
Guaranteed Collision Avoidance for Autonomous Vehicles Fusing Model

Predictive Control and Data Driven Reachability Analysis

Tingzhong Fu1, Hoang Hai Nguyen1 and Rolf Findeisen1

Abstract— Ensuring collision avoidance is a critical chal-
lenge for autonomous vehicles, particularly when faced with
uncertain moving obstacles. This work presents a robust colli-
sion avoidance framework, integrating data-driven reachability
analysis with Model Predictive Control (MPC). The framework
is specifically designed to address scenarios where detailed in-
formation about the moving obstacles that should be avoided is
unavailable. A data-driven approach is employed, which utilizes
uncertain measurements corrupted by bounded noise of the
obstacle. Based on the measurements, an over-approximation of
the reachable sets by moving obstacles represented as zonotopes
is constructed. To guarantee security, a safety margin is added
to the approximation. The resulting set is employed as a
polytopic collision avoidance constraint within the robust MPC
scheme, enabling effective control of the autonomous vehicle
while guaranteeing avoidance of impacts. The effectiveness of
the data-driven collision avoidance scheme is demonstrated
through extensive simulations. The presented results outline a
promising advancement in collision avoidance for autonomous
vehicles operating in uncertain environments.

I. INTRODUCTION

One of the challenging problems for controlling au-

tonomous vehicles, such as cars or robots is to avoid collision

with moving obstacles, such as humans, or other vehicles.

There exists a large number of literature on this topic;

comprehensive reviews on collision avoidance algorithms

can be found in [1], [2]. While static collision avoidance

has been researched intensively (see, for example, [3]–

[7]), avoiding dynamically moving obstacles is often more

difficult because of the often inherent motion uncertainty.

Frequently, simplified models of the dynamic obstacles are

used: the dynamic obstacles are assumed to move with a

constant velocity and to move along a straight path [8],

[9]. Model Predictive Control (MPC, [10]–[12]) is a popular

control scheme for avoiding collisions since it can effectively

handle constraints. The basic idea of MPC is to minimize,

upon a new measurement of the states, a cost function over

a prediction horizon while taking the system dynamics and

constraints into account, and implementing the first part of

the resulting optimal control input. Once new measurements

are available this procedure is repeated in a receding horizon

fashion. Collision avoidance constraints can conceptually be

incorporated easily in MPC schemes ([9], [13]–[16]). Yet this

typically leads to computationally challenging to solve non

convex optimization problems.

Furthermore, in practice, the movement and model of

dynamical obstacles is often unknown and might only be
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reconstructed from noisy measurement data. One possible

approach is to use machine learning and data-driven tech-

niques to learn the dynamics of the obstacle ([14]–[16]).

However, doing so often lacks safety guarantees or does

only provide probabilistic guarantees. Moreover, obtaining

a sufficiently good model from collected data by system

identification may be impossible or time-consuming [17].

This is additionally challenged as the dynamics/path of the

moving obstacle might change over time. For example, for

a quadrotor or robot carrying cargo, in repeating episodes

of operations, the weight of the cargo may vary, which

may alter the dynamics of the obstacles ([18]). Thus, it

is desirable to adjust the dynamics of the obstacles online

based on measurements collected from the obstacles. One

way to do this for dynamic obstacles is the use of data-based

reachability analysis [19]. Similar to the data-driven control

(see, for example [20], [21]), the method proposed in [19]

uses matrix zonotopes to over-approximate the reachable sets

of a linear system or a Lipschitz-continuous nonlinear system

based on sufficiently rich measured data.

In this paper, we utilize data-driven reachability analysis

using matrix zonotopes [19] to obtain the reachable sets

from previously measured state-input data for the moving

obstacle. To guarantee collision avoidance, we use the data-

driven reachability sets in robust MPC [22] to control the

autonomous vehicle.

The remainder of the paper is organized as follows:

Section II introduces the data-driven reachability analysis

for dynamic obstacles. Section III presents the collision

avoidance MPC that uses reachable sets for the obstacles as

constraints. Section IV presents simulation results. Section

V concludes the paper.

II. DATA-DRIVEN REACHABLE SET OF MOVING

OBSTACLES

This section recapitulates the data-driven reachability ap-

proach for nonlinear systems presented in [19]. First, we

introduce zonotopes, which are used to overbound the reach-

able set of the obstacle in a computationally efficient way

exploiting basic operations, such as Minkowski sums and

linear transformations [23].

Definition 1 (Zonotope [24]): Given a center c ∈ R
n and

a number κ ∈ N of generators g(i) ∈ R
n, a zonotope Z is

defined as

Z :=

{

c+

κ
∑

i=1

βig
(i)
∣

∣

∣
βi ∈ [−1, 1]

}

. (1)
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For convenience, we denote in the following zonotopes

by Z =< c,G >, with the generator matrix G =
[g(1), g(2), ..., g(κ)].

A matrix zonotope is an extension where the center and

generators are matrices rather than vectors.

Definition 2 (Interval Matrix [24]): An interval matrix I

is a special case of a matrix zonotope, which defines the

interval of all possible values for each matrix element

between the lower bound I and the upper bound I

I := [I, I], ∀i, j : Iij < Iij , I, I ∈ R
m×n. (2)

We consider nonlinear discrete-time systems

zk+1 = h(zk, vk) + dk, (3)

where zk ∈ R
n, vk ∈ R

nu are states and inputs and dk is

a bounded additive noise. The function h(·) is assumed to

be twice differentiable and Lipschitz continuous, i.e., there

exists a real constant L ≥ 0 such that, for all α, α̃ ∈ R
n+nu

||h(α)− h(α̃)|| ≤ L||α− α̃||. (4)

If the inputs and additive noise of system (3) are bounded

by the sets vk ∈ V, dk ∈ Zd, the reachable set of the system

after N steps is defined as follows.

Definition 3 (Reachable Set): For the system (3), the

reachable set RN after N time steps, starting from the initial

set R0, subject to the inputs sequences vk ∈ Vk, ∀k ∈
{0, . . . , N−1} and the noise sequences dk ∈ Zd, is the set of

all states encountered along all possible solution trajectories

RN := {zN ∈ R
n|zk+1 = h(zk, vk) + dk,

z0 ∈ R0, vk ∈ Vk, dk ∈ Zd : ∀k ∈ {0, . . . , N − 1}}.
(5)

Since in the case of uncertain obstacles the model of the

discrete-time nonlinear system (3) is unknown, we construct

the reachable sets of the system directly from the collected

input-state trajectories. This data-driven approach leverages

the property of Lipschtz continuity. Assume that we are able

to collect the data set

V− = [v0, . . . , vT−1],

Z− = [z0, . . . , zT−1],Z+ = [z1, . . . , zT ].
(6)

Based on the collected data set D = (Z−,V−,Z+), the data-

driven reachable set is given by the following two steps [19]

1) Obtaining a linearized model by the least-squares

method around the linearization point p∗ = (z∗, v∗) :

M̃ = (Z+ − CMd
)H, with H =





11×T

Z− − 11×T ⊗ z∗

V− − 11×T ⊗ v∗





†

,

(7)

where † denotes the right inverse, ⊗ denotes the Kronecker

product, CMd
is the so-called center of noise matrix zono-

tope Md =< CMd
, GMd

>, whose construction is provided

in [19].

2) Over-approximating the Lagrange remainder and the

model mismatch by a zonotope: After obtaining the ap-

proximate linearized model, i.e., the matrix M̃ , one over-

approximates the model mismatch and the Lagrange remain-

der. This is based on the assumption that the system dynamic

h(·) is Lipschitz continuous for all (z, v).
Theorem 1 ([19]): Given the collected data set D =

(Z−,V−,Z+), the over-approximation R̃k ⊃ Rk of the

reachable sets defined as (5) for the system dynamic h(·)
can be computed by

R̃k+1 = M̃(1× R̃k ×Vk) + Zd + ZL + Zǫ, (8)

with

ZL = zonotope(ZL,ZL), (9a)

(ZL)i = argmin
j

(ML)i,j , (ZL)i = argmax
j

(ML)i,j , (9b)

[ML,ML] = intervalMatrix(ML), (9c)

ML = Z+ −Md − M̃





11×T

Z− − 11×T ⊗ z∗

V− − 11×T ⊗ v∗



 , (9d)

Zǫ =< 0, diag(Lδ, ..., Lδ) > . (9e)

Here M̃ is given by (7). It is computed based on a chosen

linearization point p∗. The operator zonotope(·) converts

an interval to a zonotope and intervalMatrix(·) converts

a matrix zonotope to an interval matrix. Zd is the noise

zonotope, and δ is the so-called covering radius, see [19].

Note that this is an over-approximation of the reachable set

which can be, however, obtained purely based on data.

III. COLLISION AVOIDANCE USING ROBUST MPC AND

DATA DRIVEN REACHABILITY SETS

In this section, we first provide the descriptions of the sys-

tems and illustrate how the collision avoidance problem can

be formulated. Then we present the robust model predictive

control scheme that guarantees collision avoidance.

A. Autonomous Systems Model

The autonomous system that we control, e.g. a car, robot

or drone, is described by the known nonlinear discrete-time

system dynamics

xk+1 = f(xk, uk) + ek. (10)

Here, xk ∈ R
n, uk ∈ R

nu are states and inputs and f(·) is

the known nominal model of the autonomous system. ek ∈
Ze is assumed to be an additive bounded disturbance, where

the upper-bound is assumed to be known. The system is

subject to state and input constraints

ℓj(xk, uk) ≤ 0, j = 1, ..., p. (11)

The reachable set of the controlled vehicle at the k-th step is

denoted as R
(obj)
k and can be obtained exploiting the vehicle

model. Moreover, we assume that the vehicle has a physical

shape B
(obj). Given those sets the reachable occupied space

of the controlled autonomous vehicle can be described by a

polytope of the form

E(R
(obj)
k ,B(obj)) = {y ∈ R

np : Gky ≤ gk}. (12)
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Here G : Rn → R
l×np , g : Rn → R

l, where l is the number

of half-spaces that define the object polytope E.

B. Obstacles

We assume that the obstacle dynamics is given by a non-

linear model similar to (3) subject to the same assumptions

on h(·). However, the model is not known by the controller.

Instead, the autonomous vehicle (10) can only access the past

data (6) generated by the obstacle. Moreover, we assume

that the obstacle has a physical shape B. Similar to the

autonomous vehicle, based on the data-driven reachable set

R̃k, its reachable occupied space can be over-approximated

by

O(R̃k,B) = {y ∈ R
np : Aky ≤ bk}, (13)

where A : Rn → R
ξ×np , b : Rn → R

ξ, and ξ is the number

of half-spaces that define the obstacle polytope O.

C. Optimization-Based Obstacle Avoidance Formulation

Given the reachable occupied spaces of the controlled

autonomous system and the obstacle as described in (12)

and (13), we formulate the collision avoidance problem by

defining a required distance ([25])

dist(E(R
(obj)
k ,B(obj)),O(R̃k,B)) > dmin, (14)

where dmin ≥ 0 denotes an additional safety margin between

the autonomous system and the obstacle. Here the notion of

distance is defined as

dist(E(·),O(·)) := min
γ
{||γ|| : (E(·)+γ)∩O(·) 6= ∅}. (15)

Note that, condition (14) is equivalent to

∃λk ≥ 0, µk ≥ 0 : −g⊤k µk − b⊤k λk > dmin,

G⊤
k µk +A⊤

k λk = 0, ||A⊤
k λk|| ≤ 1,

(16)

where λ ∈ R
ξ, µ ∈ R

l. The equivalent formulation (16)

is smooth and thus can be handled by general-purpose

optimizers. We do not elaborate on this here further.

Remark 1: For simplicity of presentation, we consider

only one obstacle. However, one can easily extend the

approach to multiple obstacles by considering multiple re-

alizations of (16) at the same time.

D. Robust Model Predictive Control for Collision Avoidance

To account for the disturbance acting on the autonomous

vehicle, we exploit tube-based robust MPC, cf. e.g. [22]. The

basic idea is that a tube size sk|t characterizing the sublevel

sets of the incremental Lyapunov function Vδ(x̃, xk|t, uk|t) ≤
s2k|t is online computed to tighten the state and input con-

straints. Together with the data-driven reachability analysis

(8) and the smooth formulation of collision avoidance (16),

we propose the following scheme

min
x·|t,u·|t,s·|t,

w·|t,λ·|t,µ·|t

N−1
∑

k=0

(‖xk|t − x̂r,k|t‖
2
Q + ‖uk|t − ûr,k|t‖

2
R)

+ ‖xN |t − x̂r,N |t‖
2
P (17a)

s.t. x0|t = xt, s0|t = 0, (17b)

xk+1|t = f(xk|t, uk|t), (17c)

sk+1|t = ρsk|t + wk|t, (17d)

wk|t ≥ w̃δ(xk|t, uk|t, sk|t), (17e)

ℓj(xk|t, uk|t) + ηjsk|t ≤ 0, (17f)

sk|t ≤ s, wk|t ≤ w, (17g)

(xN |t, sN |t) ∈ Xf , (17h)

R̃k+1|t = M̃t(1× R̃k|t ×Vk|t) + Zd + ZL,t + Zǫ,t,
(17i)

R̃0|t = zt, (17j)

λk|t ≥ 0, µk|t ≥ 0, (17k)

− g⊤k|tµk|t − b⊤k|tλk|t > dmin, (17l)

G⊤
k|tµk|t +A⊤

k|tλk|t = 0, ||A⊤
k|tλk|t|| ≤ 1, (17m)

k = 0, ..., N − 1, j = 1, ..., p.

Here N is the prediction horizon, x̂r, ûr denote a desired

reference trajectory, Q, R are state and input weight matrix

of the stage cost, P is the terminal weight matrix of the

terminal cost, Xf is the terminal region. sk|t characterizes the

tube size, wk|t characterizes the uncertainty bound, ρ is the

so-called contraction constant. In the disturbance dynamic

constraint (17e), w̃δ is determined from the additive bounded

disturbance ek in system dynamic (10) [22]. As outlined

in [26], the state and input constraints gj(xk|t, uk|t) are

tightened by the tube size s·|t. Summarizing, the conditions

(17b)-(17h) ensure the robustness despite of disturbances,

conditions (17i)-(17j) represent the data-driven reachable sets

of the moving obstacle, while conditions (17k)-(17m) ensure

collision avoidance.

Remark 2: It is clear that, if the over-approximation of

reachable set can be computed from (8) and if the opti-

mization problem (17) can be solved at each time step,

then the outlined approach guarantees collision avoidance

between the autonomous system and the obstacle(s). An in-

depth analysis will be performed in forthcoming work.

E. Implementation Considerations

To employ the outlined scheme, one needs to determine

the incremental Lyapunov function, the contraction constant

ρ, the upper bound for the uncertainty w̃δ and the scalars

ηj based on [22], [26]. Furthermore, the collected data of

the obstacle D = (Z−,V−,Z+) needs to be split into q
overlapping parts Di = (Z−,i,V−,i,Z+,i), so that in the

online implementation, the system matrix of obstacle M̃t and

zonotopes ZL,t, Zǫ,t in (17i) can be determined by a part

Di that is based on the current state zt. A possible selection

criterion is the shortest distance between the current state zt
and the centroid ci, which is the mean of points in Z−,i. We

make the assumption that the selected divided data Di based

on this selection criterion covers the space the obstacle can

reach for a given horizon N .

Remark 3: If the obstacle dynamics is linear, and provided

that it is sufficiently persistently excited, we only need a sin-

gle sufficiently long data set to compute the reachable set (see

[20]). In case the obstacle is nonlinear and the reachable set
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computation is over-approximated at each point, collecting

more data at different states will reduce conservatism.

The resulting approach is summarized in Algorithm 1.

Algorithm 1 MPC with Collision Avoidance and Data-driven

Reachability Analysis

Preparation 1: determine the contraction constant ρ, upper

bound of uncertainty w̃δ , scalars ηj based on [22], [26].

Preparation 2: divide D = (Z−,V−,Z+) into q parts Di =
(Z−,i,V−,i,Z+,i), determine their centroid ci from Z−,i.

Input: contraction constant ρ, uncertainty bound w̃δ , scalars

ηj , divided input-state data Di and its centroid ci, physical

shape B
(obj) of controlled object and that of obstacle B, ref-

erence point (x̂r, ûr), input constraint Uk|t, state constraint

Xk|t, cost matrices (Q,R, P ), prediction horizon N , initial

measured states xt, zt.

1: Set t← 0.

2: Select the part of data Di based on the closest distance

between its centroid ci and the current state zt.
3: Compute the reachable sets of the obstacle R̃k+1 by (7)

and (8) using the center of current state zonotope and

input zonotope as the linearziation points ([19], [27])

compute the reachable occupied space of the obstacle

O(R̃k,B), compute Ak, bk.

4: Compute the reachable occupied space of the object

E(R
(obj)
k ,B(obj)), compute Gk, gk.

5: Solve (17) to obtain the optimal solution x∗ =
(x∗

0|t, · · · , x
∗
N |t), u∗ = (u∗

0|t, · · · , u
∗
N−1|t) based on the

current state of object xt.

6: Apply the first input u∗
0|t to the autonomous system.

7: Set t← t+ 1.

8: Return to step 2.

IV. SIMULATION RESULTS

We apply the collision avoidance MPC scheme exploiting

data-based reachability (17) to a simple example.

A. Controlled Autonomous Vehicle

We consider an autonomous car described by the following

simplified dynamics




ẋ1

ẋ2

ẋ3



 =





u1 cos(x3)
u1 sin(x3)

u2



+ e. (18)

Here x1 and x2 are the Cartesian coordinates of the center of

mass of the car, x3 is the angle with respect to the Cartesian

coordinate x1. It is assumed that the states can be accurately

measured. The input u1 is the longitudinal velocity of the

car and u2 is the angular velocity. The system is subject to

additive disturbance e given by

e ∈ Ze = [−0.05, 0.05]× [−0.05, 0.05]× [−0.05, 0.05].
(19)

The constraints for the inputs are

U = [0, 2]× [−
2

5
π,

2

5
π]. (20)

-2 0 2

-2

-1

0

1

2

3

x1

x
2

Data-driven reachable sets R̃k of (z1, z2)
Physical shape of the obstacle B

Reachable occupied space O(R̃k,B)

Fig. 1: Over-approximation of the reachable occupied space

O(R̃k,B) for the car example by expanding reachable sets

of (z1, z2) by

√

( length2 )2 + (width
2 )2.

We consider that the car has a rectangular shape with length

1 and width 0.5. Since the reachable sets (states) of the car

is fully described by the tubes R
(obj)
k|t = Vδ(x̃, xk|t, uk|t) ≤

s2k|t, its reachable occupied spaces can be represented by

([28])

E(sk|t, xk|t) = px(xk|t) +R(xk|t)(1 + Lsk|t)B
(obj), (21)

where px(xk) denotes the position of the object depending

the current state xk, R(xk) denotes the rotation of the object.

B
(obj) is the physical shape of the controlled object, and its

physical shape is expanded by a factor (1+Lsk|t) to account

for disturbance. The L = 0.0754 is determined by numerical

verification.

B. Description of the Dynamic Obstacle

The dynamic obstacle is also a car with the same dy-

namics, i.e., has the same dynamic equation (18), subject

to additive disturbances (19), and the same physical shape.

In comparison to the controlled car, we assume that the

input is constrained to [0, 1]× [− 1
5π,

1
5π]. Note that we use

the model of the obstacle car only to generate data D, the

dynamic model of the obstacle is not used in the controller.

Since the reachable occupied space of the obstacle O(R̃k,B)
is complicated, we over-approximate it by expanding the

reachable sets by the maximum distance that the obstacle

can reach as shown in Fig. 1.

C. MPC Setup

The control goal for the controlled car is to drive with a

constant velocity of 1m/s along x2 = 0 towards a positive

direction of the x1-axis, while avoiding the other car on its

way. The corresponding reference trajectory [x̂r,k|t, ûr,k|t]
is given by x̂r,k|t = [0, 0, 0]⊤, ûr,k|t = [1, 0]⊤. The

weight matrices are chosen to be Q = diag([0, 1, 1]), R =
diag([100, 1]) and the terminal weight P is computed based

on the Linear-quadratic Regulator (LQR) for the linearized

dynamics at the reference point ([10], [29]). The dynamics

is discretized by a fourth-order Runge-Kutta (RK4) method

with sampling time Ts = 0.2 s. The prediction horizon is set
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Fig. 2: Collision avoidance simulation example depicting four time steps. (a) t = 30. (b) t = 45. (c) t = 60. (d) t = 100.
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Fig. 3: Predicted reachable occupied spaces of the controlled

car E(R
(obj)
k ,B(obj)) and the dynamic obstacle O(R̃k,B) for

k = 0, ..., N at time step t = 36 for an exemplary simulation.
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Fig. 4: Distance between object and obstacle for 20 exem-

plary simulations, starting from the same initial states. For

each simulation and for each time step, the obstacle moves

“randomly”.

to N = 6. We apply the method as in [26] to obtain the

incremental Lyapunov function. Based on the incremental

Lyapunov function, we obtain the contraction constant ρ =
0.9998 and the uncertainty bound w̃δ = 1.2480.

D. Simulation Results

The results of an exemplary simulation are shown in Fig.

2 and 3, where the inputs of the dynamic obstacle at each

moment are randomly generated among its input constraint.

Fig. 2 shows four moments of the process of collision

avoidance, where we can see that the controlled object

succeeds in avoiding the dynamic obstacle. The planned

motion to avoid the dynamic obstacle at moment t = 36
is shown in Fig. 3.

Moreover, we repeated the simulations for 20 times under

the same initial states for both object and obstacle. For each

simulation and each step, the obstacle drives randomly, which

means that the real trajectory of the dynamic obstacle is

random and unpredictable. The distance between the car and

the obstacle is shown in Fig. 4, where the distance is always

larger than the safety margin dmin despite of the disturbances.

V. CONCLUSIONS

We presented an obstacle avoidance framework that fuses

data-based reachability analysis and robust MPC. As the

model of the dynamic obstacle is unknown, the reach-

able set for collision avoidance is over-approximated using

collected data. The resulting obstacle avoidance conditions

are reformulated smoothly as obstacle avoidance constraints

which are incorporated into a robust tube-based MPC. The

simulation results underline the effectiveness of the proposed

framework. Future research will consider uncertain dynamics

of the autonomous systems and the obstacle as well. Further-

more, we are interested in reducing the conservatism.
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nonlinear model predictive control,” in 21st Benelux

Meeting Syst. Contr., vol. 11, 2002, pp. 119–141.
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[29] H. Chen and F. Allgöwer, “A quasi-infinite horizon

nonlinear model predictive control scheme with guar-

anteed stability,” in Europ. Contr. Conf. (ECC), 1997,

pp. 1421–1426.

2284


