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Abstract— Microgrids are autonomous clusters of genera-
tors, storage units and loads. Special requirements arise in
interconnected operation: control schemes that do not require
individual microgrids to disclose information about their in-
ternal structure and operating objectives are preferred for
privacy reasons. Moreover, a safe and economically meaningful
operation shall be achieved in presence of uncertain load and
weather-dependent availability of renewable infeed. In this
paper, we propose a hierarchical distributed model predictive
control approach that satisfies these requirements. Specifically,
we demonstrate that costs and safety of supply can be improved
through a scenario-based stochastic control scheme. In a nu-
merical case study, our approach is compared to a certainty
equivalence and a prescient scheme. The results illustrate good
performance as well as sufficiently fast convergence.

I. INTRODUCTION

Climate change is one of the major challenges of the 21st
century. Renewable energy sources (RESs) play a central
role in tackling this challenge. As infeed of RESs increases,
new questions arise: how to ensure a reliable operation in
presence of uncertain RESs and how to keep the complexity
manageable despite a large number small-scale RESs?

Microgrids (MGs) have emerged as a promising approach
to answer these questions. An MG clusters a collection of
loads and distributed units [1], such as storage units, RESs
and conventional generators. Internally, it is controlled in a
way that makes it appear as a single subsystem [2] to the
outside world which acts as a load or a generator [1] when
connected to a utility grid. Compared to islanded operation,
trading energy between interconnected MGs allows to further
increase infeed of RESs with different generation patterns.

Operation control, also referred to as energy management,
aims to provide power setpoints to the units and thereby
control the energy of storages. For this task, model predictive
control (MPC) has been widely employed. Here, optimiza-
tion problems are solved to find control actions that minimize
an objective subject to constrains which model the system
behavior and account for limits. Decisions have to be made
in presence of uncertain load and renewable infeed. In state-
of-the-art approaches, nominal forecasts are often assumed
to be certain which holds the risk of constraint violations
in presence of prediction errors. Stochastic approaches, that
employ forecast probability distributions, on the other hand,
allow to increase robustness and performance [3].
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Stochastic MPC of MGs was actively explored in recent
years. In [4], a scenario-based method for the optimal oper-
ation of a single grid-connected MG was proposed. Kou et
al. consider a similar setup in [5]. In [6], a scenario-based
approach consisting of optimal generation scheduling and
MPC is presented. The authors of [7] propose a scenario-
based approach that employs heuristics for optimal control.
Heymann et al. model the demand dynamics with stochastic
differential equation and solve a management problem [8].
Only few have studied stochastic control of networks of
interconnected MGs, probably because such problems can
be hard to decompose and stochastic mixed-integer problems
(MIPs) often do not scale well. To our knowledge, only in
[9], a multi-MG system with uncertain RESs and load as well
as power exchange between MGs is considered. However,
the approach relies on day-ahead scheduling which can be
inflexible in grid with high share of uncertain renewable
energy sources.

In this work, we employ a hierarchical distributed MPC
approach [10] in a setting where scenario-based stochastic
local problems along the lines of [11] are considered. In
this context, the following contributions are made. (i) Un-
certainties in renewable generation and loads are handled by
inclusion of forecast probability distributions. In the overall
MPC scheme, we assume that fluctuations are covered within
each MG and power flow over the AC grid is certain. (ii) We
solve the MPC problem through a distributed algorithm that
is based on the widely employed alternating direction method
of multipliers (ADMM) (see, e.g., [10], [12], [13]). Control
actions are found by alternately solving local stochastic
optimization problems at individual MGs and a certainty
equivalence optimization problem at a central coordinator
that takes care of the power flow between the MGs. The
algorithm allows to respect the privacy and independence of
individual MGs. In addition, the computational complexity
scales well with the number of MGs such that solve times
remain manageable. (iii) In a comprehensive case study,
the stochastic approach is thoroughly compared with the
certainty equivalence approach from [10] and a prescient
MPC. Several closed-loop performance metrics as well as
solve times and number of iterations are assessed. The
results highlight the increased security of the novel approach
compared to certainty equivalence MPC.

The remainder of this paper is structured as follows. In
Section II, the plant model and the model of the uncertain
forecast are introduced. In Section III, a problem formulation
is provided and in Section IV, a distributed solution pro-
posed. Finally, in Section V simulation results are discussed.
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TABLE I
VARIABLES OF MG i BY UNIT TYPE

Variable Type Symbol

Convent. Setpoint Control input ut,i ∈ RTi
≥0

On/off switch Control input δt,i ∈ BTi

Power Auxiliary pt,i ∈ RTi
≥0

Storage Setpoint Control input us,i ∈ RSi

Energy State xi ∈ RSi
≥0

Power Auxiliary ps,i ∈ RSi

Slack var. Auxiliary σi ∈ RSi
≥0

RES Setpoint Control input ur,i ∈ RRi
≥0

Weather-dependent Uncertain input wr,i ∈ RRi
≥0

available power
Power Auxiliary pr,i ∈ RRi

≥0

Boolean var. for Auxiliary δr,i ∈ BRi

min-operator

Load Power Uncertain input wd,i ∈ RDi
≤0

Grid PCC Power Auxiliary pg,i ∈ R
Power sharing var. Auxiliary ρi ∈ R

A. Notation

The set of positive integers is N and the set of nonnegative
integers N0. The set of Boolean variables is B = {1, 0}. The
set {x|x ∈ N0 ∧ a ≤ x ≤ b} is shortly referred to as N[a,b].
The set of real numbers is R, the set of negative real numbers
R<0 and the set of positive real numbers R>0. Likewise, R≤0

denotes nonpositive and R≥0 nonnegative real numbers.
Let 1n be the n-dimensional column vector of all ones.

Moreover, 0m×n is the m× n matrix of all zeros and In the
n× n identity matrix. Consider a vector a = [a1 · · · an]

⊤.
Then diag(a) is a diagonal matrix with entries ai, i ∈ N[1,n].
Finally, ∥a∥2 is the Euclidean norm of vector a.

II. MODEL

In what follows, the model of a network of AC MGs (see,
e.g., Figure 1) is derived. Moreover, the representation of
uncertain forecasts in the form of scenario trees is discussed.

A. MG model variables

Consider I ∈ N MGs which are uniquely indexed by
elements of the set I = N[1,I]. Each MG i ∈ I is composed
of Ti ∈ N conventional units, Si ∈ N storage units, Ri ∈ N
RESs and Di ∈ N loads. The variables associated with MG i
are collected in Table I. For the units, active sign convention
is used, i.e., positive values indicate that power is provided,
negative values that it is consumed. For MG i, the power
setpoints of all units are collected in ui = [u

⊤
t,i u

⊤
s,i u

⊤
r,i]

⊤

and the control inputs combined in vi = [u
⊤
i δ

⊤
t,i]

⊤. The
power values are collected in pi = [p

⊤
t,i p

⊤
s,i p

⊤
r,i]

⊤ which is
used to form qi = [p

⊤
i δ

⊤
r,i σ

⊤
i ρi]

⊤. The state xi represents
the energy that is contained in the storage units. Finally,
wi = [w

⊤
r,i w

⊤
d,i]

⊤ is the vector of uncertain inputs.
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Fig. 1. Topology of four interconnected AC MGs from [10].

B. Uncertainty model

The forecasts of uncertain load and weather-dependent
available renewable infeed are modeled using scenario trees.
This section provides a brief introduction on their generation
and structure. Note that it is strongly motivated by [3].

1) From forecast scenarios to scenario trees: Consider
a finite number of independent equiprobable forecast sce-
narios proceeding into the future for J prediction steps.
For a large number of scenarios, the underlying probability
distribution is accurately approximated. Since a large number
of scenarios leads to complex optimization problems, more
compact representations of probability distributions, such as
scenario trees, are desirable. In this paper, forecast scenarios
of available wind power are derived using autoregressive
integrated moving average (ARIMA) models. The available
photovoltaic power and load demand forecast scenarios are
generated using seasonal ARIMA models. On these scenar-
ios, forward selection [14] is applied to obtain scenario-trees.

2) Scenario tree structure: Scenario trees are collections
of Mi ∈ N nodes which are partitioned into J ∈ N stages,
i.e., prediction steps j ∈ N[0,J]. Let us collect the unique
indices of all nodes in Mi = N[0,Mi−1]. The stagei(m)
operator provides the stage of node m ∈ Mi. Likewise,
nodesi(j) provides the set of nodes associated with stage j.
We refer to the node m = 0 at stage j = 0 as the root node
and the nodes at stage j = J as leaf nodes. The set of all
non-root nodes is Li = Mi \{0}. Each node m ∈ nodesi(j)
at stage j ∈ N[0,J−1] is connected to a set of child nodes at
stage j+1 which are accessible via childi(m). Vice versa, all
nodes m ∈ nodesi(j) at stage j ∈ N[1,J] are reachable from
one unique ancestor node at stage j − 1, denoted anci(m).
The probability to visit node m is π(m) ∈ (0, 1] ⊂ R. By
construction of the tree, we have that∑

m∈nodesi(j)

π(m) = 1 ∀j ∈ N[0,J] and (1a)∑
m+∈childi(m)

π(m+) = π(m) ∀m ∈ Mi \ nodesi(J). (1b)

Each node m ∈ Mi is associated with a vector of states
x
(m)
i (see Figure 2). Moreover, v(m)

i represents the control
inputs, w

(m)
i the uncertain inputs and q

(m)
i the auxiliary

variables associated with node m ∈ Li.
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Fig. 2. Scenario tree based on [11] with nonanticipativity constraints.

3) Nonanticipativity: In the upcoming stochastic opti-
mization problems, we aim to make control decisions v

(m)
i

at each node m ∈ Li. In this context, it is important to
move causally in time: When making control decisions, we
do not know exactly which uncertain input will occur. We
only know possible outcomes and associated probabilities.
Thus, we need make one decision for all uncertain inputs that
originate from the same ancestor. This must be accounted for,
e.g., by the equality constraint

v
(m)
i = v

(n)
i ∀n ∈ childi(anci(m)). (2)

In Figure 2, this so-called nonanticipativity constraint (see,
e.g., [15]–[17]) is illustrated in light blue. Here, at stage
j = 1, we can only make one control decision v

(1)
i = v

(2)
i

for the possible uncertain inputs w
(1)
i and w

(2)
i . At stage

j = 2, when finding control actions for nodes 3 and 4, we
can only use the information that is available up to node
1, i.e., we consider the case associated with uncertain input
w

(1)
i . Here, we need to make one decision v

(3)
i = v

(4)
i for

possible uncertain inputs w
(3)
i and w

(4)
i . Since node 5 is a

singleton, no restrictions of the form (2) apply.
Remark 1: In problem formulations, nonanticipativity can

be included in different ways. One possibility is replacing
v
(n)
i by v

(m)
i for all n ∈ childi(anci(m)) when formulating

the problems. Another way is to include (2) as a regular
constraint. In this case, the pre-solve stage in off-the-shelf
solvers, would often perform aforementioned replacement in-
ternally. Either way, (2) reduces the complexity of associated
problems since less decision variables must be considered. •

C. Single microgrid model

In what follows, a model of a single AC MG is derived. It
is based on [11] and includes RESs, storage and conventional
units as well as a point of common coupling (PCC).

1) RESs: The forecasts of power and setpoint must lie
within the bounds pmin

r,i ∈ RRi

≥0 and pmax
r,i ∈ RRi

>0, i.e.,

pmin
r,i ≤ u

(m)
r,i ≤ pmax

r,i , (3a)

pmin
r,i ≤ p

(m)
r,i ≤ pmax

r,i , (3b)

for all m ∈ Li [11]. Additionally, the power of each RES
can be limited by its setpoint. The limit comes to bear if the

weather-dependent available renewable power exceeds the
setpoint. If it lies below the setpoint, then the power follows
the available infeed. Using the element-wise min operator
allows to describe this for all m ∈ Li by [11]

p
(m)
r,i = min(u

(m)
r,i , w

(m)
r,i ). (4)

Note that (4) can be easily transformed into a set of affine
constraints using the auxiliary decision variable δ

(m)
r,i (see,

e.g., [3, Lemma 3.3.6]) which makes it appropriate for MIPs.
2) Storage units: The forecasts of setpoints and power are

limited by pmin
s,i ∈ RSi

<0 and pmax
s,i ∈ RSi

>0, i.e.,

pmin
s,i ≤ u

(m)
s,i ≤ pmax

s,i , (5a)

pmin
s,i ≤ p

(m)
s,i ≤ pmax

s,i , (5b)

for all m ∈ Li [11]. Moreover, the storage units exhibit
dynamics which can be forecast for all m ∈ Li via

x
(m)
i = x

(m−)
i − Tsp

(m)
s,i , (6)

with m− ∈ anci(m) [11]. Here, x
(0)
i = xi(k) is the

measured state at the current discrete time instant k ∈ N0.
It is desired to keep x

(m)
i above xmin

i ∈ RSi

≥0 and below
xmax
i ∈ RSi

>0. To ensure feasibility, σ(m)
i ∈ RSi

≥0 is used to
form the soft constraints

xmin
i − σ

(m)
i ≤ x

(m)
i ≤ xmax

i + σ
(m)
i (7)

for all m ∈ Li which are completed by adding a penalty on
nonzero values of σ(m)

i to the objective in Section III-A.
3) Conventional units: The forecasts of power and set-

points must lie within pmin
t,i ∈ RTi

>0 and pmax
t,i ∈ RTi

>0 for
enabled units. With the Boolean input δ(m)

t,i that indicates if
units are enabled or disabled, this can be formulated as [11]

diag
(
pmin
t,i

)
δ
(m)
t,i ≤ u

(m)
t,i ≤ diag

(
pmax
t,i

)
δ
(m)
t,i , (8a)

diag
(
pmin
t,i

)
δ
(m)
t,i ≤ p

(m)
t,i ≤ diag

(
pmax
t,i

)
δ
(m)
t,i . (8b)

4) Power sharing between grid-forming units: We assume
that grid-forming storage and conventional units change their
power in presence of fluctuations in a given proportional
manner. This is typically achieved via suitable low-level
control schemes (see, e.g., [18]) and can be modeled by [3]

Kt,i(p
(m)
t,i − u

(m)
t,i ) = ρ

(m)
i δ

(m)
t,i , (9a)

Ks,i(p
(m)
s,i − u

(m)
s,i ) = ρ

(m)
i 1Si

, (9b)

for all m ∈ Li with the auxiliary decision variable ρ
(m)
i and

the droop coefficient matrices

Kt,i = diag([1/χi,1 · · · 1/χi,Ti ]
⊤),

Ks,i = diag([1/χi,(Ti+1) · · · 1/χi,(Ti+Si)]
⊤).

Here, the design parameters χi,l ∈ R>0, l ∈ N[1,Ti+Si] can
be chosen for example according to the units’ nominal power.

The term ρ
(m)
i δ

(m)
t,i in (9a) models that only enabled units

can participate in power sharing. It can be easily transformed
into a set of affine constraints (see, e.g., [3, Lemma 3.3.5])
which renders it appropriate for mixed-integer formulations.
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5) PCC power: We assume that the low-level control
schemes keep the power at the PCC at a desired value pg,i(j)
in presence of uncertain demand and renewable infeed. Thus,
all fluctuations are covered inside each MG i and power
exchange over the utility grid is not affected by uncertainties,
i.e., it is certain. In the model, this is captured by only
considering one predicted PCC power value pg,i(j) which
is identical for all nodes at stage j ∈ N[1,J]. This power is
limited by pmin

g,i ∈ R≤0 and pmax
g,i ∈ R≥0, i.e.,

pmin
g,i ≤ pg,i(j) ≤ pmax

g . (10)

6) Local power balance: Within each MG i ∈ I, a local
power balance holds. For all m ∈ Li, it is modeled by

0 = 1
⊤
Ri
p
(m)
r,i + 1

⊤
Ti
p
(m)
t,i + 1

⊤
Si
p
(m)
s,i + 1

⊤
Di

w
(m)
d,i

+ pg,i(stagei(m)). (11)

D. Grid model

Let us collect the PCC power forecast pg,i(j) of all MGs at
stage j ∈ N[1,J] in pg(j) = [pg,1(j) · · · pg,I(j)]

⊤. Negative
values of pg,i(j) indicate that MG i injects power into the
grid, whereas a positive values indicates a consumption of
power. Let us further collect the power flow over E ∈ N
transmission lines in pe(k) = [pe,1(k) · · · pe,E(k)]

⊤. As-
suming inductive short to medium length power lines allows
us to employ the DC power flow approximations for AC
grids [19]. Motivated by [10], we describe the power flow
over the lines by

pe(j) = F̃ · pg(j). (12a)

Moreover, a global power equilibrium of the form

0 = 1
⊤
I pg(j) (12b)

must hold. The power that can be transmitted via the grid is
limited by pmin

e ∈ RE
<0 and pmax

e ∈ RE
>0, i.e.,

pmin
e ≤ pe(j) ≤ pmax

e . (12c)

III. PROBLEM FORMULATION

Based on the model from the previous chapter, we can now
formulate MPC problems for the operation of interconnected
MGs. We start by discussing the operation costs.

A. Costs of individual MGs

In what follows, we define the units’ costs for all nodes
m ∈ Li in the scenario trees of each MG i ∈ I.

1) RESs: The desire for high renewable infeed is consid-
ered by penalizing deviations from the rated power pmax

r,i .
With weight cr,i ∈ RRi

>0 the cost is formulated as [10]

ℓ
(m)
r,i = ∥ diag(cr,i)(pmax

r,i − p
(m)
r,i )∥22. (13)

2) Storage units: The costs of the storage units are

ℓ
(m)
s,i = ∥ diag(cs,i)p(m)

s,i ∥22 + ∥ diag(cσ,i)σ(m)
i ∥22 (14)

with cs,i ∈ RSi
>0 and cσ,i ∈ RSi

>0. The first term reflects
conversion losses, the second term is a penalty for nonzero
values of σ(m)

i , i.e., energy values above xmax
i or below xmin

i

(see Section II-C.2).

3) Conventional generators: Following [20], the operat-
ing costs of the conventional units are modeled using a
quadratic function. With ct,i, c

′
t,i, c

′′
t,i ∈ RTi

>0, it reads

ℓ
(m)
t,i = c

⊤
t,iδ

(m−)
t,i + c

′⊤
t,ip

(m)
t,i + ∥ diag(c′′t,i)p

(m)
t,i ∥22. (15)

Switching actions incur maintenance costs. This is ac-
counted for by a term that is nonzero if units are enabled
or disabled from node m− = anci(m) to node m, i.e.,

ℓ
(m)
sw,i = ∥ diag(csw,i)(δ

(m−)
t,i − δ

(m)
t,i )∥22, (16)

with csw,i ∈ RTi
>0 [11]. Here, δ(0)t,i equals the measured δt,i(k)

at the current time instant k.
4) Control effort of lower layers: Large differences be-

tween power and setpoint can lead to additional control effort
at the lower layers. Therefore, it is desirable to keep the
power close to the setpoints. Since ρ

(m)
i is correlated with

deviations of the power from the setpoints, this desire can be
reflected by a penalty, with weight cρ,i ∈ R>0, of the form

ℓ
(m)
ρ,i = cρ,i (ρ

(m)
i )2. (17)

5) Trading cost: All fluctuations are assumed to be cov-
ered locally inside each MG. As a result, pg and consequently
the cost for power exchange, i.e.,

ℓ
(m)
g,i = cg,ipg,i(stagei(m)) + c′g,i|pg,i(stagei(m))| (18)

with c′g,i, c
′′
g,i ∈ R>0 [10], are certain. The first part of (18)

represents a given price for energy and the second part a
fixed cost per absolute value of traded energy.

6) Single MG cost: By construction of the scenario tree
(see Section II-B.2), the expected cost is given by the sum
over all nodes m ∈ Li, weighted with probability π

(m)
i , i.e.,

ℓi =
∑

m∈Li

π
(m)
i

(
ℓ
(m)
r,i + ℓ

(m)
s,i + ℓ

(m)
t,i + ℓ

(m)
sw,i

+ ℓ
(m)
ρ,i + ℓ

(m)
g,i

)
γstagei(m). (19)

Here, γ ∈ (0, 1) is used to emphasize near future decisions.
Note that (19) equals the sum of expected stage costs over
all j ∈ N[1,J] in the scenario tree (see, e.g., [3, Ch. 10]).

B. Cost for power transmission

In addition to (19), costs for transmitting power are
considered. Assuming that they increase with line losses,
i.e., quadratically with the transmitted power pe, allows us
to deduce the transmission costs over prediction horizon J
with diagonal matrix Ce ∈ RE×E

≥0 as [10]

ℓe =
J∑

j=1

p
⊤
e (j)Cepe(j) · γj . (20)

C. MPC problem formulation

For each MG i ∈ I, we collect all control inputs in Vi =

[v
(1)
i · · · v

(Mi−1)
i ], states in Xi = [x

(0)
i · · · x

(Mi−1)
i ] and

auxiliary variables in Qi = [q
(1)
i · · · q(Mi−1)

i ]. Similarly, we
form Pe = [pe(1) · · · pe(J)] and Pg = [pg(1) · · · pg(J)].
Using these decision variables, we can formulate the follow-
ing stochastic optimization problem.
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Problem 1 (Central mixed-integer problem):

minimize
V1,...,VI
X1,...,XI
Q1,...,QI
Pe,Pg

ℓe +
∑
i∈I

ℓi

subject to
(2) to (12) for all m ∈ Li

as well as initial conditions x
(0)
i = xi(k), δ

(0)
t,i = δt,i(k)

for all i ∈ I. •
Remark 2 (Robustness): In Problem 1, power and energy,

i.e., Xi and Qi, are monotone in the uncertain input [3,
Remark 9.2.4]. Therefore, the formulation is stage-wise ro-
bust to uncertain inputs which are in the convex hull formed
by w

(m)
i , m ∈ nodesi(j). In Section V, this property is

exploited by adding extreme scenarios with low probabilities
to the tree, which extends the convex hull and allow to
increase robustness while keeping good performance when
optimizing the expected cost. •

The decision variables δt,i ∈ {0, 1}Ti and δr,i ∈ {0, 1}Ri

are Boolean, which renders Problem 1 a mixed-integer
quadratic problem. In order to find a solution along the lines
of [10], we relax δ

(m)
t,i ∈ [0, 1]Ti and δ

(m)
r,i ∈ [0, 1]Ri , which

allows to deduce the following quadratic formulation.
Problem 2 (Central relaxed problem):

minimize
V1,...,VI
X1,...,XI
Q1,...,QI
Pe,Pg

ℓe +
∑
i∈I

ℓi

subject to
(2) to (12) for all m ∈ Li

as well as initial conditions x
(0)
i = xi(k), δ

(0)
t,i = δt,i(k)

with δ
(m)
t,i ∈ [0, 1]Ti and δ

(m)
r,i ∈ [0, 1]Ri for all m ∈ Li

and all i ∈ I. •
IV. DISTRIBUTED SOLUTION

In this section, we describe how to find a (not necessarily
optimal) distributed solution to Problem 1 using Algorithm 1.
In detail, we first find a solution to Problem 2 by alternately
solving a subproblem at a central coordinator and local
subproblems at the MGs (see Figure 3). In a second step,
local MIPs are solved at each MGs for the given PCC power
from the previous step.

Consider a copy of Pg denoted P̂g = [p̂g(1) · · · p̂g(J)].
The decision variables in Pg are used at the local MGs and
the ones in P̂g at the central entity. Both have to be found
such that

Pg − P̂g = 0I×J . (21)

Let us form the vector of Lagrange multipliers of all MGs
at prediction step j as λ(j) = [λ1(j) · · · λI(j)]

⊤ ∈ RI and
collect them in Λ = [λ(1) · · · λ(J)]. We refer to row i of
Λ as Λi, to row i of Pg as Pg,i and to row i of P̂g as
P̂g,i. This allows us to formulate the augmented Lagrangian
of Problem 2 with fixed parameter κ ∈ R>0,

Lκ(Pg, P̂g,Λ) = ℓe +
∑
i∈I

(
ℓi +Λi(Pg,i − P̂g,i)

⊤

+ κ/2∥Pg,i − P̂g,i∥22
)
. (22)

Central entity
(Problem 4)

MG 1
(Problems 3 & 5)

MG 2
(Problems 3 & 5)

MG 3
(Problems 3 & 5)

MG 4
(Problems 3 & 5)
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Fig. 3. Underlying communication structure in Algorithm 1.

Similar to [10], we intend to find a distributed solution to
Problem 2 based on the augmented Lagrangian. Therefore,
we pose the following optimization problems.

Problem 3 (Local ADMM problem at MG i ∈ L):

Pl+1
g,i ∈ argmin

Vi,Xi,Qi,Pg,i

ℓi +Λl
iP

⊤
g,i + κ/2∥Pg,i − P̂l

g,i∥22

subject to
(2) to (11) for all m ∈ Li

as well as initial conditions x
(0)
i = xi(k), δ

(0)
t,i = δt,i(k)

with δ
(m)
t,i ∈ [0, 1]Ti , δ(m)

r,i ∈ [0, 1]Ri for all m ∈ Li. •

Problem 4 (Central ADMM problem at coordinator):

P̂l+1
g ∈ argmin

P̂g,Pe

ℓe −
∑
i∈I

(
Λl

iP̂
⊤
g,i + κ/2∥Pl+1

g,i − P̂g,i∥22
)

subject to
(10) and (12) using p̂g(j) instead of pg(j)
for all j ∈ N[1,J]. •
By alternately solving Problems 3 and 4 and updating

Lagrange multipliers (see (23) in Algorithm 1) we can find
an optimal solution to Problem 2 using the ADMM. The
resulting optimal values P⋆

g,i are then used to find feasible
(but not necessarily optimal) solutions to Problem 1 via local
mixed-integer updates at all MGs. In these updates, Pg is
fixed to P⋆

g,i and Boolean values for δt,i and δr,i are again
considered. The associated problem reads as follows.

Problem 5 (Mixed-integer update at MG i ∈ L):

minimize
Vi,Xi,Qi

ℓi

subject to
(2) to (9) and (11) for all m ∈ Li,
as well as initial conditions x

(0)
i = xi(k), δ

(0)
t,i = δt,i(k)

with fixed Pg,i = P⋆
g,i. •

Algorithm 1 allows us to find a hierarchical distributed
solution using Problems 3 to 5 (see also Figure 3). Similar
to [10], a termination criterion that checks if the change of
Lagrange multipliers, PCC power, and residuals are all below
a small ϵ ∈ R>0. If this termination criterion is not met at
l = lmax, then P̂lmax+1

g,i , which represents a feasible solution
to Problem 2, is used subsequently. Finally, in step 3, local
MIPs are employed to find a feasible solution to Problem 1.

Remark 3 (Privacy): By design of Algorithm 1, the local
MG controllers only share the PCC power forecast Pl+1

g,i

with the central entity. Thus, no explicit information about
the structure of the MG in the form of constraints or cost
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function is shared with others which helps to preserve the
privacy of the local MG controllers. One can, however, think
of ways to reconstruct parts of Problem 3 using malicious
vectors P̂l+1

g,i , Λl+1
i . Finding formulations which are secure

against such attacks is subject to future work. •
Remark 4 (Suboptimality): The ADMM part of Algo-

rithm 1 provides an optimal solution to Problem 2. However,
the overall scheme, composed of ADMM and Problem 5 is
not guaranteed to find an optimal solution to Problem 1.
That being said, in the simulations performed in Section V,
the algorithm was found to provide results with a small
suboptimality gap to the original Problem 1. •

Remark 5 (Feasibility): Let us assume that each MG is
configured such that storage and conventional units together
can always serve all possible load values present in the
forecast scenarios. Thus, an islanded operation where all
RESs are set to provide zero power always represents a
feasible solution to Problem 5. This allows us to deal with
ADMM solutions P⋆

g,i which lead to infeasible formulations
of Problem 5 at MG i by re-executing Algorithm 1 with
zero PCC power using pmin

g,i = pmax
g,i = 0. This results in

P⋆
g,i = 01×J which in turn lead to feasible formulations of

Problem 5. Another alternative is to employ schemes that
ensure feasibility, such as the one presented in [21]. For a
thorough discussion of feasibility in a related problem, the
reader is kindly referred to [10, Sec. V.C]. •

Algorithm 1 Hierarchical distributed algorithm
1. Initialize: At time k, ∀i ∈ I, measure xi(k), δt,i(k) and

obtain scenario tree.
2. ADMM loop:

for l = 0, . . . , lmax ∈ N:
(i) For all MG i ∈ I (in parallel):

• Solve Problem 3 in parallel to obtain Pl+1
g,i .

• Send Pl+1
g,i to central entity.

(ii) Central entity:
• Solve Problem 4 to obtain P̂l+1

g .
• Update Lagrange multipliers:

Λl+1 = Λl + κ
(
Pl+1

g − P̂l+1
g

)
. (23)

• Communicate P̂l+1
g,i and Λl+1

i to all MG i ∈ I.
• Check termination criterion:

if
(
|Λl −Λl+1| < ϵ and |Pl

g,i −Pl+1
g,i | < ϵ and

|Pl+1
g,i − P̂l+1

g,i | < ϵ
)

or l = lmax,
then set P⋆

g,i = P̂l+1
g,i and go to 3.

3. Mixed-integer update: For all MG i ∈ I (in parallel):
• Solve Problem 5.

Algorithm 1 represents the core of an MPC scheme: At
each time instant k, new scenario trees and new measure-
ments xi(k), δt,i(k) are obtained at each MG i ∈ I. Then,
Algorithm 1 is used to find control actions v

(1)
i which

are applied to the each MG i ∈ I. At time k + 1, new
measurements and new scenario trees are obtained and the
scheme is repeated in a receding horizon manner.

TABLE II
SIMULATION PARAMETERS (i = 1, . . . , 4)

Parameter Value Parameter Value

[xmin
i , xmax

i ] [0.2, 6] puh [pmin
e,i , pmax

e,i ] [−1, 1] pu

[pmin
t,i , pmax

t,i ] [0.4, 1] pu [pmin
g,i , pmax

g,i ] [−1, 1] pu

[pmin
s,i , pmax

s,i ] [−1, 1] pu Ks,i = Kt,i 1

[pmin
r,i , pmax

r,i ] [0, 2] pu [δ1(0), . . . , δ4(0)] [0, 0, 0, 0]

TABLE III
WEIGHTS IN COST FUNCTIONS OF ALL MGS (i = 1, . . . , 4).

Weight Value Weight Value

cr,i 1 1/pu csw,i 0.1
cs,i 0.2236 1/pu cg,i 0.5 1/pu
ct,i 0.1178 c′g,i 0.1 1/pu

c′t,i 0.751 1/pu Ce 0.1 · diag([1, 2, 3, 6]⊤)1/pu2

c′′t,i 0.0693 1/pu cσ,i 1000
cρ,i 0.05 γ 0.95

V. CASE STUDY

The following study compares the closed-loop results
obtained with Algorithm 1 with those of the certainty equiva-
lence approach from [10]. We start with the simulation setup.

A. Simulation setup

In what follows, the network in Figure 1 with the sim-
ulation parameters in Table II is considered. As initial
state, [x1(0), . . . , x1(0)] = [1, 3.4, 2.9, 5.6] puh and as line
admittances ye,i = 20pu, i ∈ N[1,4| were used. Additionally,
the weights in Table III were employed in the cost functions.

The simulation was executed for 336 steps with a sampling
interval of 30min., resulting in a total duration of 7 days.
In the MPC schemes, a forecast prediction horizon of 12
sampling intervals was considered. The four scenario trees,
i.e., one for each MG to formulate Problems 3 and 5,
were generated from 500 independent forecast scenarios at
each execution of the controller. These scenarios were de-
duced from Monte-Carlo simulations assuming wind speed,
irradiance and demand forecasts with normally distributed
residuals. A branching factor of 6 at stage 1, 2 at stage 2
and 1 for all subsequent stages was considered. Each tree
was generated using forward selection [14]. To each tree
the largest and smallest forecast (at the first prediction step)
from the collections of independent scenarios were added to
increase robustness (see [3, Section 12.1.2]).

Closed-loop simulations with three distributed approaches
were performed: (i) Certainty equivalence MPC: This
state-of-the-art approach is based on [10, Algorithm 1]. The
uncertain input is assumed to be given by the nominal
forecast. Note that for comparability, switching costs were
added to the approach from [10]. (ii) Stochastic MPC: This
approach is based on Algorithm 1. It employs forecasts in the
form of scenario trees. (iii) Prescient MPC: This approach
is used as a reference and based on [10, Algorithm 1]. Here,
a hypothetical perfect forecast, given by the actual measured
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Fig. 4. Closed-loop simulation results obtained with Algorithm 1.

future load and available renewable infeed, is employed.
The setpoints found through them are passed to a model
of the network of interconnected MGs which simulates
the system behavior. The case study was implemented in
MATLAB R2020b using YALMIP (R20201001) [22] and
Gurobi 9.1.0 as numerical solver.

B. Closed-loop simulations
Figure 4 shows power and energy when using Algorithm 1.

The photovoltaic generators of MGs 3 and 4 come with a
daily seasonality. This is also reflected in power and energy
of the storage units in these MGs. Moreover, the power line
between MGs 3 and 4 is hardly utilized, because of similar
renewable infeed and load patterns. The power provided by
the wind turbines in MGs 1 and 2 does not come with notable
seasonality. MG 2 exhibits a high renewable share on the first
two days which is partly traded with other MGs. From day 3
on, the available renewable infeed decreases. Up to this time,
all demand could be met without conventional generation.
After day 3, conventional units need to switch on at times
to meet the demand. However, their infeed remains small
compared to RESs.

1) Violation of operating bounds: The storage units’ soft
bounds xmin

i = 0.2 pu h and xmax
i = 6puh for i ∈ N[1,4]

mark a desired range of operation. Figure 5 shows a compari-
son with respect to this aspect. We can see that the stochastic
MPC causes a smaller number of less extreme values outside
of the desired interval compared to certainty equivalence
MPC. Moreover, violations of power limits could only be
observed with the certainty equivalence MPC. In total, 52
power limit violations (mean value: 0.012 pu, maximum:
0.063 pu) occurred. Unlike the desired range of energy,
these violations seriously jeopardize a safe operation. The
stochastic MPC did not cause any power limit violation,
which hints at improved safety when using Algorithm 1.

2) Closed-loop performance: Table IV contains the total
generation of renewable and conventional units over the sim-

ulation horizon. Moreover, accumulated closed-loop operat-
ing costs of all MGs, transmission costs and overall costs are
summarized. As expected, the prescient controller achieves
the best results. The certainty equivalence MPC yields the
worst costs and the stochastic MPC takes the middle position.
Compared to the certainty equivalence case, renewable infeed
of the stochastic approach is much higher and comes very
close to the prescient case. Moreover, the stochastic MPC
could reduce the share of conventional energy compared to
the certainty equivalence MPC by 25.9 %, the number of
switching actions by 13 % and the overall cost by 40 %.

C. Computational properties

1) Solve times: In what follows, we will discuss the
accumulated solve times for each simulation step, i.e., each
execution of Algorithm 1 and [10, Algorithm 1]. The simula-
tions were executed on a computer with an Intel®Xeon®E5-
1620 v2 processor @3.70 GHz with 32 GB RAM. The
certainty equivalence and the prescient MPC yield very sim-
ilar solve times (mean: 1 s, maximum: 11 s). The stochastic
MPC requires a multiple of this (mean: 9 s, maximum:

6.0

6.1

Cert. equiv. Stochastic Prescient

E
ne

rg
y
[p
u
h
]

0.0

0.1

0.2

E
ne

rg
y
[p
u
h
]

Fig. 5. Energy values outside of desired range. Motivated by the precision
of the numerical solver, values closer than 10−5 to the interval were omitted.
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Fig. 6. Boxplots of number of ADMM iterations for different approaches.

223 s), which is noncritical considering a sampling interval
of 30min.. Compared to Problem 1 (mean: 127 s), the solve
times of Algorithm 1 are significantly reduced and only come
at the cost of a small suboptimality gap (mean: 0.3%).

2) ADMM convergence: Figure 6 shows boxplots that
illustrate the number of iterations required by the different
algorithms when considering a tolerance of ϵ = 10−4 and
lmax = 200. We can see that the median of all cases is
below 40. Algorithm 1 comes with the lowest median which
is as little as 30 iterations and a maximum of 85 iterations.
A deeper look into the simulation reveals that outliers with
a very high number of iterations seem to occur when all
four MGs have similar conditions, i.e., either a surplus of
RESs and full storage units or empty storage units and little
available renewable infeed. However, for a sampling time
30min., 200 iterations at maximum appear tolerable.

VI. CONCLUSIONS

In this work, a scenario-based stochastic MPC scheme for
the operation of interconnected MGs was presented. Based
on a central MPC formulation, a distributed algorithm that
employs the ADMM was developed. The algorithm reflects
the hierarchical structure in the network of interconnected
MG: local controllers are in charge of individual MGs, while
a central entity is in charge of the transmission grid. In
closed-loop simulations, the novel approach outperformed
the certainty equivalence one concerning the number of
constraint violations and the costs. Moreover, the algorithm
converges sufficiently fast for operation control.

Future work concerns simulations with a larger number of
MGs and theoretical analyses concerning the scalability of
the approach. Moreover, suboptimality, persistent feasibility
and privacy shall be further investigated.

TABLE IV
ACCUMULATED CLOSED-LOOP SIMULATION RESULTS

Certainty
equival.

Stochastic
(Alg. 1) Prescient

Renewable energy in pu h 318.1 333.8 334.0
Conventional energy in pu h 61.0 45.2 45.9
No. of switching actions 46 40 29

Costs MG 1 1 652.8 1 005.9 786.8
MG 2 1 366.1 774.2 607.7
MG 3 2 000.2 1086.1 1 003.8
MG 4 1 755.3 1154.3 1 109.9

Transmission 21.7 19.0 18.7

Sum 6 796.1 4 039.5 3 527.0
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