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Abstract— We study the problem of estimating the states of
a linear system based on measured data. We investigate the
problem in both deterministic and stochastic settings. In the
deterministic case, we develop data-driven conditions under
which we can reconstruct state trajectories uniquely. Also, we
discuss the case in which we have some missing data in the given
input/output measurements. In the stochastic case, we develop a
Kalman filter-like algorithm to recursively estimate both states
and outputs. Finally, we consider a multi-input multi-output
system to elucidate the developed results.

Index Terms— State reconstruction/estimation, data-driven
approach, missing data, behavioral system theory, LTI systems.

I. INTRODUCTION

State estimation is a classical problem in systems and
control. Luenberger observer [1] (in the deterministic setting)
or Kalman filter [2] (in the stochastic setting) is the state-
of-the-art for reconstructing or estimating the states of a dy-
namic system. Traditionally, both Luenberger observers and
Kalman filters require model knowledge for estimating the
states. However, due to the increasing complexity of modern
control systems, it is not always possible to derive a model
using first principles or system identification algorithms.
With that in mind, this paper considers the problem of state
estimation directly from measured data, without explicitly
identifying a state-space model. Our approach to tackling
this problem is inspired by the behavioral system theory of
Willems [3]. In particular, it relies on a seminal result that is
known as the fundamental lemma [4, Theorem 1]. According
to this result, the subspace of all possible input/output tra-
jectories of a controllable linear time-invariant (LTI) system
can be obtained by a single sufficiently rich input/output
trajectory.

As the fundamental lemma provides sufficient conditions
under which a completely data-driven representation can
replace the parametric state-space model, this result has
become instrumental in the development of recent data-
driven control methods. Necessary and sufficient conditions
for the fundamental lemma have been stated and proven in
[5], see also [6] for further discussion. Furthermore, it has
been extended to uncontrollable LTI systems [7], [8] and
to the case in which multiple trajectories of the system are
given [9]. It has also been extended to classes of nonlinear
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systems such as Volterra systems [10], NARX systems [11],
and Wiener and Hammerstein systems [12]. For an overview,
we refer to [13]. The fundamental lemma has directly or
indirectly been used in solving several control problems:
data-driven simulation or prediction [14], data-driven control
in the behavioral setting [15], [16], data-driven stabilizing
controllers [17], data-driven predictive control [18], [19],
[20], [21], [22], data-driven input reconstruction [23], [24]
and moving horizon estimation [25]. For further applications,
specifically, in power systems, we refer the readers to [26].

Furthermore, a Kalman filter-like algorithm, based on the
fundamental lemma, to estimate only the outputs is discussed
in [27, Section IV], whereas an extended Kalman filter-like
algorithm has been proposed to estimate the fictitious state
(sequence of past outputs) for the purposes of data-driven
predictive control in [28, Section IV]. Other contributions
that consider the estimation of states include [29], [30]. Note
that the approach in [29] is based on the fundamental lemma,
whereas the approach in [30] relies on the data informativity
framework proposed in [31]. In this paper, we are interested
in estimating the states of a linear system in deterministic as
well as stochastic settings. Note that we use the terminology
reconstruction in the deterministic case and estimation in the
stochastic case. The main contributions of this paper are:

1) we state and prove an extension of the fundamental
lemma (see Theorem 3), where state trajectories are
also considered, and using this result we develop Al-
gorithm 1 that reconstructs the state trajectory from a
given input/output trajectory;

2) we extend Algorithm 1 to the case, where we have miss-
ing data in input/output trajectories (see Algorithm 2);

3) we extend Theorem 3 in stochastic setting (see Theo-
rem 8) and use it to develop Kalman filter-like recursive
algorithm for estimating both outputs and states based
on measured data of a noisy system (see Algorithm 3).

The rest of this paper is organized as follows. We pro-
vide our notation and necessary preliminaries in Section II.
Section III presents the problem considered in this paper.
Section IV deals with the state reconstruction in the noise-
free setting. Section V deals with the state reconstruction
in case of missing data. Section VI develops a data-driven
Kalman filter-like algorithm for both output and state esti-
mation. Section VII illustrates our results on a multi-input
multi-output (MIMO) system. Finally, Section VIII offers
concluding remarks and future research directions.

II. NOTATION AND PRELIMINARIES

The set of real k × m matrices is denoted by Rk×m.
The transpose and the Moore-Penrose pseudo-inverse of A ∈
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Rk×m are denoted by A⊤ and A†, respectively. The identity
matrix of dimension k/appropriate is denoted by Ik/I and
the zero matrix of appropriate dimensions is denoted by 0.
We define

col(A1, A2, . . . , Ar) :=
[
A⊤

1 A⊤
2 . . . A⊤

r

]⊤
provided the matrices have the same number of columns.
With zd we denote a generic offline trajectory in discrete-
time (data) of length T ∈ N defined as1

zd :=
(
zd(t), zd(t+ 1), . . . , zd(t+ T − 1)

)
∈ (Rq)T .

Associated with zd, we define a shifted trajectory as

z+d :=
(
zd(t+ 1), zd(t+ 2), . . . , zd(t+ T )

)
∈ (Rq)T .

Further, we denote a generic trajectory of length L ∈ N as
z|[t,t+L−1] := col(z(t), z(t+ 1), . . . , z(t+ L− 1)). For the
sake of simplicity, we denote f |L := f |[1,L] and f |Lt

=
ft−Lp,t+Lf

for L = Lp+Lf +1, Lp, Lf ∈ N. We denote by
zs|t the predicted value of a variable z at time s ≥ t given
the information at time t. We denote any symmetric positive
definite matrix A by A > 0. Sq := {A ∈ Rq×q : A > 0}
denotes the set of symmetric positive definite matrices of size
q×q. The abbreviation rv(s) stands for random vector(s). The
triplet (Ω,F ,P) denotes a complete probability space with
Ω being the sample space, F the complete sigma algebra, P
a probability measure. The symbol E denotes the expectation
operator with respect to the measure P. For an rv w ∈ Rq , we
denote its expected value E[w] as w̄. For any centered rvs
w ∈ Rq and v ∈ Rp, we denote cov(w, v) = E

[
wv⊤

]
∈

Rq×p and var(w) = cov(w,w) ∈ Rq×q the covariance
matrices.

Now, we recall the notion of persistency of excitation [4].
Definition 1 (Persistency of excitation): A q-variate time

series zd is persistently exciting of order L ∈ N if the Hankel
matrix with L-block rows defined as

HL(zd) :=

 zd(t) zd(t + 1) · · · zd(t + T − L)
zd(t + 1) zd(t + 2) · · · zd(t + T − L + 1)

...
...

. . .
...

zd(t + L − 1) zd(t + L) · · · zd(t + T − 1)


has full row rank, i.e., its rank is qL.
Finally, H|[l1,l2](zd) represents a submatrix of HL(zd) start-
ing from the block row l1 to block row l2 included.

III. PROBLEM STATEMENT

Consider the following minimal discrete-time linear time-
invariant system

xt+1 = Axt +But (1a)
yt = Cxt +Dut. (1b)

Here, at each time instant t ∈ N, xt ∈ Rn is the state vector,
ut ∈ Rm is the control input vector, and yt ∈ Rp is the output
vector. Matrices A,B,C,D are of appropriate dimensions.
We assume that the matrices A,B,C,D are unknown; how-
ever, we have access to input/output or input/state/output data
that are generated by the system. The aim is to reconstruct
the state of the system based on measured data. The noisy
case is considered in Section VI.

1Trajectories xd, ud, and yd will be defined similarly.

IV. DATA-DRIVEN REPRESENTATION OF AN LTI SYSTEM

We begin with by recalling the fundamental lemma [4,
Theorem 1].

Lemma 2 (Fundamental lemma): Assume that system (1)
is controllable and, given L ∈ N with L > n, the observed
trajectory col(ud, yd) is such that ud is persistently exciting
of order L+n. Then, col(u|[t,t+L−1], y|[t,t+L−1]) is a trajec-
tory of system (1) if and only if there exists gt ∈ RT−L+1

such that [
HL(ud)
HL(yd)

]
gt =

[
u|[t,t+L−1]

y|[t,t+L−1]

]
.

We now show that the fundamental lemma due to
Willems et al. can be straightforwardly extended to in-
clude the state trajectories as well. Note that by L-
long input/state/output trajectory of system (1) we mean
col(u|[t,t+L−1], x|[t+1,t+L], y|[t,t+L−1]). Note the indices on
different variables.

Theorem 3: Let the system (1) be controllable. Let
ud be persistently exciting of order n + L. Then,
col(u|[t,t+L−1], x|[t+1,t+L], y|[t,t+L−1]) is a trajectory of (1)
if and only if there exists gt ∈ RT−L+1 such thatHL(ud)

HL(x
+
d )

HL(yd)

 gt =

u|[t,t+L−1]

x|[t+1,t+L]

y|[t,t+L−1]

 . (2)

Proof: ‘If’ part: Let (2) hold. Then, by superposition,
col(u|[t,t+L−1], x|[t+1,t+L], y|[t,t+L−1]) is a trajectory of (1).

‘Only if’ part: Because the system (1) is controllable and
ud is persistently exciting of order n+ L, the matrix[

HL(ud)
H|[1,1](xd)

]
(3)

has full row rank [9, Theorem 1]. Thus, there exists a solution
gt ∈ RT−L+1 to the following system of linear equations[

HL(ud)
H|[1,1](xd)

]
gt =

[
u|[t,t+L−1]

xt

]
. (4)

From system (1), we haveu|[t,t+L−1]

x|[t+1,t+L]

y|[t,t+L−1]

 =

ImL 0
NL PL

TL OL


︸ ︷︷ ︸

=:ML

[
u|[t,t+L−1]

xt

]
, (5)

where

NL =


B 0 · · · 0
AB B · · · 0
...

...
. . .

...
AL−1B AL−2B · · · B

 , OL =


C
CA
CA2

...
CAL−1

 ,

PL =


A
A2

...
AL

 , TL =


D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

. . .
...

CAL−2B CAL−3B · · · D

 .

(6)
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From equations (4) and (5), we haveu|[t,t+L−1]

x|[t+1,t+L]

y|[t,t+L−1]

 =

HL(ud)
HL(x

+
d )

HL(yd)

 gt. (7)

This completes the proof.
Based on the above theorem, we develop the following

algorithm for state reconstruction.
Algorithm 1: Data-driven state reconstruction.

Input: Data col(ud, x
+
d , yd) and measurements

col(u|[t,t+L−1], y|[t,t+L−1]).
Output: State trajectory x|[t+1,t+L].

1: Compute a g from[
HL(ud)
HL(yd)

]
g =

[
u|[t,t+L−1]

y|[t,t+L−1]

]
. (8)

2: Compute

x|[t+1,t+L] = HL(x
+
d )g. (9)

Now, we assume that
(C0) ker(col(HL(ud),HL(yd))) ⊆ ker(HL(x

+
d )).

Theorem 4: Let the system (1) be controllable, ud be
persistently exciting of order n+L, and condition (C0) hold.
Then, Algorithm 1 gives a unique state trajectory.

Proof: The proof is straightforward and is skipped.
Remark 1: Evidently, Algorithm 1 relies on state data.

However, these data xd, x
+
d are collected offline and by using

Algorithm 1, we can determine state trajectories at any point
in time or in online experiments. Note that related prior
contributions [29], [30] require state data as well.

V. MISSING TRAJECTORIES

In this section, we consider the problem of reconstructing
the state trajectory in case the measured input/output trajec-
tory col(u|L, y|L) has some missing entries or outliers. Note
that we treat the outliers as missing entries. Also, note that,
for the simplicity of exposition, we consider col(u|L, y|L)
instead of col(u|[t,t+L−1], y|[t,t+L−1]). We denote the known
trajectory by (u|K1 , y|K2), where K1 ⊆ {1, 2, . . . ,mL} and
K2 ⊆ {1, 2, . . . , pL}. Consequently, we denote the missing
trajectory by (u|M1

, y|M2
), where M1 = {1, 2, . . . ,mL} −

K1 and M2 = {1, 2, . . . , pL} − K2. Correspondingly, we
denote by HK1

(ud) and HK2
(yd) as the submatrices of

HL(ud) and HL(yd), respectively, obtained by deleting the
rows that correspond to the sets M1 and M2.

To tackle the above problem, we first reconstruct the full-
length input/output trajectory (u|L, y|L), based on the known
trajectory (u|K1 , y|K2). In other words, we find out the miss-
ing entries (u|M1

, y|M2
) of the given trajectory. Then, we use

our Algorithm 1 to reconstruct the state trajectory, based on
this reconstructed full-length input/output trajectory.

Computing the missing entries of a given trajectory has
been more recently studied in [32], where this problem has
been referred to as “data-driven dynamic interpolation.” In a
data-driven dynamic interpolation problem, we compute the
missing entries of a partially known trajectory. Thus, we first
complete the given partially known input/output trajectory

using the data-driven dynamic interpolation algorithm [32,
Algorithm 1] and then leverage Algorithm 1 developed in
the previous section to reconstruct the states of the under-
lying system. Combining them, we develop the following
algorithm to reconstruct the states of an LTI system from
partially known input/output measurements.

Algorithm 2: Data-driven state reconstruction from par-
tially known measurements.
Input: Data col(ud, x

+
d , yd) and measurements col(u|L, y|L)

with missing entries.
Output: Complete input/output trajectory col(û|L, ŷ|L) and
state trajectory x|[2,L+1].

1: Compute a gm from[
HK1

(ud)
HK2

(yd)

]
gm =

[
u|K1

y|K2

]
. (10)

2: Compute [
û|L
ŷ|L

]
=

[
HL(ud)
HL(yd)

]
gm. (11)

3: Compute a g from[
HL(ud)
HL(yd)

]
g =

[
û|L
ŷ|L

]
. (12)

4: Compute

x|[2,L+1] = HL(x
+
d )g. (13)

We remark that the data-driven dynamic interpolation
problem discussed above (computing the missing entries—
Steps 1 & 2 of Algorithm 2) need not be always solvable.
Necessary and sufficient conditions for the unique solvability
of the problem are given by (cf. [32, Section 3]):

(C1) rankHL(col(ud, yd)) = n+mL, for L > n;
(C2) rank col(HK1(ud),HK2(yd))

= rank
[
col(HK1

(ud),HK2
(yd)) col(u|K1

, y|K2
)
]
;

(C3) rank col(HK1
(ud),HK2

(yd))
= rankHL(col(ud, yd)) = n+mL.

Note that (C1) is a standard assumption, which is equiva-
lent to the identifiability of the system and can be enforced
by an input sequence that is persistently exciting of order
n + L [21, Theorem 2]. Condition (C2) corresponds to
the consistency condition for a solution to the system of
equations (10). Finally, (C3) provides a unique solution to the
data-driven dynamic interpolation problem. Thus, we have
the following result.

Lemma 5: Let conditions (C0)–(C3) hold. Then, Algo-
rithm 2 gives a unique state trajectory.

A. Missing data in offline trajectories

We now address the problem of reconstructing the state
variables when we have missing data or outliers in offline
trajectories. Under the assumption that the data are generated
by an LTI system, a long trajectory with missing entries
or outliers (which we treat as missing entries) can be
considered as a collection of several short trajectories. Thus,
we tackle this problem by leveraging the fundamental lemma
for multiple trajectories [9]. Now, we recall the notion of a
collectively persistently exciting set of signals of order L.
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Definition 6: [9] Consider the time series zdi
of length Ti

for i = 1, 2, . . . , α, where α is the number of different time
series. We say that the set of time series zdi of length Ti for
i = 1, 2, . . . , α is collectively persistently exciting of order
L ≤ Ti if the mosaic Hankel matrix[

HL(zd1) HL(zd2) · · · HL(zdα)
]

is of full row rank.
Theorem 7: Let the system (1) be controllable. Let udi

of length Ti for i = 1, 2, . . . , α, where α is the number of
different time series, be collectively persistently exciting of
order n + L. Then, col(u|[t,t+L−1], x|[t+1,t+L], y|[t,t+L−1])
is a trajectory of (1) if and only if there exists gt such thatHL(ud1

) · · · HL(udα
)

HL(x
+
d1
) · · · HL(x

+
dα
)

HL(yd1
) · · · HL(ydα

)

 gt =

u|[t,t+L−1]

x|[t+1,t+L]

y|[t,t+L−1]

 . (14)

Remark 2: Of course, if the inputs are collectively persis-
tently exciting, then one can first identify a model and then
use that model to recover the missing offline data, cf. [9,
Section IV.A]. Furthermore, one can also use that model to
reconstruct the states. However, by exploiting Theorem 7,
in view of Algorithm 1, one can directly reconstruct the
states without explicitly identifying a state-space model or
recovering the missing offline data.

Remark 3: If we have missing entries in both offline data
and online measured trajectories, we can again reconstruct
the states by using Theorem 7 and Algorithm 2.

VI. KALMAN FILTER-TYPE RECURSIVE ESTIMATION OF
STATE AND OUTPUT TRAJECTORIES

For each t ∈ N fixed, let µt, νt be rvs defined on (Ω,F ,P).
Consider the following linear stochastic system

xt+1 = Axt +But + µt (15a)
yt = Cxt +Dut + νt (15b)

with xt ∈ Rn, ut ∈ Rm and yt ∈ Rp for t ∈ N.
Here we assume that initial state x0, process noise µt,
and the measurement noise νt are Gaussian distributed with
the latter two having mean zero. Particularly, we have that
x0 = x̄0 + µ0 with µ0 ∼ N (0,Σ0), µt ∼ N (0,Σµt), and
νt ∼ N (0,Σνt

) for Σ0 ∈ Sn, Σνt
∈ Sp. Additionally,

ut = ūt + ηt where ηt ∼ N (0,Σηt
), with Σηt

∈ Sm, is
a rv independent of µt and νt. Thus, the L-long trajectories,
with L = Lp + Lf + 1, Lp, Lf ∈ N, of the system (15) can
be written as follows: u|[t−Lp,t+Lf ]

x|[t−Lp+1,t+Lf+1]

y|[t−Lp,t+Lf ]

 =

ImL 0
NL PL

TL OL


︸ ︷︷ ︸

=:ML

[
ū|[t−Lp,t+Lf ]

x̄t−Lp

]

+

ImL 0 0
NL InL 0
DL SL IpL


︸ ︷︷ ︸

=:KL

η|[t−Lp,t+Lf ]

µ|[t−Lp,t+Lf ]

ν|[t−Lp,t+Lf ]

 ,

(16)

where NL, OL, PL, TL are as defined in (6) and

SL =


C 0 · · · 0
CA C · · · 0
...

...
. . .

...
CAL−1 CAL−2 · · · C

 , DL =

[
D

.. .
D

]
.

Moreover, we have that

η|Lt := η|[t−Lp,t+Lf ] ∼ N (0,Ση|Lt
),

µ|Lt
:= µ|[t−Lp,t+Lf ] ∼ N (0,Σµ|Lt

),

ν|Lt
:= ν|[t−Lp,t+Lf ] ∼ N (0,Σν|Lt

),

where Σµ|Lt
∈ SnL, Σν|Lt

∈ SpL, and Ση|Lt
∈ SmL. Since

µt, νt and ηt are from the same probability space, (16) can
be written as

z|Lt = ML

[
ū|Lt

x̄t−Lp

]
+KLκ̃|Lt

= ML

[
ū|Lt

x̄t−Lp

]
+ κ|Lt

.

(17)

Here,

z|Lt := z|[t−Lp,t+Lf ] :=

u|Lt

x|Lt

y|Lt

 ,

κ|Lt :=

η|Lt

µ|Lt

θ|Lt

 = KL

η|Lt

µ|Lt

ν|Lt

 = KLκ̃|Lt , (18)

with
θ|Lt := DLη|Lt + SLµ|Lt + ν|Lt ,

which is again a Gaussian rv with

θ|Lt
∼ N (0,Σθ|Lt

),

and

Σθ|Lt
:= DLΣη|Lt

D⊤
L + SLΣµ|Lt

S⊤
L +Σν|Lt

.

With this, we denote the noise-parameterized behavior of the
system as

BLt
(κ|Lt

) :=
{
z|Lt

: z|Lt
= ML

[
ū|Lt
x̄t−Lp

]
+ κ|Lt

for x̄t−Lp
∈ Rn

}
.

Theorem 8: Consider system (15). Let ud be persistently
exciting of order n+ L. Then z|Lt

∈ BLt
(κ|Lt

) if and only
if there exists ḡt ∈ RT−L+1 and κ|Lt

∼ N (0,ΣκLt
) such

that

z|Lt = HL(zd)ḡt + κ|Lt . (19)

Proof: The proof follows similarly to the lines of
Theorem 3 from [21] and Theorem 3 above. The interesting
part that is relevant to the latter content is the following.
For ḡt such that z̄t = HL(zd)ḡt, we can obtain a noisy
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trajectory by considering a noisy perturbed gt = ḡt +wt for
wt ∼ N (0,Σwt) such that

z̄|Lt
+ κ|Lt

= HL(zd)[ḡt + wt]

= HL(zd)ḡt +HL(zd)wt

⇒ z|Lt
= HL(zd)ḡt +HL(zd)wt (20)

with κ|Lt
= HL(zd)wt and Σκ|Lt

= HL(zd) Σwt
H⊤

L (zd).

A. Recursive data-driven estimation

In this section, we shall present a recursive method for
estimating the state and output of the system (15). To this
end, we rely on the stochastic fundamental lemma (cf.
Theorem 8) to first obtain a recursive relation for (gt)t≥0.

Theorem 9: Let ḡt ∈ RT−L+1 be a time dependent vector
and (wt)t≥0 be a stochastic process taking values in RT−L+1

such that ḡt and wt satisfies (19) in the sense of (20). If

wt = wt−1 + δt (21)

with (δt)t≥0 denoting independent increments of wt and

x̄|[t−Lp+1,t] = H|[1,Lp](x
+
d )ḡt−1,

ȳ|[t−Lp,t−1] = H|[1,Lp](yd)ḡt−1,
(22)

then gt, for t > 0, satisfies the following recurrence relation

gt = Egt−1 +Gf |Lt
+ βt, f |Lt

:=

 u|Lt

x|[t−Lp+1,t]

y|[t−Lp,t−1]

 ,

Hl
L :=

 HL(ud)
H|[l,Lp+l−1](x

+
d )

H|[l,Lp+l−1](yd)

 , l ∈ N,

G1
L := (H1

L)
†, with l = 1, E := G1

L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

 ,

(23)

G := G1
L

ImL 0 0
0 0 0
0 0 0

 , βt := G1
L

 0
H|[1,Lp](x

+
d )δt

H|[1,Lp](yd)δt

 .

(24)
Proof: From Theorem 8, we have

z|Lt
= HL(zd)ḡt + κ|Lt

. (25)

Since the L-long trajectories are decomposed into past and
future values with respect to the current time t, using (20),
we can write (25) as

=:f |Lt︷ ︸︸ ︷ u|Lt

x|[t−Lp+1,t]

y|[t−Lp,t−1]

 =

=:H0
L︷ ︸︸ ︷ HL(ud)

H|[0,Lp−1](x
+
d )

H|[0,Lp−1](yd)

 [gt + wt] (26)

x|[t+1,t+Lf+1] = H|[Lp,Lp+Lf ](x
+
d )gt (27)

y|[t,t+Lf ] = H|[Lp,Lp+Lf ](yd)gt, (28)

Now taking expectation, we get

f̄ |Lt = H0
Lḡt. (29)

Taking G0
L := (H0

L)
† (pseudo-inverse of H0

L), we can solve
(29) to obtain an estimate for ḡt given as

ḡt = G0
Lf̄ |Lt

.

Since f |Lt = H0
Lḡt +H0

Lwt, we obtain the noisy estimate

gt = G0
Lf̄ |Lt

+ G0
LH0

Lwt

= G0
L(f̄ |Lt

+H0
Lwt). (30)

As per (22), since x̄|[t−Lp+1,t] and ȳ|[t−Lp,t−1] are obtained
from gt−1 and block-rows 1 to Lp of HL(zd), we can plug
it in (30) to obtain a recurrence relation for gt. To this end,
first we rewrite f̄ |Lt

( i.e. E[f |Lt
]) as

f̄ |Lt =

ImL 0 0
0 0 0
0 0 0

 f̄ |Lt +

0 0 0
0 InLp

0
0 0 IpLp

 f̄ |Lt

f̄ |Lt =

ū|Lt

0
0

+

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

 ḡt−1. (31)

Plugging (31) into (30), we get

gt = G1
L

ū|Lt

0
0

+ G1
L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

 ḡt−1 + G1
LH1

Lwt.

(32)

Note that the above relation (32) has the terms G1
L and H1

L

instead of G0
L and H0

L as in (30). This change in superscript
from 0 to 1 simply indicates the number of shifts in the rows
in the corresponding Hankel matrix, i.e. from H|[0,Lp−1] to
H|[1,Lp], to obtain the x|[t−Lp+1,t] and y|[t−Lp,t−1] as an
estimate by using gt−1.

Now invoking (21) and writing wt = wt−1 + δt, we get

gt = G1
L

ū|Lt

0
0

+ G1
L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

 ḡt−1

+ G1
LH1

Lwt−1 + G1
LH1

Lδt

= G1
L

ū|Lt

0
0

+ G1
L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

 ḡt−1 (33)

+ G1
L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

wt−1 + G1
L

HL(ud)
0
0

wt−1

+ G1
LH1

Lδt

Define
δu|Lt

:= HL(ud)wt−1 +HL(ud)δt

= HL(ud)wt

δx|Lp
:= H|[1,Lp](x

+
d )δt

δy|Lp
:= H|[1,Lp](yd)δt.

(34)
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Then (33) is rewritten as

gt = G1
L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)

 gt−1 + G1
L

ū|Lt

0
0

+ G1
L

δu|Lt

δx|Lp

δy|Lp

 .

Since u|Lt
= ū|Lt

+ HL(ud)wt (using (20)), we further
obtain that

gt = G1
L

 0
H|[1,Lp](x

+
d )

H|[1,Lp](yd)


︸ ︷︷ ︸

=:E

gt−1 + G1
L

u|Lt

0
0


︸ ︷︷ ︸

=:Gf |Lt

+G1
L

 0
δx|Lp

δy|Lp


︸ ︷︷ ︸

=:βt

.

(35)

Thus, we can compactly write (35) as

gt = Egt−1 +Gf |Lt
+ βt. (36)

This completes the proof.
Combining (36) with the output and state equations (28)

and (27) respectively, we get

gt = Egt−1 +Gf |Lt
+ βt

x|[t+1,t+Lf+1] = H|[Lp,Lp+Lf ](x
+
d )gt

y|[t,t+Lf ] = H|[Lp,Lp+Lf ](yd)gt.

(37)

Since the above system of equations has a linear structure
with additive Gaussian noise, we can apply the Kalman filter-
type recursive method to estimate y and x. To this end, we
shall consider additional noise terms for the state and output
predictions. Thus defining

ζt ∼ N (0, Rt), ξt ∼ N (0,Λt),

H := H|[Lp,Lp+Lf ](yd), F := H|[Lp,Lp+Lf ](x
+
d ),

we can rewrite (37) as

gt = Egt−1 +Gf |Lt
+ βt (38)

y|[t,t+Lf ] = Hgt + ζt (39)

x|[t+1,t+Lf+1] = Fgt + ξt. (40)

Based on this, we now formulate the data-driven Kalman
filter-type recursion for estimating gt, yt, and eventually xt.

Remark 4: Note that based on (18), (20) and (34),
we have that δu|Lt

∼ N (0,Ση|Lt
) with Ση|Lt

=

HL(ud)Σwt
HL(ud)

⊤.
Algorithm 3: Data-driven Kalman state estimation.

Given: HL(zd), ūt ∈ Rm, g0 ∈ RT−L+1, w0 ∼ N (0,Σw0
),

δt ∼ N (0,Σt), ζt ∼ N (0, Rt) and ξt ∼ N (0,Λt), the
Kalman estimation of (g, y, x) are as follows:

Generate noise matrices:

wt = wt−1 + δt
(
cf. (21)

)
κ|Lt

= HL(zd)wt

(
cf. (20)

)
Ση|Lt

= HL(ud)wtHL(ud)
⊤

u|Lt ∼ N
(
ū|Lt ,Ση|Lt

) (
cf. Remark 4

)
Qt = GH1

LΣδt(GH1
L)

⊤ (
(cf. (23)

)
βt ∼ N (0, Qt)

(
cf. (33)

)
ζt ∼ N (0, Rt), ξt ∼ N (0,Λt)

Prediction step:

gt|t−1 = Egt−1|t−1 +Gf |Lt

Pt|t−1 = E[(gt − gt−1|t−1)(gt − gt−1|t−1)
⊤]

= EPt−1|t−1E
⊤ +GΣu|Lt

G⊤ +Qt

yt|t−1 = Hgt|t−1, xt|t−1 = Fgt|t−1

Measurement step:

yt ∈ B(κ|Lt
)

rt = yt − yt|t−1

St = E[rtr⊤t ] = HPt|t−1H
⊤ +Rt

Update step:

Kt = Pt|t−1H
⊤S−1

t

gt|t = gt|t−1 +Ktrt

Pt|t = [I −KtH]Pt|t−1

yt|t = Hgt|t, xt|t = Fgt|t.

Note that in the measurement step, only the output yt is
measured, and consequently, the residual (innovation) is
obtained solely from yt. However, if it is also possible to
measure the full state xt, it can also be used, along with yt,
to obtain the innovation vector. However, since the full state
can rarely be observed, it represents a special case that we
shall not take into consideration any further. Based on this,
the terms ξt and Λt become superfluous and are also ignored
in the subsequent discussions.

VII. NUMERICAL EXPERIMENTS

In this section, we consider the following MIMO system,
which illustrates the results presented in this paper.

A =

 0.2 0.05 0
−0.05 −0.1 0.035
−0.05 0 0.1

 , B =

1 2
0 −1.3
0 3.1

 ,

C =

[
1 0 2
0 1 3

]
, D =

[
0 0
0 0

]
. (41)

We first consider the noise-free case and show the effec-
tiveness of Algorithm 2. We consider Gaussian distributed
random inputs with zero mean and unit variance of length
T = 60 to excite the system and collect the data, denoted by
col(ud, yd). Moreover, we consider an input/output trajectory
of length L = 10, for example, that has some missing entries.
Our goal here is twofold: first compute the missing entries
of the given input/output trajectory or compute the complete
input/output trajectory of length L = 10, and then reconstruct
the state trajectory based on this recovered input/output
trajectory. The missing rows in the input trajectory u|L and
that in the output trajectory y|L are M1 = {7, 8} and
M2 = {5, 6, 7, 8, 9, 10, 11, 12}, respectively. Using Algo-
rithm 2, we first compute the complete input/output trajectory
col(û|L, ŷ|L) of length L = 10 and then the corresponding
state trajectory x|L. The input, output, and state trajectories
are shown in Figs. 1, 2, 3. As the data are assumed to be ex-
act (noise-free), the computed input/output/state trajectories
perfectly match the true trajectories.
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Fig. 1: The recovered input trajectories, using Algorithm 2,
coincide with the true input trajectories.

1 2 3 4 5 6 7 8 9 10

-15

-10
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0

5

10

Fig. 2: The recovered output trajectories, using Algorithm 2,
coincide with the true output trajectories.

For the case of a noisy system, we shall consider a recursive
estimation of the state xt of the multi-input multi-output sys-
tem (41). To this end, we consider the use case of reference
tracking, wherein ūt is generated as per the given reference
output y = [y1, y2]

⊤ and the current state xt. Performing this
sequentially in time leads to a data-driven predictive control
along with state estimation. This way of testing the algorithm
has two-fold advantages: firstly it enables us to validate that
the estimated state is sufficiently robust and secondly, it also
enables us to validate if the estimated state is robust enough
to be used by the data-driven control synthesis program and
remains stable for long term reference tracking problem.
Thus validating its effectiveness for real-world applications.
The initial data and the covariance matrices for input and
measurement noise are taken as follows:

Σw0
= Σδt = 0.01I, Rt = 0.05I, Λt = 0, ∀t ≥ 0

x0 = [1, 0, 0]⊤, u0 = [0, 0], g0 = G0
Lf |[0,Lp].

Moreover, we take Lp = 3, Lf = 6, L = 10, T = 60.
Since xt is not used in the residual computation, ξt and Λt

terms are ignored. Based on this, we now use Algorithm 3 to

1 2 3 4 5 6 7 8 9 10

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Fig. 3: The reconstructed state trajectories, using Algo-
rithm 2, coincide with the true state trajectories.

estimate the output yt|t and xt|t, in combination with data-
driven predictive control for generating reference tracking
control ūt. The reference output yt is taken as a connected
closed curve as shown by the dashed blue curve in the upper
left plot of Fig. 4. Since the reference output forms a loop,
we run the algorithm for t = [1, 250], which indicates the
real evolution of time. The obtained estimates are shown
as a dashed-dotted green curve in Fig. 4. At first glance,
we see that both the estimates state xt|t and output yt|t are
robust and qualitatively follow the true curve profile. The
box-plot for pathwise errors ext := ∥xt − xt|t∥2 and eyt :=
∥yt − yt|t∥2 of the state and output estimates, respectively,
for varying degree of measurement noise, parameterized by
γ, are as shown in Fig. 5. The box-plot for each γ was
obtained by performing 100 Monte-Carlo simulations. From
the plot, we see that both state and output errors have their
median in a tolerable range (dashed black line at the center
of the box). When the measurement noise covariance Rt

is approximately the same as that of δt acting on gt, i.e.
Rt = γΣδt with γ ≤ 5, the inter quartile range (IQR) is
fairly narrow and the median values of ext

and eyt
are below

0.05 and 0.075, respectively. As the intensity of measurement
noise Rt deviates more and more from that of δt, (i.e. for
γ ≥ 5), the IQR stretches indicating an increase in the mean
error and its variance as indicated in Fig. 5 for γ ∈ {10, 25}.

VIII. CONCLUSIONS

We have stated and proven a generalization of the fun-
damental lemma due to Willems and co-workers, which
includes also the state trajectories. Although the proof is a
simple extension of the proof given in [17], the result has
been particularly useful in estimating the states of the system.
We have used this result to estimate the states in determin-
istic and stochastic settings. In the deterministic case, we
have developed data-driven conditions under which we can
reconstruct state trajectories uniquely. Furthermore, we have
discussed the case of estimating the states when we have
missing input/output data in online and/or offline scenarios.
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Fig. 4: Output and state estimation by using Algorithm 3. The
top left subplot shows the reference output yt (dashed blue) and
estimated output yt|t (dashed-dotted green). The subplots from
upper right, bottom left, and bottom right depict the projection of
the three-dimensional state onto two-dimensional planes spanned by
the coordinate pairs (x1, x2), (x1, x3), and (x2, x3), respectively.
Here the true state xt is denoted in dashed blue while the estimated
state xt|t is denoted in dashed-dotted green.

Fig. 5: Box plot for errors, along the trajectory, of the estimated
output and state vectors for varying γ, where Rt = γΣδt .

In the stochastic case, we have developed a Kalman filter-
like algorithm to recursively estimate both states and outputs.
Due to space constraints, we have not discussed missing data
cases in the stochastic setting. However, we are confident that
the results of Section V can be generalized to the case of
noisy data. This work has assumed the availability of offline
state data for estimating the states. It would be interesting
to extend the results of this paper to a more natural setting,
where only input/output data are available.
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