
On Variation Bounding System Operators

Chaim Roth and Christian Grussler

Abstract— Bounding or diminishing the number of sign
changes and local extrema in a signal is an intrinsic sys-
tem property in, e.g., low-pass filtering or the over- and
undershooting behaviour in the step-response of controlled
systems. This work shows how to verify these properties for the
observability/controllability operator of a linear time-invariant
system under strict external positivity of a set of compound sys-
tems, which relaxes/generalizes the standard external positivity
notion. In contrast to earlier work, the presented approach is
significantly less dependent on a particular realization. The
results are demonstrated by bounding the number of sign
changes in an impulse response and, thus, the number of local
extrema in the step response.

I. INTRODUCTION

Linear time-invariant (LTI) systems

x(t+ 1) = Ax(t) + bu(t)

y(t) = cx(t),
(1)

A ∈ Rn×n, b, cT ∈ Rn, that map nonnegative inputs u to
nonnegative outputs y are characterized by a nonnegative
impulse response g(t) := cAt−1b ≥ 0, t ≥ 1 and are
referred to as externally positive [1]. A particular property
of such systems is the monotonicity of their step response,
which motivated several studies on the avoidance of over-
and undershooting in closed-loop design [2], [3], [4], [5].
Indeed, the number of sign changes of g, denoted by S−(g),
also known as the variation of g, equals the number of local
extrema in the step response.

The main application addressed in this work is the exten-
sion of the positivity framework towards establishing upper
bounds on the number of over- and undershoots in the
step response of non-externally positive single-input-single-
output (SISO) discrete-time systems of the form (1). There
exist many lower bounds for this problem [6], [7], [8],
but only few upper bounds [8], [9]. In our approach, we
generalize the recent advances in [9], where the impulse
response of (1) is expressed by the observability operator

(O(A, c)x0)(t) := cAtx0, x0 ∈ Rn, t ≥ 0 (2)

as g(t) = (O(A, c)b)(t). For brevity we write O(A, c)
as O . The idea in [9] is then to derive a computation-
ally tractable certificate for the largest integer k such that
S−(g) = S−(Ob) ≤ S−(b) for all {b : S−(b) ≤ k}. An
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(observability) operator with this property is said to be k-
variation diminishing (VDk). If additionally, the first non-
zero elements in b and Ob share the same sign whenever
S−(b) = S−(Ob), the operator is called order-preserving
VDk (OVDk). In [9], a certificate for OVDk O has been
derived under the assumption that also A is OVDk.

This work generalizes the approach mentioned above in
two significant aspects: (i) we are able to verify whenever
O is strictly k-variation bounding (SVBk), i.e., S+(g) =
S+(Ob) ≤ k for all {b : S−(b) ≤ k}. Thus expanding the
existing analysis beyond VDk. If also applied to the con-
trollability operator C = C(A, b) = O(AT, bT)T, this work
presents a first certificate for a Hankel operator Hg = OC to
be VBk. Therefore, our results also lead to a generalization
of earlier work on VDk systems [10]; (ii) in contrast to [9],
our approach allows to verify OVDk of O without requiring
A to be OVDk. This is important as finding a realization
with such an A may be difficult or does not even exist.

Our main utility is [11], which in conjunction with our
characterization of SVBk−1 matrices (see Proposition 3)
allows to certify SVBk−1 via the strict sign-consistency of
a subset of k-th order minors (see Proposition 4 and Corol-
lary 1). A main contribution of this work is to show that
these minors of O correspond to impulse responses of related
LTI systems. Thus, checking of O being SVBk turns into
the verification of strict external positivity of a set of LTI
systems. Numerically, this can be done efficiently by using,
e.g., [2]. Our characterizations also enable further analytic
investigations. Under the assumption that A is diagonaliz-
able, we will show that SVBk−1 requires that the k largest
poles (in modulus) have to be positive. This is the same
pole constraint that had been observed for OVDk−1 Hankel
and Toeplitz operators [10]. Surprisingly, if k = n, this
means that there exists a simple state-space transformation
T ∈ Rn×n such that O(T−1AT, cT ) is OVDn−1. That
is, the relaxation from variation-diminishment to variation-
bounding does not directly translate into fewer restrictions
on (A, c). In future work, we hope to further derive charac-
teristics for the locations of zeros.

The remainder of the paper is organized as follows. We
begin with some extensive preliminaries in Section II that
will enable us to present our main results in Section III. In
Section IV, these result are illustrated by examples and a
conclusion is drawn in Section V.

II. PRELIMINARIES

In this section, we briefly introduce notations and concepts
that are essential for our results.
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A. Notations

We write Z for the set of integers and R for the set of
reals, with Z≥0 and R≥0 standing for the respective subsets
of nonnegative elements – the corresponding notations are
also used for subsets starting from non-zero values, strict
inequality as well as reversed inequality signs. The set of real
sequences with indices in Z is denoted by RZ. For matrices
X = (xij) ∈ Rn×m, we say that X is nonnegative, X ≥ 0
or X ∈ Rn×m

≥0 if all elements xij ∈ R≥0 – corresponding
notations are used for matrices with strictly positive entries
and reversed inequality signs. These notations are also used
for sequences x = (xi) ∈ RZ. For k, l ∈ Z, we write
(k : l) := {k, k + 1, . . . , l}, k ≤ l. In the case k > l,
the notation represents the empty set. If X ∈ Rn×n, then
σ(X) = {λ1(X), . . . , λn(X)} denotes its spectrum, where
the eigenvalues are ordered by descending absolute value,
i.e., λ1(X) is the eigenvalue with the largest magnitude,
counting multiplicity. If the magnitude of two eigenvalues
coincides, we sub-sort them by decreasing real part. The
identity matrix in Rn×n is denoted by In or if the dimensions
are obvious, simply by I . A (consecutive) j-minor of X in
Rn×m is a minor which is constructed of j columns and j
rows of X (with (consecutive indices). The submatrix with
rows I ⊂ (1 : n) and columns J ⊂ (1 : m) is written
as XI,J . In case of subvectors, we simply write xI . With
slight abuse of notation, we also use this to denote subsets
of ordered index sets x ∈ In,r, where

In,r := {v = {v1, . . . , vr} ⊂ N : 1 ≤ v1 < · · · < vr ≤ n}.

B. Variation diminishing maps

The variation of a sequence or vector u is defined as the
number of sign-changes in u. We employ two versions that
only differ in the treatment of zero entries.

S−(u) :=
∑
i≥1

1R<0(ũiũi+1), S−(0) := −1

where ũ is the vector resulting from deleting all zeros in
u and 1A(x) is the indicator function with subset A, i.e.,
1A(x) = 1 if x ∈ A and zero else. Further,

S+(u) :=
∑
i≥1

1R<0
(ūiūi+1),

where ū is the vector resulting from replacing zeros by ele-
ments that maximize the resulting sum. Obviously, S−(u) ≤
S+(u).

Definition 1. A linear map u 7→ Xu is said to be order-
preserving k-variation diminishing (OVDk), k ∈ Z≥0, if for
all u with S−(u) ≤ k it holds that

i. S−(Xu) ≤ S−(u).
ii. The sign of the first non-zero elements in u and Xu

coincide whenever S−(u) = S−(Xu).
If the second item is dropped, then u 7→ Xu is called k-
variation diminishing (VDk). For brevity, we simply say X
is (O)VDk.

Definition 2. A linear map u 7→ Xu is said to be strictly
k-variation bounding (SVBk), k ∈ Z≥0, if for all u ̸= 0
with S−(u) ≤ k it holds that

S+(Xu) ≤ k.

C. Total Positivity Theory

Total positivity theory [12] provides algebraic conditions
for the OVDk and SVBk property by means of compound
matrices. To define these, let the i-th elements of the r-tuples
in In,r be defined by lexicographic ordering. Then, the (i, j)-
th entry of the r-th multiplicative compound matrix X[r] ∈
R(

n
r)×(

m
r ) of X ∈ Rn×m is defined by det(XI,J), I is the

i-th and J is the j-th element in In,r and Im,r, respectively.
For example, if X ∈ R3×3, thendet(X{1,2},{1,2}) det(X{1,2},{1,3}) det(X{1,2},{2,3})
det(X{1,3},{1,2}) det(X{1,3},{1,3}) det(X{1,3},{2,3})
det(X{2,3},{1,2}) det(X{2,3},{1,3}) det(X{2,3},{2,3})


equals X[2]. Consider OVD0, a matrix with this property
has to be nonnegative, which expressed in terms of the
compound matrix reads X = X[1] ≥ 0. This equivalence
can be generalized to higher orders [10, Prop. 7].

Definition 3. Let X ∈ Rn×m and k ≤ min{m,n}. X
is called k-positive if X[j] ≥ 0 for 1 ≤ j ≤ k, and
strictly k-positive if X[j] > 0 for 1 ≤ j ≤ k. In case
k = min{m,n}, X is called (strictly) totally positive.

Proposition 1. Let X ∈ Rn×m with n ≥ m. Then, X is
k-positive with k ∈ (1 : m) if and only if X is OVDk−1.

Proposition 1 can be verified by the following sufficient
condition [10, Proposition 8].

Proposition 2. Let X ∈ Rn×m, k ≤ min{n,m}, be such
that

i. all consecutive r-minors of X are positive, r ∈ (1 :
k − 1),

ii. all consecutive k-minors of X are nonnegative (posi-
tive).

Then, X is (strictly) k-positive.

Analogously, we define the notion of (strict) k-sign con-
sistency to characterize SVBk.

Definition 4. Let X ∈ Rn×m and k ≤ min{m,n}. X is
called k-sign consistent (SCk) if X[k] ≥ 0 or X[k] ≤ 0, and
strictly k-sign consistent (SSCk) if X[k] > 0 or X[k] < 0.

A well-known characterization for SVBm matrices X ∈
Rn×m [12, Chapter 5 Theorem 1.1] is the following.

Proposition 3. X ∈ Rn×m, n > m, is SSCm if and only
if X is SVBm−1.

Note that one is only interested in cases, where n > m,
because any X ∈ Rn×n is SVBn−1. Integral to our results is
the following characterization for SSCm [11, Theorem 2.2]
and its application to SSCk case.
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Proposition 4. X ∈ Rn×m, n > m, is SSCm if and only
if the minors det(Xα,(1:m)) have the same strict sign for all
α = {(1 : m − r), (t : t + r − 1)} with r ∈ (1 : m) and
m− r + 1 ≤ t ≤ n− r + 1.

For example, checking whether

X =


1 1
1 2
1 3
1 4

 ∈ R4×2

is SSC2, it is sufficient (and necessary) to verify that

r = 1 : det

(
1 1
1 2

)
,det

(
1 1
1 3

)
,det

(
1 1
1 4

)
r = 2 : det

(
1 1
1 2

)
,det

(
1 2
1 3

)
,det

(
1 3
1 4

)
.

have the same strict sign. This characterization can also be
extended to the general SSCk case.

Corollary 1. X ∈ Rn×m, n > m, is SSCk, k ≤ m if and
only if the minors det(Xα,β) have the same strict sign for
all α = {(1 : k − r), (t : t + r − 1)} with r ∈ (1 : k) and
t ∈ (k − r + 1 : n − r + 1) and all β = {(1 : k − r̄), (t̄ :
t̄+ r̄− 1)} with r̄ ∈ (1 : k) and t̄ ∈ (k− r̄+1 : m− r̄+1).

To illustrate Corollary 1, let us verify that

X =


1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

 ∈ R5×3

is SSC2. Corollary 1 simply requires to apply Proposition 4
to each of the submatrices

r̄ = 1 : X(1:5),{1,2} =

(
1 1 1 1 1
1 2 3 4 5

)T

X(1:5),{1,3} =

(
1 1 1 1 1
1 4 9 16 25

)T

r̄ = 2 : X(1:5),{2,3} =

(
1 2 3 4 5
1 4 9 16 25

)T

X(1:5),{3,4} =

(
1 4 9 16 25
1 8 27 64 125

)T

where the strict sign of the 2−minors across all submatrices
has to coincide. Note that Corollary 1 turns the combinatorial
complexity of verifying SSCk via X[k] into a polynomial
complexity.

In our derivations, the following properties of the multi-
plicative compound matrix will be elementary (see, e.g., [13,
Section 6] and [14, Subsection 0.8.1]).

Lemma 1. Let X ∈ Rn×p and Y ∈ Rp×m.
i) (XY )[r] = X[r]Y[r] (Cauchy-Binet formula).

ii) For p = n: σ(X[r]) = {
∏

i∈I λi(X) : I ∈ In,r}.
iii) For p = n and det(X) ̸= 0: (X−1)[r] = X−1

[r] .

D. Variation diminishing observability operators

As discussed in [9, Lemma 3.4], the OVDk property of
the observability operator (2) is equivalent to

Ot(A, c)T :=
(
cT ATcT . . . At−1TcT

)
being OVDk for all t ≥ k. For brevity we write Ot

instead of Ot(A, c). The property is verified as follows [9,
Theorem 3.5].

Proposition 5. If A is k-positive and Oj
[j] ≥ 0 for 1 ≤ j ≤

k, then Ot is k-positive for all t ≥ k.

Finally, we will abbreviate a discrete-time LTI system (1)
by the triple (A, b, c) and say that it is strictly externally pos-
itive (1) if g(t) = cAt−1b > 0 for all t ≥ 1. Correspondingly,
we use the term strictly externally negative if the inequality
is reversed.

III. MAIN RESULTS

The main goal of this work is to verify the general case
of O being SVBk−1 using SSCk. This will enable us to
numerically check this property as well as to derive necessary
conditions in terms of the system poles. We will use these
results to verify OVDk of O without requiring k-positivity
of A as in Proposition 5. Note that by substitution of (A, c)
with (AT, bT), these results can also be used to checked if
the controllability operator of (1) is SVBk.

A. The SVBk−1 case

Analogously to the OVDk−1 case, it is readily verified
that O is SVBk−1 if and only if Ot is SVBk−1 for all
t ≥ k−1. By Proposition 3, it suffices to check SSCn−1 of
Ot for all t ≥ n−1, which using Proposition 4 is equivalent
to the strict positivity/negativity of certain sequences of
n − 1-minors. Next, we will show that these sequences of
n−1-minors correspond to impulse responses of related LTI
system. Checking SSCn is then equivalent to checking strict
external positivity of n LTI systems.

Theorem 1. Let (A, c) be observable. Then, O is SSCn if
and only if (Ãr, b̃r, c̃r) is strictly externally positive for all
r ∈ (1 : n) with Ãr = A[r], c̃r = (Or)[r] and

b̃r =

(
An−r (On)

−1

(
0
Ir

))
[r]

.

A sufficient and numerically efficient certificate to verify
the strict external positivity of these so-called compound sys-
tems can be found, e.g., in [2]. Interestingly, we need to check
external positivity for the same number of compound systems
as required for verifying n-positivity of Hankel/Toeplitz
operators [10]. In order to proceed with the general SVBk−1

case, we derive the following generalization of Proposition 3
for linking SSCk to SVBk−1.

Proposition 6. Let X ∈ Rn×m and k < min(m + 1, n).
Then, X is SSCk if and only if X is SVBk−1.

While many related versions of Proposition 6 exist (see,
e.g., [12], [15]), to the best of our knowledge, Proposition 6
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has not appeared elsewhere. With the next Theorem we
achieve a method of checking if O is SSCk for given (A, c).

Theorem 2. Let (A, c) be observable, k ∈ (1 : n), r ∈ (1 :
k) and β ∈ In,k. Then, for N ∈ N≥1, t ∈ (1 : N − k + 1)
and α = {(1 : k − r), (k − r + t : k + t− 1)}, it holds that

det(ON
α,β) = c̃rÃ

t−1
r b̃k,r,β ,

where Ãr := A[r], c̃r := Or
[r] and

b̃k,r,β :=

((
Ak−r (On)

−1

(
0

In−k+r

))
[r]

0

)
(OnPβ)[k]

with Pβ := I(1:n),β . Therefore, O is SSCk if and only if
(Ãr, b̃k,r,β , c̃r) is strictly externally positive/negative for all
(r, β) with r ∈ (1 : k) and β as in Corollary 1.

As before, SVBk−1 of O can, thus, be checked by veri-
fying external positivity/negativity of the compound systems
defined in Theorem 2. Since strict external positivity requires
a dominant positive pole (see, e.g., [16], [17], [18]), the fol-
lowing eigenvalue constraint can be shown as a consequence
of item ii in Lemma 1.

Corollary 2. Let (A, c) be such that
i) A is diagonalizable.

ii) O is observable and SSCk.
Then, the dominant eigenvalues λ1(A), . . . , λk(A) ∈ R>0.

Interestingly, this is the same necessary condition as in
Proposition 5 as well as for the k-positivity of the Hankel and
Toeplitz operators [10]. In particular, if k = n, there exists
a T ∈ Rn×n such that T−1AT = diag(λ1(A), . . . , λn(A))
and cT =

(
1 · · · 1

)
, which as shown in [9] fulfills the

requirements of Proposition 5.

B. The OVDk case

Theorem 2 can also be used for checking OVDk. The
systems in Theorem 2 that represents the k-consecutive
minors of O are the pairs r = k. In conjunction with
Proposition 2, this provides the following corollary for k-
positive O .

Corollary 3. Let (A, c) be observable. Using the notation
of Theorem 2, it holds that if

i. (Ãr, br,r,β , c̃r) is strictly externally positive, r ∈ (1 :
k − 1)

ii. (Ãr, bk,k,β , c̃r) is (strictly) externally positive,
then O is (strictly) k-positive.

It is important to note that unlike Proposition 5, Corol-
lary 3 does not require A to be k-positive.

IV. ILLUSTRATIVE EXAMPLES

In this section, we want to illustrate our results based
on two examples with third-order systems, where (i) O is
OVD1 but A is not 2-positive, i.e., Proposition 5 does not
apply; (ii) an SVB1 O , which is not 2-positive, i.e., variation
diminishing results cannot be used, but the new results can
be used to show the variation bounding property.

2 4 6 8 10

1

2

3

t

g̃ 1
,1
,β
(t
)

Fig. 1: Impulse responses g̃1,1,β(t) of (Ã1, b1,1,β , c̃1) in The-
orem 2: g̃1,1,{1}(t), g̃1,1,{2}(t) and g̃1,1,{3}(t)
are strictly positive.

2 4 6 8 10
0

0.1

0.2

t
g̃ 2

,2
,β
(t
)

Fig. 2: Impulse responses g̃2,2,β(t) of (Ã2, b2,2,β , c̃2) in
Theorem 2: g̃2,2,{1,2}(t), g̃2,2,{1,3}(t) and
g̃2,2,{2,3}(t) are strictly positive.

A. Example 1: OVD1 O
We begin by considering

A =

−1.20 −1.50 −1.88
1.51 1.75 1.88
−0.16 −0.01 0.40

 , cT =

1.16
1.8
3

 .

Since A ̸≥ 0, A is not 2-positive and Proposition 5 is
not applicable. However, by checking the impulse responses
corresponding to consecutive minors of O (see Fig. 1 and 2),
it follows from Corollary 3 that O is 2-positive. Thus, for all
b ∈ R3 with S−(b) ≤ 1, it follows that S−(g) ≤ S+(g) ≤ 1.

B. Example 2: SVB1 O
Next, we consider

A =

 0.7 0.6 −2
0.15 0.15 −0.25
0 0.03 0.1

 , cT =

 1.1
0.1
−5.5


with

O3 =

1.10 0.10 −5.50
0.79 0.51 −2.78
0.63 0.46 −1.98


Since O3 contains elements of mixed signs, O is not 0-
variation diminishing. Hence, independent of the choice of
b, no upper bound on the variation of the impulse response
can be provided with variation diminishing arguments. For-
tunately, as seen in Fig. 3 and 4, Theorem 2 implies that O
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2 4 6 8 10

1

2

t

g̃ 2
,1
,β
(t
)

Fig. 3: Impulse responses g̃2,1,β(t) of (Ã1, b2,1,β , c̃1) in
Theorem 2: g̃2,1,{1,2}(t), g̃2,1,{1,3}(t) and
g̃2,1,{2,3}(t) are strictly positive.

2 4 6 8 10
0

1

2

t

g̃ 2
,2
,β
(t
)

Fig. 4: Impulse responses g̃2,2,β(t) of (Ã2, b2,2,β , c̃2) in
Theorem 2: g̃2,2,{1,2}(t), g̃2,2,{1,3}(t) and
g̃2,2,{2,3}(t) are strictly positive.

is SSC2. Then, for any b ∈ R3 with S−(b) ≤ 1 we have that
S−(g) ≤ S+(g) ≤ 1.

V. CONCLUSION

In this work, we have derived a tractable approach to
certify that the observability/controllability operator of a
discrete-time LTI system is strictly k-variation bounding.
The approach generalizes recent certificates for the more
restrictive notion of k-variation diminishment [9]. We apply
our results to the problem of upper bounding the number
of sign changes in the impulse response of an LTI system.
Interestingly, as a consequence of our characterization, it
became evident that variation bounding and variation di-
minishing properties in system operators share the same
pole requirements, i.e., the k + 1 largest eigenvalues of A
have to be real and positive. In particular, it turned out that
strictly n − 1-variation bounding implies order-preserving
n − 1-variation diminishment up to a simple state-space
transformation.

In future work, we would like to extend our findings to
the Hankel and Toeplitz operator without operator splitting
and find out whether there are SSCk observability opera-
tors that do not permit similarity transformation such that
Proposition 5 can be used.
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