
Learning Iterative Solvers for Accurate and Fast Nonlinear Model
Predictive Control via Unsupervised Training

Lukas Lüken and Sergio Lucia

Abstract— Model predictive control (MPC) is a powerful
control method for handling complex nonlinear systems that
are subject to constraints. However, the real-time application
of this approach can be severely limited by the need to solve
constrained nonlinear optimization problems at each sampling
time. To this end, this work introduces a novel learning-
based iterative solver that provides highly accurate predictions,
optimality certification, and fast evaluation of the MPC solution
at each sampling time. To learn this iterative solver, we propose
an unsupervised training algorithm that builds on the Karush-
Kuhn-Tucker optimality conditions, modified by a Fischer-
Burmeister formulation, and eliminates the need for prior
sampling of exact optimizer solutions. By exploiting efficient
vector-Jacobian and Jacobian-vector products via automatic
differentiation, the proposed training algorithm can be effi-
ciently executed.

We demonstrate the potential of the proposed learning-based
iterative solver on the example of nonlinear model predictive
control of a nonlinear double integrator. We show its advantages
when compared to exact optimizer solutions and with an
imitation learning-based approach that directly obtains a data-
based approximation of the MPC control law.

I. INTRODUCTION

Due to its ability to deal with potentially large-scale
nonlinear systems, the integration of constraints and the
consideration of advanced control objectives, model predic-
tive control (MPC) is a very powerful control method [1],
[2]. At each time step, an optimal control problem based
on a prediction model of the system is solved and the
calculated optimal next control action is then applied to the
system. Despite its advantages, an important challenge of
MPC is that it might be difficult to implement in practice
due to its computational complexity. In particular, when
dealing with large-scale nonlinear systems or very strict
real-time and hardware requirements such as in embedded
applications with very small sampling times, the time to solve
the optimization problem might become prohibitively large
[3], [4], [5].

Explicit MPC, in which the MPC control law is explicitly
precomputed [6], can be used to mitigate this challenge but
is typically only suitable for small linear systems. Instead
of exactly representing the control law, an approximation,
e.g. via neural networks can be used [7], [8], [9], [10]. This
idea dates back already in the 90s with a work by [11].
However, with the widespread increase in machine learning
capabilities, it has continued to gain interest in recent years
[8]. Due to the fast evaluation of neural network-based

Lukas Lüken and Sergio Lucia are with the Chair of Process Au-
tomation Systems, TU Dortmund University, 44227 Dortmund, Germany
{lukas.lueken, sergio.lucia}@tu-dortmund.de

function approximations compared to nonlinear optimization
algorithms, a significant reduction in computation time of
up to multiple orders of magnitude can be achieved, e.g.
when applied to large-scale nonlinear systems [3] or highly-
nonlinear robust economic MPC problems [4]. Furthermore,
these controllers can be deployed with minimal memory re-
quirements, as the evaluation of the neural networks involves
simple function evaluations and powerful frameworks for
embedded deployment already exist [12]. An overview on
recent advances can be found in [5].

Despite these promising results, appproximate MPC based
on neural networks has some important drawbacks. For
instance, sampling the training data can be very costly,
as the number of data points required for an accurate
approximation generally increases with the complexity of
the optimization problem. Furthermore, obtaining highly-
accurate approximations for larger systems is very challeng-
ing. This means that guaranteeing constraint satisfaction,
especially in the nonlinear case, becomes difficult. Several
approaches exist for dealing with constraint satisfaction, such
as applying probabilistic or deterministic validation [13],
[14], [15], performing forward simulations with the approx-
imate MPC policy and fall back to safe solutions in case
of constraint violations [16], deriving bounds on the neural
network prediction error [17], [18] or projecting the neural
network prediction onto a safe set [19]. However, these
approaches are often not applicable to nonlinear MPC or
lead to conservative behavior by requiring additional back-off
parameters or conservative fallback strategies. Moreover, the
optimality of approximate MPC predictions is not guaranteed
in general, and especially when safety-enhancing measures
are used which increase the conservatism of the controller.

We propose in this paper a learning-based iterative solver
that allows for highly accurate predictions, certification of
optimality based on the predicted solution, fast evaluation,
and an unsupervised training algorithm that does not require
sampling of optimizer solutions. That is, instead of directly
approximating the MPC solution, we aim at learning a
problem-specific iterative solver. To this end, we use a neural
network that takes as input a measure of the optimality of a
current solution iterate and parameters of the optimization
problem, and iteratively predict solver steps that update
the iterates. Additionally, we suggest a loss function for
training that is based on KKT conditions adapted with a
Fischer-Burmeister formulation for unsupervised training.
Furthermore, we present an efficient training algorithm that
utilises vector-Jacobian and Jacobian-vector products (VJP
and JVP) to eliminate the requirement for computationally

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 1836

expensive calculations and inversions of Jacobians.
Some works have recently attempted to learn parameters

for specific optimization algorithms [20], or update rules of
unconstrained optimization algorithms for machine learning
tasks [21]. However, to the best of the author’s knowledge,
this is the first work to present a learning-based iterative
solver for nonlinear constrained model predictive control
problems that achieves very tight accuracy and is trained
without the need for prior computation of optimal solutions.
This significantly alleviates the main challenges of approxi-
mate MPC based on neural network approximations.

This paper is structured as follows. The background on
MPC, approximate MPC and constrained nonlinear optimiza-
tion is presented in Section II. The proposed learning-based
iterative solver is presented in Section III. The promising
results of the proposed algorithm are illustrated with an
NMPC example in Section IV and the paper is concluded
in Section V.

II. BACKGROUND

A. Nonlinear Model Predictive Control

In the following, we consider a nonlinear discrete-time
dynamic system at time step k with states xk, control actions
uk, dynamics f as well as initial conditions xinit:

xk+1 = f(xk,uk), x0 = xinit. (1)

For the given system f , the NMPC algorithm seeks to
optimize an objective while also adhering to constraints over
a given time horizon N . This control task is formalized in
the following nonlinear program (NLP):

min
x[0:N],u[0:N−1]

Vf (xN) +

N−1∑
k=0

ℓ (xk,uk) (2a)

s.t. xk+1 = f (xk,uk) , x0 = xinit (2b)
xL ≤ xk ≤ xU (2c)
uL ≤ uk ≤ uU (2d)
g (xk,uk) ≤ 0 (2e)
h (xk,uk) = 0 (2f)
k ∈ {0, . . . , N − 1 | N ∈ N, N ≥ 1}. (2g)

The decision variables are the state trajectory x[0:N] and
control trajectory u[0:N−1]. The objective of the NMPC is
formulated as the cost function with the terminal cost of the
states at time point N as Vf and the sum over all stage
costs ℓ, considering all states and control actions up to time
point N − 1. Nonlinear constraints in form of equality and
inequality constraints are described by h and g. Upper and
lower bounds on the states and control actions are defined
as xU , uU and xL, uL. The discrete-time system model
f(xk,uk) is represented as an equality constraint.

At each time step, the optimization problem (2) is solved
considering the current initial state xinit. The next control
action u0 is then applied to the system (1). The following
control law summarizes this procedure:

u0 = ΠMPC(xinit). (3)

B. Approximate Nonlinear Model Predictive Control via
Imitation Learning

To circumvent the possibly prohibitive computation times
of solving the optimization problem (2) during the online
application of the NMPC, an approximation of the control
law (3) can be used. By solving the optimization prob-
lem offline for various initial states, a dataset DMPC =
{(xinit,u0)

i|i= 1, . . . , Ns} of size Ns containing (xinit,u0)
data pairs can be sampled. Function approximators such as
neural networks (NN) can then be used to represent the
control law in form of a model with parameters θ and
predicted next control actions û0:

û0 = ΠapproxMPC(xinit; θ). (4)

Evaluating this approximate MPC can be up to orders of
magnitude faster than solving the NLP directly, since a
prediction with a neural network involves usually only a few
explicit function calls [3], [4].

The neural network parameters θ of the approximate
MPC are usually determined via imitation learning, i.e. by
minimizing the distance between the optimal control action
u0 and the predicted control action û0 on the data DMPC

using standard neural network training methods such as
stochastic gradient descent [5], [8].

C. Constrained Nonlinear Optimization

The NMPC problem (2) can be more generally represented
as the following parametric nonlinear program (NLP):

min
w

q (w;p) (5a)

s.t. gi (w;p) ≤ 0, i = 1, . . . , ng (5b)
hj (w;p) = 0, j = 1, . . . , nh. (5c)

Here, the decision variables are depicted as w and the
parameters as p. The objective function is represented by
q, the ng nonlinear inequality constraints as gi and the nh

nonlinear equality constraints as hi.
The primal-dual solution to this problem is described by

z∗ = (w∗,λ∗,ν∗) = z∗(p), with w∗ describing the optimal
solution of the decision variable, and λ∗ and ν∗ representing
the optimal solution of the Lagrange multipliers associated
with the inequality constraints g and equality constraints h
respectively. The primal-dual solution z∗(p) is dependent on
the parameters p of the NLP.

A solution z∗(p) to the NLP has to satisfy the first-order
necessary conditions of optimality, the so-called Karush-
Kuhn-Tucker (KKT) conditions [22]. The KKT conditions
are based on the Lagrangian L of the NLP, which is defined
as

L (z;p) = q (w;p) + λ⊤g (w;p) + ν⊤h (w;p) . (6)

The KKT conditions can then be formulated as [22]:

1837

FKKT(z
∗,p) =

∇wL (w∗,λ∗,ν∗;p) = 0

h (w∗;p) = 0

g (w∗;p) ≤ 0

λ∗ ≥ 0

λ∗ ⊙ g (w∗;p) = 0.

(7a)
(7b)
(7c)
(7d)
(7e)

The ⊙ symbol describes the element-wise product
(Hadamard-Product). The KKT conditions are described by
the stationarity condition (7a), primal feasibility (7b and 7c),
dual feasibility (7d) and complementary slackness (7e).

These conditions are also crucial for solving the NLP, as
many iterative solvers are based on calculating steps that
minimize some form of residuals of these conditions [23],
[24], [25]. These iterative solvers are usually based on the
following update rule:

zk+1 = zk + αk ·∆zk. (8)

Starting with a given iterate of the primal-dual solution zk at
iteration k, the solution is updated with step ∆zk and step
size αk. A large variety of methods exist to calculate the
step ∆zk and the step size αk [22]. Well suited for NLPs
because of their fast convergence near an optimal solutions
are algorithms based on Newton’s method. In general, the
optimality conditions, summarized as FKKT, are transformed
into a nonlinear system of equations and Newton’s method is
applied to calculate the next step ∆zk. However, due to the
inequality constraints (7c) and (7d) and the non-smoothness
of the complementary slackness (7e) a formulation as a
nonlinear system of equation is not straightforward [22]. To
this end, interior-point methods [23] or active-set methods
[22] can be used.

III. LEARNING-BASED ITERATIVE SOLVER

A. A Neural Network-Based NLP Solver

We propose a learning-based iterative solver for calculat-
ing highly-accurate solutions of the NMPC problem (2) in
combination with an efficient unsupervised training frame-
work that does not require previously sampled solutions.
Furthermore, this approach directly provides estimates of
the primal-dual solution z∗, allowing to directly certify the
optimality of a prediction using the KKT conditions (7). To
this end, we formulate an approximation of the computation
of the steps ∆zk of an iterative solver as in (8).

We want to obtain a learning-based iterative solver (LIS)
so that when applying it for Nsteps steps on an initial guess
z0 for given parameters p a solution ẑ is obtained that
minimizes a modified residual of the optimality conditions
FKKT. The iterative nature of this approach is intended to
mitigate the (almost) unavoidable approximation errors of an
NN-based approach by iteratively reducing these residuals,
thus, aiming at determining solutions ẑ = zNsteps

≈ z∗

with very high accuracy. This approximate solver can then
be described as follows:

∆ẑk = ΠLIS(zk,p; θLIS). (9)

Contrary to the approximate MPC scheme (Section II-B),
we do not only consider to predict the next control action
û0 but the full primal-dual solution ẑ as this is required to
formulate the full optimality conditions FKKT(z,p). This
allows to directly determine the residual of the optimality
conditions and thus the constraint satisfaction as well as
the optimality of the solution. Another advantage of this
approach is the unsupervised training algorithm (proposed in
Subsection III-C), which does not require previously sampled
solutions of the optimization problem (2) or the control law
(3) as it directly considers the optimality conditions which
are fully determined by the parameters p and the predicted
primal-dual solution ẑ.

For the control of system (1), the predicted next control
action û0 ⊂ ẑ can then be extracted from the full solution.
In the case of high residuals, further steps of the iterative
solver can thus be applied or a fallback strategy, such as in
[16], can be used.

B. Modified KKT Conditions Based on Smoothed Fischer-
Burmeister Equations

A modified residual of the optimality conditions is re-
quired for unsupervised learning as well as for the application
of the learning-based iterative solver, such that the KKT con-
ditions containing inequality expressions can be transformed
into a nonlinear system of equations. For this purpose, we
propose to use Fischer-Burmeister equations [24] with a
smoothing parameter as proposed by [25]. An advantage of
this approach is the ability to deal with infeasible iterates
zk, which are difficult to avoid in a learning-based approach,
especially during training. Furthermore, this approach can be
inherently warm-started, so that we do not have to iteratively
reduce the smoothing parameters, as would be the case with
the barrier parameters of an interior-point method [25].

The inequality constraints (7c) and (7d) as well as the
complementary slackness (7e) are substituted from the op-
timality conditions with the use of the Fischer-Burmeister
function ϕ : R2 → R. For the individual Lagrange multipli-
ers λi and the corresponding inequality constraints gi, this
function is defined as follows:

ϕ(λi, gi) = λi − gi −
√
λ2
i + g2i + ϵ2 = 0. (10)

For ϵ = 0, if this function is zero, the following holds:

λi · gi = 0, λi ≥ 0, gi ≤ 0. (11)

To deal with the non-smoothness of this function, the
smoothing parameter ϵ is added [25], which relaxes the
complementary slackness (7e), such that λi · gi = − ϵ2

2
holds. The vector-valued function Φ describes the element-
wise application of the Fischer-Burmeister function ϕ to
the vector of Lagrange multipliers λ and corresponding
inequality constraints g.

This leads to the following representation of the optimality
conditions as a nonlinear system of equations:

FΦ(z;p) =

 ∇wL (z;p)
h (w;p)

Φ(λ, g (w;p))

 = 0. (12)

1838

C. Efficient Unsupervised Learning leveraging Automatic
Differentiation

We propose an unsupervised training scheme that requires
sampling only the input data (zk,p), but not the output data
∆zk, thereby avoiding the need to sample the optimizer
solution as in approximate MPC. Furthermore, by leveraging
Automatic Differentiation [26] especially in the form of
Jacobian-vector products (JVP) and Vector-Jacobian products
(VJP) we formulate the training in such a way that no
Jacobians of the residuals FΦ have to be calculated, leading
to increased speed and memory efficiency of the proposed
training algorithm.

To assess a predicted solver step ∆ẑk based on the given
iterate zk and parameters p, we formulate the following
scalar metric for the predicted error of the linearized residual
of the optimality conditions:

Vk(zk,∆ẑk,p) =
1

2
∥FΦ,k +∇zFΦ,k∆ẑk∥22. (13)

The objective of the neural network training is to deter-
mine parameters θLIS of the learning-based iterative solver,
which lead to steps ∆ẑk minimizing the error measure Vk.
This linearization has the advantage, that FΦ,k = FΦ(zk,p)
and ∇zFΦ,k = ∇zFΦ(zk,p) are fully determined by the
current iterate zk and the parameters p. In case of Vk →
0, this is equivalent to calculating Newton steps, e.g. as
presented by [24], [25].

While the Jacobian of the residual ∇zFΦ,k ∈ Rnz×nz can
be computed using Automatic Differentiation tools, due to
the scaling of the size of this expression (nz × nz) with
respect to the number of decision variables and constraints,
it can become computationally expensive to compute as well
as store. We circumvent this by using vector-valued Jacobian
vector products (JVP) and vector Jacobian products (VJP)
instead as described in the following.

For a batch of Ns input data DLIS = {(zk,p)i|i =
1, . . . , Ns}, which can be sampled e.g. randomly or based
on previous solver steps as in Section III-E, we map the loss
function of the neural network training as follows:

LLIS =
1

Ns

Ns∑
i=1

ln(V i
k). (14)

Here, we sum the log-scaled error metrics V i
k over Ns data

points. Without the log-scaling, the influence of training
inputs with high values of V i

k would be significantly greater
than the influence of training inputs with low values of
V i
k , especially if they differ by several orders of magnitude.

The training of the learning-based iterative solver is thus
described by:

min
θLIS

LLIS(DLIS; θLIS). (15)

This training loss can then be minimized by using stan-
dard methods such as stochastic gradient descent or more
sophisticated first-order methods such as AdamW [27].

For this, the gradients of the loss function LLIS with
respect to the parameters of the learning-based iterative

solver θLIS are required. This expression is composed as
follows:

∂LLIS

∂θLIS
=

1

Ns

Ns∑
i=1

1

V i
k

· ∂V i
k

∂∆ẑk
· ∂∆ẑk
∂∆z̃k

· ∂∆z̃k
∂θLIS

. (16)

Here, the expression ∂∆ẑk

∂∆z̃k
represents the scaling of the

neural network output ∆z̃k to the predicted step ∆ẑk.
The scaling procedure is described in Section III-D. The
derivative of the neural network output with respect to the
parameters is depicted as ∂∆z̃k

∂θLIS
. With the expression ∂V i

k

∂∆ẑk

known, this derivative becomes a vector-Jacobian product
(VJP) and can be computed efficiently via standard back-
propagation frameworks such as PyTorch [28].

The gradient of Vk with respect to ∆ẑk is determined as
follows:

∂Vk

∂∆ẑk
= (FΦ,k +∇zFΦ,k ·∆ẑk)

⊤∇zFΦ,k ∈ Rnz . (17)

For a given step ∆ẑk we can now define the intermediate
variable A:

A = ∇zFΦ,k ·∆ẑk ∈ Rnz . (18)

This expression is a Jacobian-vector Product (JVP) of the
Jacobian of the residual ∇zFΦ,k and the given step ∆ẑk
and as such is much more efficient to compute with standard
Automatic Differentiation (AD) tools such as CasADi [29]
than the Jacobian itself [26]. Furthermore, we define a vector
B which adds the residual vector and the JVP:

B = FΦ,k +A ∈ Rnz . (19)

Using this expression, the gradient ∂Vk

∂∆ẑk
can be described

as a vector-Jacobian product (VJP) of vector B and Jacobian
∇zFΦ,k:

∂Vk

∂∆ẑk
= B⊤∇zFΦ,k ∈ Rnz . (20)

In this way, the entire gradient ∂LLIS

∂θLIS
can be described

without the need to determine complete Jacobians of the
residuals FΦ,k.

D. Neural Network Scaling for Highly Accurate Solutions

In order for the learning-based iterative solver (9) to
provide solutions of high accuracy, an appropriate scaling
of the inputs and outputs of the underlying neural network
is essential. Steps ∆ẑk minimizing the error metric (13) can
deviate over several orders of magnitude depending on how
close the iterate zk is to the optimal solution. Also, small
changes in zk or p can result in changes in the residuals
of the optimality conditions FΦ(ẑ,p) and FKKT(ẑ,p) of
several orders of magnitude. Since approximation errors are
unavoidable for the neural network underlying the approx-
imate solver, a classical linear scaling of the outputs, such
as with min-max or standard scaling, is not suitable because
it would lead to high deviations especially in the range of
very accurate zk. To address these problems, we present the
following scaling approaches.

1839

For the parameters of the optimization problem p, linear
or problem-specific scaling methods can be applied, as
in approximate MPC. Instead of the iterates zk as direct
inputs of the neural network, we use a normalized vector
of residuals F̃Φ,k, as well as a log-scaled 2-norm of these
residuals ∥FΦ,k∥2, which are defined as follows:

F̃Φ,k =
FΦ,k

∥FΦ,k∥2
, (21)

∥FΦ,k∥2 = ln(∥FΦ,k∥2). (22)

The motivation behind the normalized residual vector (21)
is that the entries of the residual can span several orders of
magnitude. Using the log-scaled 2-norm of this residual (22),
we extend the inputs with the information of the magnitude
of the residual. Overall, we can now summarize the inputs
of the NN as follows:

τk(zk,p) =
(
p, F̃Φ,k, ∥FΦ,k∥2

)
, τk ∈ Rnp+nz+1. (23)

Based on these inputs, we formulate the neural network
ΨLIS with parameters θLIS, which predicts a scaled step
∆z̃k, as follows:

∆z̃k = ΨLIS(τk(zk,p); θLIS). (24)

Using the 2-norm of the residual vector ∥FΦ,k∥2 and
a variable scalar scaling factor γk, we thus compute the
unscaled step of the approximate solver:

∆ẑk = γk · ∥FΦ,k∥2 ·∆z̃k. (25)

This scaling causes the magnitude of the predicted steps
∥∆ẑk∥2 to evolve as a function of the magnitude of the
residual ∥FΦ,k∥2, allowing for more accurate predictions in
case of iterates zk with low errors on the optimality criteria.

The purpose of the variable scaling factor γk is to deter-
mine an optimal step size based on a predicted step ∆z̃k.

First, we describe the problem to determine the variable
scaling factor γk for a given iteration point zk and a predicted
step ẑk as follows:

min
γk

∥FΦ,k +∇zFΦ,k∆ẑkγk∥22. (26)

By solving this optimization problem, a γk that minimizes
the norm of the linearized predicted residual FΦ for a given
step ∆ẑk is determined. To this end, we establish the first-
order necessary conditions of optimality:

0
!
= (FΦ,k +∇zFΦ,k∆ẑkγk)

⊤∇zFΦ,k∆ẑk (27)

⇔ F⊤
Φ,k∇zFΦ,k∆ẑk + γk (∇zFΦ,k∆ẑk)

⊤∇zFΦ,k∆ẑk
(28)

⇔ γk = −
F⊤
Φ,k∇zFΦ,k∆ẑk

(∇zFΦ,k∆ẑk)
⊤
(∇zFΦ,k∆ẑk)

. (29)

Using the JVP A = (∇zFΦ,k∆ẑk) as described earlier in
(18), this expression can be simplified as follows:

γk = −FΦ,kA

A⊤A
. (30)

As those expressions have to be calculated for the gradient of
the loss function anyways, calculating γk comes at negligible
cost. We project γk to a fixed interval so that the scaling
factors do not differ too much: γk ∈ [γ, γ], e.g. [0.01, 2.0].

The approximation of the solver step (9) can thus be
summarized as follows:

∆ẑk = ΠLIS(zk,p; θLIS)

= ΨLIS(τk(zk,p); θLIS) · γk · ∥FΦ,k∥2. (31)

The iterative update rule (8) considers not only the step
zk to be determined, but also a step size αk. Since we
already determine a variable scaling factor γk, which can
be interpreted as a step size, we set αk = 1.

E. Multi-Step Self-Sampling for Unsupervised Learning
In this work we use a multi-step ahead sampling strategy

to sample initial guesses for the primal-dual solution zk for
given parameters p based on predicted steps ∆ẑk of previous
training steps. This approach aims at finding initial guesses
for the approximate solver, which are broadly distributed
across from points with high residual norms ∥FΦ,k∥2 to data
points with low residual norms. This sampling strategy is
used to determine the inputs of the neural network during
training and no sampling of optimal solutions, as in approx-
imate MPC, is required.

For an initial batch of data {zi
0,p

i}Nb
i=1, which was deter-

mined e.g. by uniform random sampling, with batch size Nb

the learning-based iterative solver is evaluated (forward pass)
and thus a batch of steps {ẑk}Nb

i=1 is determined. Following
this forward pass, the training loss (14) as well as the gradient
(16) are evaluated and the parameters θLIS of the neural
network are updated (backward pass). Afterwards, for each
data point i = 1, . . . , Nb the next iterate zk+1 is calculated.
This procedure is repeated for Nsteps inside a training epoch.
For Nepochs, this loop is repeated with a new batch of initial
data {zi

0,p
i}Nb

i=1. This procedure is summarized in Alg. 1.

IV. ILLUSTRATIVE EXAMPLE
A. NMPC of a Nonlinear Double Integrator

In order to evaluate the effectiveness of the proposed
learning-based iterative solver over exact optimizer solu-
tions and the alternative approximate MPC, we consider
the NMPC of a simple nonlinear double integrator. This an
adaptation of the example presented by [30]. The system
with two states x ∈ R2 and one control action u ∈ R1 is
described by the following discrete-time nonlinear dynamical
model:

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
uk +

[
0.025
0.025

]
x⊺
kxk (32a)

= f(xk, uk). (32b)

We formulate an NMPC problem with constraints on the
states and control actions as ∥xk∥∞ ≤ 10 and |uk|∞ ≤
2. We use a terminal cost Vf (xN) and a stage cost
ℓ (xk, uk, uk−1), which are defined as

Vf (xN) = x⊺
N

(
0.8 0
0 0.8

)
xN , (33)

1840

Algorithm 1 Unsupervised Training w. Multi-Step Sampling
Input: Nsteps, Nepochs, Nb, θLIS

1: for j = 0 to Nepochs − 1 do
2: Sample Batch: {zi

0,p
i}Nb

i=1

3: for k = 0 to Nsteps − 1 do

4: {F i
Φ,k}

Nb
i=1 ← Evaluate Error (12)

5: {τk}Nb
i=1 ← Input Vector (23)

Forward Pass:
6: {∆z̃i

k}
Nb
i=1 ← Evaluate Neural Network (24)

7: {γi
k}

Nb
i=1 ← Scaling Factor (30)

8: {∆ẑi
k}

Nb
i=1 ← Step Scaling (25)

9: LLIS ← Calculate loss (14)

Backward Pass:
10: ∂LLIS

∂θLIS
← Backpropagation (16)

11: θLIS ← Update Weights Via Gradient Descent

Update Iterates:
12: zi

k ← zi
k +∆ẑi

k, ∀i ∈ {1, . . . , Nb}

13: end for
14: end for

ℓ (xk, uk, uk−1) =x⊺
k

(
0.8 0
0 0.8

)
xk (34)

+0.1u2
k + 10−4(uk − uk−1)

2. (35)

We then obtain the following optimization problem:

min
x[0:N],u[0:N−1]

Vf (xN) +

N−1∑
k=0

ℓ (xk, uk, uk−1) (36a)

s.t. xk+1 = f (xk, uk) (36b)
x0 = xinit (36c)
∥xk∥∞ ≤ 10, k = 1, . . . , N − 1 (36d)
|uk|∞ ≤ 2, k = 0, . . . , N − 1. (36e)

The control objective is to guide the system from a
displacement xinit to the origin. The parameters of this
optimization problem are the current initial states xinit and
the previous control action u−1, which are given by the
control action u0 of the previous iteration step during the
closed-loop evaluation of the NMPC. This parameter vector
p = (xinit, u−1) ∈ Rnp has dimension np = 3. The decision
variables of the optimization problem can be summarized as
w =

(
x[0:N], u[0:N−1]

)
∈ R(N+1)·nx+N ·nu . For a prediction

horizon of N = 10, it follows that nw = (N + 1) · nx +
N · nu = 32. The number of Lagrange multipliers for the
equality and inequality constraints is nν = (N+1) ·nx = 22
and nλ = (N − 1) · 2nx + N · 2nu = 56. The total
dimension of the primal-dual solution z ∈ Rnz follows as
nz = nw + nν + nλ = 110.

B. Setup

We compare now exact solutions of the optimization
problem against solutions of an approximate NMPC and

the proposed learning-based iterative solver. The code to
reproduce the results is openly available.1

a) Training of Approximate MPC: First, we sample a
training and a test dataset with optimal solutions for prob-
lem (36), DTrain = {[(x0, u−1), u0]

i|i= 1, . . . , NTrain} and
DTest = {[(x0, u−1), u0]

i|i= 1, . . . , Ntest}. During sam-
pling, the parameters are uniformly random sampled, with
the range determined by the bounds of the states and control
actions of the NMPC (36).

We set up the nonlinear optimization problem using the
open-source toolbox do-mpc [31], which is based on CasADi
[29] as backend for Automatic Differentiation and as an
interface to the optimizer. To solve the NLPs, we use the
interior-point solver Ipopt [23] with a tolerance of 10−8. We
filter out parameters for which no feasible solution exists and
sample until the desired amount of data points is obtained.
The training and test datasets sizes are NTrain = 10000 and
NTest = 1500.

The approximate MPC is formulated as defined in (4),
with the parameter vector p = (xinit, u−1) as input and the
predicted next control action û0 as output. A feedforward
NN with 6 hidden layers and 100 neurons per layer with
ReLU activation function is used. Thus, in total, the NN has
2.02 ·105 parameters. The large size of the NN is justified as
previous work by [8] has shown that the expressiveness of
a NN for approximate MPC increases significantly with the
depth of the networks. However, the use of a shallow NN
architecture, as used for the learning-based iterative solver,
leads to poor performance. We scale the inputs and outputs
of the NN with a min-max scaler considering the bounds
of the MPC. The NNs are implemented using PyTorch [28].
For training the approximate MPC, we use a mean squared
error (MSE) loss function. Furthermore, we apply AdamW
[27] as optimizer for the NN training and set a batch size of
Nbatch = 1024. The training is performed for Nepochs,total =
4000 epochs with an initial learning rate of 10−2, which is
reduced by a factor of 10 after every Nepochs = 1000 epochs
(learning rate scheduling).

b) Training of the Learning-based Iterative Solver: The
learning-based iterative solver is formulated as defined in
(31). Based on a parameter vector p and a primal-dual iterate
zk, the input vector τ is determined as in (23). Therefore,
the input dimension of the NN of the approximate solver
is nτ = nz + np + 1 = 114 and the dimension of the
output is nz = 110. Contrary to the approximate MPC, we
use a shallow feedforward NN consisting of a hidden layer
with 2000 neurons and ReLU activation function, resulting
in a total number of NN parameters θAS of 4.50 · 105.
In this example, the approximation quality of the shallow
NN is already sufficient and does not improve much with
depth, while the training times are lower compared to deeper
architectures.

The unsupervised training as described in Algorithm 1 is
performed with a learning rate of 10−3 for Nepochs = 100
and Nsteps = 200 with a smoothing parameter ϵ = 10−6

1https://github.com/lukaslueken/2023 Learning based Iterative Solver

1841

100 101 102 103

Iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
||F

KK
T||

2
2-norm of KKT over iterations

max
99th perc.
95th perc.
90th perc.
50th perc.

Fig. 1. Application of the approximate solver to Ntest = 1500 test data
points (p) with random initial guesses z0. The log-scaled x-axis shows
the number of iterations and the log-scaled y-axis shows the error on the
original KKT conditions measured in the 2-norm. Visualized are different
trajectories with the corresponding 50, 90, 95, 95 percentage points as well
as the maximum error.

and a batch size of Nbatch = 1024. The parameters p are
uniformly random sampled in the beginning of each training
epoch. The initial guesses of the primal-dual solution z0
are sampled from the normal distribution N (0, 1). We note
that this initial guess is relatively poor and more advanced
initialization strategies can be used if necessary. The training
is performed on an AMD Ryzen Threadripper 1920X CPU.

C. Convergence Behavior of Learning-based Iterative Solver

We look first at the convergence behavior of the proposed
learning-based iterative solver. We apply the learning-based
iterative solver to the parameters p of the test dataset DTest

with uniformly randomly sampled initial guesses z0 ∼
N (0, 1). A maximum number of solver iterations of N =
1000 is considered. For evaluation, we consider the 2-norm
of the KKT conditions (7). The results are shown in Fig. 1.

After less than 30 iterations, the learning-based iterative
solver has achieved an error below 10−6 for more than 50%
of the runs. This error is obtained in over 95% of cases
after fewer than 100 iterations. By about 500 iterations, all
Ntest = 1500 runs have reached the tolerance of 10−6.

We can thus state that the approximate solver led to
convergence in all cases of the test data set and that this
happened in more than 50% of the cases even after a small
number of steps. While the median number of iterations is
low, the maximum number of iterations is larger. However,
this test data is conducted in an open-loop manner, meaning
the predicted next control action is not implemented to the
system to establish new subsequent initial states. Conse-
quently, the data is widely distributed over the entire feasible
space, including data points that are close to infeasible.

D. Comparison to Approximate NMPC

We examine now the closed-loop application of the
learning-based iterative solver for the NMPC of the system
(32). To prevent the system from moving to a stationary
state, we add an additive white noise dk ∼ N (0, 0.3):
xk+1 = f(xk, uk)+dk. Based on the initial values for xinit

and u−1, which we take from the test dataset DTest, we

10−10 10−8 10−6 10−4 10−2

Absolute error to optimal control action | ̂u0 − u*
0|

0

1000

2000

3000

Fr
eq

ue
nc

y

Distribution of absolute error to optimal control action

learning-based iterative solver
approximate mpc

Fig. 2. Comparison of the prediction accuracy of the next control actions
of the learning-based iterative solver and the approximate MPC compared
to exact solutions, determined via Ipopt. The maximum number of iterations
of the learning-based iterative solver is limited to Niter,max = 40 and the
iteration is stopped when a tolerance on the error ∥FΦ∥2 = 10−6 has been
reached.

simulate the system (32) with the predicted control actions
of the learning-based iterative solver for Nclosed−loop = 25
time steps forward. We have set the maximum number of
solver iterations as Niter,max = 40, based on our observation
that the entire learning-based iterative solver can be executed
faster than Ipopt on average. This is despite our currently
non-optimized implementation, which includes slow connec-
tions to CasADi and PyTorch via Python code. In addition,
the solver iterations stop early when a tolerance on the norm
∥FΦ∥2 = 10−6 has been reached.

We compare the predicted next control action of our pre-
sented approach, as well as the prediction of the approximate
MPC (4) with the exact solutions of the optimization prob-
lem, which we determine with Ipopt [23] and an optimizer
tolerance of 10−10. To this end, we determine the distance
to the optimal solution |û0 − u∗

0| for each prediction of the
next control action.

The distribution of the prediction errors of the individual
25 closed-loop iterations for Ntest = 1500 test data points
is shown in Fig. 2. We see that despite the limitation of the
maximum number of iterations of the learning-based iterative
solver, the maximum error of the learned solver is lower than
that of the approximate MPC. In addition, the distribution of
prediction errors is significantly shifted, so that the learning-
based iterative solver has average prediction errors that are
several orders of magnitude lower.

Although the neural network of the learned solver has
to be evaluated more times than the neural network of the
approximate MPC (which is evaluated only once), the solver
achieves the required tolerance in less than 18 iterations
in this application in 90% of cases. We conclude that the
proposed learning-based iterative solver is a very promising
alternative to approximate MPC for the calculation of solu-
tions of high accuracy.

V. CONCLUSIONS

We present a novel approach to learn a problem-specific
iterative nonlinear optimization solver using neural networks.

1842

The proposed approach achieves prediction errors several
orders of magnitude lower than comparable neural network-
based approximate MPC approaches. To achieve this, we
present an efficient training algorithm that leverages the
predicted KKT conditions in an unsupervised loss function,
omitting the need for prior sampling of optimal solutions.
Furthermore, by predicting complete primal-dual solutions,
the optimality can be certified directly.

In an illustrative case study, considering the MPC of a
nonlinear double integrator, we showcase the effectiveness
of this approach to efficiently compute solutions of high ac-
curacy. Further research will consider improved strategies for
determining the initial guesses of the approximate solver. In
addition, theoretical convergence properties of the proposed
learning-based iterative solver will also be investigated as
well as the application to larger nonlinear problems.

REFERENCES

[1] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive
Control: Theory, Computation, and Design, 2nd ed. Madison,
Wisconsin: Nob Hill Publishing, 2017.

[2] L. Grüne and J. Pannek, Nonlinear Model Predictive Control, ser.
Communications and Control Engineering. Cham: Springer Interna-
tional Publishing, 2017.

[3] P. Kumar, J. B. Rawlings, and S. J. Wright, “Industrial, large-scale
model predictive control with structured neural networks,” Computers
& Chemical Engineering, vol. 150, p. 107291, July 2021.

[4] B. Karg and S. Lucia, “Reinforced approximate robust nonlinear model
predictive control,” in 2021 23rd International Conference on Process
Control (PC), June 2021, pp. 149–156.

[5] C. Gonzalez, H. Asadi, L. Kooijman, and C. P. Lim, “Neural networks
for fast optimisation in model predictive control: A review,” arXiv
preprint arXiv:2309.02668, 2023.

[6] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, Jan. 2002.

[7] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas,
and M. Morari, “Approximating Explicit Model Predictive Control
Using Constrained Neural Networks,” in 2018 Annual American
Control Conference (ACC), June 2018, pp. 1520–1527.

[8] B. Karg and S. Lucia, “Efficient Representation and Approximation
of Model Predictive Control Laws via Deep Learning,” IEEE Trans-
actions on Cybernetics, vol. 50, no. 9, pp. 3866–3878, Sept. 2020.

[9] A. Mesbah, K. P. Wabersich, A. P. Schoellig, M. N. Zeilinger, S. Lucia,
T. A. Badgwell, and J. A. Paulson, “Fusion of machine learning and
MPC under uncertainty: What advances are on the horizon?” in 2022
American Control Conference (ACC), 2022, pp. 342–357.

[10] L. Lüken, D. Brandner, and S. Lucia, “Sobolev Training for Data-
efficient Approximate Nonlinear MPC,” in IFAC World Congress 2023,
2023.

[11] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10, pp.
1443–1451, Oct. 1995.

[12] S. Lucia, D. Navarro, B. Karg, H. Sarnago, and Ó. Lucı́a, “Deep
Learning-Based Model Predictive Control for Resonant Power Con-
verters,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1,
pp. 409–420, Jan. 2021.

[13] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning an
Approximate Model Predictive Controller With Guarantees,” IEEE
Control Systems Letters, vol. 2, no. 3, pp. 543–548, July 2018.

[14] B. Karg, T. Alamo, and S. Lucia, “Probabilistic performance validation
of deep learning-based robust NMPC controllers,” International Jour-
nal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8855–8876,
2021.

[15] B. Karg and S. Lucia, “Stability and feasibility of neural network-
based controllers via output range analysis,” in 2020 59th IEEE
Conference on Decision and Control (CDC), 2020, pp. 4947–4954.

[16] H. Hose, J. Köhler, M. N. Zeilinger, and S. Trimpe, “Approximate
non-linear model predictive control with safety-augmented neural
networks,” arXiv preprint arXiv:2304.09575, 2023.

[17] F. Fabiani and P. J. Goulart, “Reliably-Stabilizing Piecewise-Affine
Neural Network Controllers,” IEEE Transactions on Automatic Con-
trol, vol. 68, no. 9, pp. 5201–5215, Sept. 2023.

[18] D. Teichrib and M. S. Darup, “Error bounds for maxout neural network
approximations of model predictive control,” in IFAC World Congress
2023, 2023.

[19] J. A. Paulson and A. Mesbah, “Approximate Closed-Loop Robust
Model Predictive Control With Guaranteed Stability and Constraint
Satisfaction,” IEEE Control Systems Letters, vol. 4, no. 3, pp. 719–
724, July 2020.

[20] J. Ichnowski, P. Jain, B. Stellato, G. Banjac, M. Luo, F. Borrelli,
J. E. Gonzalez, I. Stoica, and K. Goldberg, “Accelerating quadratic
optimization with reinforcement learning,” in Advances in Neural
Information Processing Systems, vol. 34, 2021, pp. 21 043–21 055.

[21] T. Chen, X. Chen, W. Chen, Z. Wang, H. Heaton, J. Liu, and W. Yin,
“Learning to optimize: A primer and a benchmark,” The Journal of
Machine Learning Research, vol. 23, no. 1, pp. 8562–8620, 2022.

[22] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., ser.
Springer Series in Operations Research. New York: Springer, 2006.

[23] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar.
2006.

[24] A. Fischer, “A special newton-type optimization method,” Optimiza-
tion, vol. 24, no. 3-4, pp. 269–284, Jan. 1992.

[25] D. Liao-McPherson, M. Huang, and I. Kolmanovsky, “A Regularized
and Smoothed Fischer–Burmeister Method for Quadratic Program-
ming With Applications to Model Predictive Control,” IEEE Trans-
actions on Automatic Control, vol. 64, no. 7, pp. 2937–2944, July
2019.

[26] A. Griewank and A. Walther, Evaluating Derivatives, ser. Other
Titles in Applied Mathematics. Society for Industrial and Applied
Mathematics, Jan. 2008.

[27] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2018.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in NeurIPS, 2019, p. 12.

[29] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, Mar. 2019.

[30] M. Lazar, D. Muñoz De La Peña, W. Heemels, and T. Alamo,
“On input-to-state stability of min–max nonlinear model predictive
control,” Systems & Control Letters, vol. 57, no. 1, pp. 39–48, Jan.
2008.

[31] F. Fiedler, B. Karg, L. Lüken, D. Brandner, M. Heinlein, F. Brabender,
and S. Lucia, “do-mpc: Towards FAIR nonlinear and robust model
predictive control,” Control Engineering Practice, vol. 140, p. 105676,
Nov. 2023.

1843

