Γ − LK < 0 then the states
of system are asymptotically convergent to dynamic average
reference signal in the sense of L2 norm and we have

lim
t→∞

θ(t, x) = vavg(t). (33)
Proof: Consider error signal definition in (27) and (28).

Choose the Lyapunov candidate as

V2(t) =
1

2

∫ 1

0

eT (t, x)e(t, x)dx.
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Fig. 1: Communication topology between agents

The time derivative of V2(t) is

V̇2(t) =

∫ 1

0

eT (t, x)et(t, x)dx

=

∫ 1

0

(
eT (t, x)Aexx(t, x)

+ eT (t, x)(Γ− LK)e(t, x)
)
dx

=−
∫ 1

0

eTx (t, x)Aex(t, x)dx

+

∫ 1

0

eT (t, x)(Γ− LK)e(t, x)dx

⩽− λmin(A)∥ex(t, x)∥2 + λmax(Γ− LK)∥e(t, x)∥2

⩽− min
∀i∈Ψ

(αi)∥ex(t, x)∥2 + λmax(Γ− LK)∥e(t, x)∥2,
(34)

where for functions of (t, x), ∥ · ∥ denotes L2 norm, and
integration by parts is used in the third row. By designing K
in a way that Γ − LK < 0 then the system state converges
to the dynamic average reference signal.

V. SIMULATION

Consider a group of n = 10 agents with the network
communication topology shown in Fig. 1 as an undirected
connected graph. System (1) coupled with the dynamic
average consensus control in (31) is under investigation with
the system parameters A = 10I10, B = I10, and Γ = −I10.
K = I10 is considered in this section and two types of
reference signals will be considered. Theorem 2 is hold. Note
that θi(t, x) maps into R. Assume that the initial conditions
of all agents θ0(x) = 30 sin(2πx) in all different parts of
example.

1) Sinusoidal Reference Signals: In this part, an ar-
bitrary sinusoidal reference signal vref

i (t) = (2i −
1) sin(0.2πt), ∀i ∈ Ψ is considered and the average of
reference signals is vavg(t) = 10 sin(0.2πt). The calculated
upper bounds for this example, are η1 = 10 and η2 = 2π.
Fig. 2, shows that the calculated upper bound η1 precisely
matches the signal’s amplitude in the figure.

Remark 2: Extension to a group of sinusoidal reference
signal with different frequencies is possible, but a single
frequency sinusoidal signal is considered here in order to
observe that tracking is occurring with easy observation.

Fig. 2: The average of sinusoidal reference signals

Fig. 3: The average of saturation-like reference signals

Fig. 4: θ6(x, t) with in-domain control with sinusoidal ref-
erence signal.

2) Saturation-like Reference Signals: An arbitrary
saturation-like reference signal is considered as
vref
i (t) = (2i − 1) arctan(t), ∀i ∈ Ψ and the average of

reference signals is vavg(t) = 10 arctan(t). Here, the upper
bounds are η1 = 5π and η2 = 10.

Fig. 3, visually confirms that the calculated upper bound
η1 perfectly aligns with the amplitude of the signal depicted
in the figure.

Figs 4 and 5, along with each other illustrate that the state
θ6(x, t) precisely converges to the average of the sinusoidal
reference signal. Initially, the sinusoidal behavior of θ0(x) is
apparent, and after some time, the system’s state effectively
tracks the reference signal. Figs 6 and 7 along with each
other illustrate that the state θ6(x, t) precisely converges to
the average of the saturation-like reference signal. At first
sinusoidal behavior of θ0(x) is evident and later the system’s
state effectively pursue the saturation-like reference signal.
Figs 5 and 7 are right side view of Figs 4 and 6 respectively.
A video illustrating the behavior of states 2, 6, and 10 is
available in [23] to confirm that all of 10 agents closely
resemble that of agent 6. Due to space limitations, we only
show simulation results of agent 6.
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Fig. 5: Side view of θ6(x, t) with in-domain control with
sinusoidal reference signal.

Fig. 6: θ6(x, t) with in-domain control with saturation-like
reference signal.

Fig. 7: Side view of θ6(x, t) with in-domain control with
saturation-like reference signal.

VI. CONCLUSION AND FUTURE WORKS

This paper has explored the distributed estimator-based
DAC control problem within multi-agent systems modeled
by reaction-advection-diffusion PDEs. Unlike previous re-
search, it considered generalized reference signals, extending
the scope of the DAC problem. This paper introduced a
distributed estimator to overcome limitations. The paper
investigated in-domain control category, providing in-depth
analysis, a first in the context of DAC. The stability of the
closed-loop system is assessed using the Lyapunov tech-
nique. Simulation examples demonstrated the effectiveness
of the proposed control designs.

Future research will focus on boundary control of PDE
systems in context of DAC and addressing the DAC problem
of PDE systems that feature spatially varying coefficients.
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