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Abstract— This work presents a study on the optimal control
of an electric vehicle (EV) charging station, with a dual objective
of minimizing operational expenses and accommodating EV
owner preferences. The control frame work employs Model
Predictive Control (MPC) to efficiently distribute power among
the stations components, encompassing photovoltaic panel (PV),
and energy storage system (ESS) battery, the grid connection,
and connected EVs. Our MPC scheme takes into account EV
owner requirements, with owners providing information about
their charging needs (required energy) and departure times
when plugging in their vehicles. With this extra information
that helps energy management of the system, we exploited
the integration of Vehicle-to-Grid (V2G) technology, enabling
bidirectional power flow to and from grid. This feature allows
EVs to supply electricity to the grid during periods of high
demand or when solar energy generation is insufficient. The
proposed MPC-based method is validated through simulation
and compared with heuristic method that disregards owner
information and tends to charge EV at maximum power rate
available. This comparative analysis serves to evaluate the
efficacy of the proposed approach in terms of cost savings,
good energy management, and owner satisfaction.

I. INTRODUCTION

The targets of the 2030 UN’s Agenda for Sustainable
Development related to ensuring access to affordable, sus-
tainable, and modern energy are aligned with the global effort
to address climate change, to promote clean energy, and to
achieve sustainable development [1].Smart grids integrate re-
newable energy sources (RESs) like solar and wind power by
forecasting their output and coordinating with conventional
generation, ensuring stable power supply. They also enable
the integration of energy storage systems (ESS) to capture
and release excess electricity as needed.

Electric vehicles (EV) have gained immense popularity
due to their environmental benefits and reduced dependency
on fossil fuels [2], [3]. EVs can be charged using various
methods, including standard AC charging from the power
grid or fast DC charging stations [4]. However, concerns
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have been raised about the peak power requirements for
recharging EV batteries. Indeed, some people are worried
that the existing electrical infrastructure might not be able
to handle the simultaneous demand electricity during peak
charging periods [5]. Demand response (DR) was already
recognised as a crucial mechanism in the coordination of
energy production and consumption, especially with the
increasing adoption of renewable energy sources and the
growth of prosumers [6], [7]. In the context of prosumers,
demand response becomes even more significant. Prosumers
can generate excess of electricity when their renewable
energy sources produce more than their own consumption
needs. Instead of wasting this surplus energy or feeding it
back into the grid at times when it might not be needed,
demand response mechanisms allow prosumers to respond
to market signals and adjust their consumption or sell the
excess of energy to the grid when electricity prices are high
[8]. An efficient management system for prosumers requires
the development and implementation of advanced control
strategies that enhance demand flexibility and minimize
economic expenditures [9]. In this context, model predictive
control (MPC) is being considered as a promising control
strategy for efficiently managing users resources [10]. It
is particularly well-suited for systems with constraints and
dynamic behaviour, making it an effective approach for
managing resources in various applications [11], [12].

In this paper, we employ a model predictive control (MPC)
approach for the management of a station featuring a specific
number of EVs chargers, a photovoltaic (PV) power source,
an energy storage system, and a connection to the upstream
grid. The MPC architecture takes into account the predicted
EVs arrivals, including data on the arrival time, departure
time, and the associated energy requirements. Furthermore,
it utilizes the real data when they become available; in partic-
ular, the departure time and energy requirement information
are provided by the EV owner upon plugging in the vehicle.
This additional information contribute to an enhanced energy
management strategy as compared to a heuristic method
where no owners’ information is utilized and tends to charge
EVs at maximum power rate available. The primary objective
of our approach is to optimize the utilization of renewable
energy from the PV source and energy storage system, all
while ensuring that the EVs batteries are adequately charged.

The organization of the paper is as follows. In Section 2,
we focus on detailing the system model and assumptions,
providing a clear understanding of the power distribution
system and the parameters considered in the MPC formu-
lation. In Section 3, we describe the proposed energy man-
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agement system based on MPC. In Section 4, we outline the
simulation setup, specifying the environment and parameters
employed in the experiments and we provide numerical
results comparing our MPC-based strategy to a conventional
(heuristic) control. In section 5 we gather our conclusions.

II. EV STATION SYSTEM MODELLING

In this paper we consider a EV charging station which
is connected to the main distribution electric grid and is
equipped with a PV source and a battery. The charging
station acts as an energy supplier, providing the aggregate
charging power for the EVs that arrive to it. The charging
power is sourced from a combination of the PV production,
the battery and the grid. In the next subsections we provide
a modeling of the main components of the charging station.
The models are in discrete-time and we assume that all the
electric quantities are sampled by Ts.

A. Battery Model

We assume that the battery has a maximum capacity
energy Emax

b . Hence, the state of charge of the battery is:

SOCb(k + 1) = SOCb(k) + Pb(k)Ts/E
max
b , (1)

where SOCb(k) is the state of charge of the battery at time
kTs. When the power is negative, it means that the battery
is discharging, when the power is positive, it means that the
battery is charging.

In order to prevent the battery degradation and ensure its
longevity. The following constraint must be satisfied

SOCmin
b ≤ SOCb(k) ≤ SOCmax

b . (2)

where SOCmin
b and SOCmax

b represents the minimum and
maximum allowable state of charge respectively. In addition,
the battery has both a maximum power output Pmax

b and a
minimum power absorption capacity Pmin

b , i.e.,

Pmin
b ≤ Pb(k) ≤ Pmax

b . (3)

Finally, we associate to the battery the following cost func-
tion which is the sum of three terms evaluated over a time
horizon of length TH

Cb = Cb1 + Cb2 + Cb3 (4)

with

Cb1 = w1

TH∑
j=0

P 2
b (j) (5)

Cb2 = w2

TH∑
j=0

(SOCb(j)− SOCopt)
2 (6)

Cb3 = w3

TH∑
j=0

(Pb(j)−
1

TH

TH∑
j=0

Pb(j))
2 (7)

where
• w1, w2 and w3 are weighting factors that assign varying

levels of importance to the distinct terms.

• Cb1 signifies the cost linked to battery utilization,
whether in charging or discharging mode. By apply-
ing a cost each time the battery is used, the system
incentivizes exploring alternative energy sources. This
approach aims to balance necessary battery usage while
extending its lifespan and reducing expenses.

• Cb2 represents the cost of deviating from the optimal
state of charge (SOCb,Opt) for the battery. Keeping the
battery close to this level enables rapid power discharge
or absorption, ensuring a significant margin for quick
adjustments.

• Cb3 signifies the cost associated with battery behavior.
To maximize performance and lifespan, it’s crucial to
minimize excessive charging and discharging cycles,
known as ”cycling”.

B. EV Model

The batteries of the EVs have the same characteristics
of the battery of the charging station. EVs are capable of
both absorbing and supplying power to the network, which is
known as bidirectional capabilities or vehicle to grid (V2G)
technology. If the power of EV PEV,i(k) is negative then the
i-th EV is providing energy, otherwise if PEV,i is positive
then the i-th EV is charging the battery. Similarly to the
previous subsection we can write the dynamics also in terms
of the state of charge SOCEV,i, i.e.,

SOCEV,i(k + 1) = SOCEV,i(k) + PEV,i(k)Ts/E
max
EV,i (8)

where Emax
EV,i is the maximum energy capacity. Moreover we

introduce the following physical constraints

SOCmin
EV,i ≤ SOCEV,i(k) ≤ SOCmax

EV,i, (9)

and
Pmin
EV,i ≤ PEV,i(k) ≤ Pmax

EV,i (10)

where the meaning of the quantities SOCmin
EV,i, SOCmax

EV,i,
Pmin
EV,i and Pmax

EV,i , is the same of the quantities
SOCmin

b , SOCmax
b , Pmin

b , Pmax
b but referred to the

battery of the i-th EV.
We introduce now other quantities related to the i-th EV

that will play an important role in the control methodology
we propose. First, let tarr,i and tdep,i be, respectively, the
arrival and departure time of the i-th EV at the charging
station. It is worth observing that PEV,i will be equal to 0
outside of the time interval [tarr,i, tdep,i], that is,

PEV,i(k) = 0 if kTs /∈ [tarr,i, tdep,i].

Second let SOCinit,i be the state of charge in the i-th EV
at its arrival time tarr,i and let SOCreq,i be the state of
charge which is required to be at the departure time tdep,i.
Finally let Flxi be a flexibility index, which is a percentage
of how much the owner of the i-th EV is flexible about
its state of charge at departure time. Specifically, the energy
stored by the battery of the i-th vehicle at the departure time,
i.e., SOCEV,i(tdep,i), has to satisfy the following relaxed
constraint

(1−Flxi)SOCreq,i ≤ SOCEV,i(tdep,i) ≤ SOCreq,i. (11)
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We conclude this subsection by introducing the cost func-
tion CEV associated to the EVs. This cost function depends
on how much the owners of the EVs are satisfied. Specifically
we have that

CEV = w4

NEV∑
i=1

(SOCEV,i(tdep,i)− SOCreq,i)
2, (12)

where NEV is the total number of EV s arrived in the time
horizon TH and where w4 is a weighting factor expressing
in the overall cost to be minimized the degree of interest in
achieving the desired energy level of EVs.

C. PV Model

We assume that PV source of the charging station always
operates at its maximum power mode.

PV power generation prediction often involves uncertain-
ties derived from weather forecasts. To address this, we
propose a heuristic method based on real-time production
data to update the expected power generation for the re-
maining day. Given a prediction horizon [0, TH ], denoted
by P̂PV (0), . . . , P̂PV (TH − 1), where P̂PV (k) represents
expected power produced within [kTs, (k+1)Ts], and at the
k-th sampling time, actual PV production values up to k,
PPV (0), PPV (1), . . . , PPV (k), are gathered, potentially dif-
fering from predictions. We propose to update the expected
PV power production as

P̂+
PV (h) =

∑k
j=0 PPV (j)∑k
j=0 P̂PV (j)

P̂PV (h) (13)

where P̂+
PV (h) is the updated version of P̂PV at the h-th

sampling time.

D. Grid Model

The cost of power from the grid refers to the monetary
expense associated with drawing electricity from the utility
grid to meet the energy demand.

The grid typically has limitations on the minimum and
maximum power that can be exchanged with the network.
These constraints are important to ensure the stability and
reliability of the grid system. We assume that

Pmin
g ≤ Pg(k) ≤ Pmax

g (14)

where Pg(k) is the power exchanged between the grid and
the station and it can be negative or positive. When it is
negative the grid is buying energy, when it is positive the
grid is selling energy. The cost function associated with the
grid is

Cg =

TH∑
j=0

w5Pg(j), (15)

where w5 is a weighting factor that, for simplicity, is assumed
to be constant.

The extension to time-varying scenarios will be the subject
of future investigation.

III. MPC-BASED CENTRALISED POWER CONTROL
DESIGN

Our optimization problem involves making decisions re-
garding how to distribute energy resources over the upcoming
day. The goal is to minimize costs while also ensuring a
consistent and reliable energy supply. In our study, it is not
necessary to update the control decisions every minute at
the start of the day when there is neither PV production
nor any EVs plugged in. However, as soon as EVs begin
to arrive or the PV system initiates power generation, the
control decisions need to be promptly updated.

A. Optimization Problem Methodology

In our setup we aim at minimizing the cost function

CTot = Cb + Cg + CEV

where Cb, Cg, CEV are defined as in (4), (15) and (12),
respectively, by regulating the power flows between the EVs,
the grid, the battery and the PV. We assume the optimization
problem is defined over one day. Let t0 and tf be the initial
and final time instants, respectively. Then tf−t0 = 24 hours.
It is convenient to assume that t0 is midnight and, hence, tf
is the midnight of the day after. Moreover, accordingly to
the description provided in the previous section, we assume
the control actions are discretized by the sampling time
Ts. Let TH denote the total number of time slots, that is,
TH = (tfin − tinit)/Ts.

The optimization problem we consider is split into two
phases. To define them we introduce tstart = k̄Ts, which is
the time instant when either real EVs start to arrive or the PV
starts to produce. The first phase refers to the optimization
over the interval [t0, tstart], while the second phase over the
interval [tstart, tf ], see Figure 1.

Fig. 1: The two phases of the optimization problem.

Let us consider the first phase. We assume that the
information available at time t0 is

• Expected PV production for the day ahead, that is,
P̂PV (0), P̂PV (1), . . . , P̂PV (TH − 1).

• The state of the charge of the battery.
• A prediction on the EVs which will arrive in the entire

interval [t0, tf ]. This information is formally described
by the set

Ŝ =
{
D̂1, D̂2, ......, D̂N̂EV

}
where

D̂i =
{

ˆSOCinit,i, ˆSOCreq,i, t̂arr,i, t̂dep,i, ˆFlxi

}
being

226



– N̂EV the expected number of vehicles arriving in
[t0, tf ];

– t̂arr,i, t̂dep,i the expected arrival and departure
times, respectively, of the i-th expected vehicle;

– Êinit,i the expected initial energy stored in the i−th
EV at it arrival time.

– Êreq,i the expected required energy of the i−th EV
at the departure time.

– ˆFlxi the expected flexibility index of the i-th EV.
The information in Ŝ can be obtained employing a prediction
model based on historical data. We will discuss how to
generate Ŝ in next section.

At time t0 the following optimization problem is solved

min
u(0),...,u(TH−1)

CTot

where u(j) =
{
Pg(j), Pb(j), PEV,i(j), i = 1, . . . , N̂EV

}
,

subject to the dynamics of the battery in (1), the dynamics
of the vehicles in (8), the physical constraints in (2), (3), (9),
(10), the energy requirements in (11) and the power balance
of the network

Pb(j) +

N̂EV∑
i=1

PEV,i(j) = Pg(j) + P̂pv(j) (16)

for all j ∈ [0, TH − 1]. This phase determines initial control
decisions, such as charging the battery before high power de-
mand coincides with EV arrivals or discharging it to capture
surplus PV energy. By solving a single optimization problem
at time t0, considering predicted EV arrivals and departures,
individual EV energy requirements, and forecasted PV pro-
duction, control inputs are determined and applied until the
first EV arrives or PV generation begins. Therefore no other
optimization problems are solved before the time instant
tstart = k̄Ts and the control inputs u(0), u(1), . . . , u(k̄−1),
calculated solving the optimization problem at time t0, are
applied within the interval [t0, tstart].

Now let us consider the second phase. We start by observ-
ing that at time tf , based on the EVs that actually arrived at
the station, we can define the set of real data

S = {D1, D2, ......, DNEV
}

where NEV is the number of vehicles actually arrived in
[t0, tf ] and where

Di = {SOCinit,i, SOCreq,i, tarr,i, tdep,i, F lxi} ,

being SOCinit,i, SOCreq,i, tarr,i, tdep,i, F lxi the real data
associated to the i-th vehicle.

We assume that, once the i-th real EV arrives at the charg-
ing station it directly communicates the information about
its state of charge, the departure time and the corresponding
energy required at this time.

Now suppose that we are at time kTs for k ≥ k̄, that is
tstart ≤ kTs ≤ tf . Observe that, in the second phase the
optimization problem must take into consideration also the
available real data. To do that, it is convenient to split both

the expected data set Ŝ and the real data set S into two sub
sets as follows

Ŝ−
k =

{
D̂i ∈ Ŝ|t̂arr,i ≤ kTs

}
, Ŝ+

k =
{
D̂i ∈ Ŝ|t̂arr,i > kTs

}

S−
k = {Di ∈ S|tarr,i ≤ kTs} , S+

k = {Di ∈ S|tarr,i > kTs} .

Clearly Ŝ = Ŝ−
k ∪ Ŝ+

k and S = S−
k ∪ S+

k . Notice also that
real information contained in S+

k refers to vehicles which
will arrive after kTs and, in turn, it can not be used in the
optimization process. Based on this observation, we define
the set

S̄k = S−
k ∪ Ŝ+

k ,

containing the past and current real information related to
vehicles that arrived before kTs and the information about
the vehicles which are expected to arrive in [kTs, tf ]. For
convenience let NS̄k

be the set of real and expected vehicles
whose information is contained in S̄.

The optimization at kTs is performed over S̄k and aims
at minimizing the cost function

min
u(k),...,u(TH−1)

CTot(k) = Cb(k) + Cg(k) + CEV (k) (17)

where

Cb(k) =

TH∑
j=k

w1P
2
b (j) + w2(SOCb(j)− SOCopt)

2

+ w3(Pb(j)−
1

TH

T∑
j=k

Pb(j))
2

CEV (k) = w4

∑
i∈NS̄k

(SOCEV,i(tdep,i)− SOCdep,i)
2

Cg(k) = w5

TH∑
j=k

Pg(j)

subject to the dynamics of the battery in (1), the dynamics
of the vehicles in (8), the physical constraints in (2), (3), (9),
(10), the energy requirements in (11) and the power balance
of the network in (16), where the expected PV production is
updated using the heuristic in (13).

At time kTs only the first input of the sequence
u(k), u(k+1), . . . , u(TH−1) calculated by solving the above
problem, that is u(k), is applied. At time (k + 1)Ts, the
optimization problem is reformulated based on the actual PV
power injected and on the real information of new vehicles
that just arrived. These iterations are performed until final
time tf .

B. Arrival Modelling

In this section, we explain how we model the arrival of
the vehicles and how we generate the information within the
set Ŝ. In particular we describe the synthetic data generator
(SDG) we use to determine N̂EV and, in turn, the data
D̂i, i = 1, . . . , N̂EV . In this work, we assume the arrival
pattern is modelled in a probabilistic way by pairing Poisson
distributions with uniform distributions. For example, if we
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are interested in understanding how many vehicles arrive at a
specific location within an hour, the Poisson distribution can
provide the likelihood of different arrival counts based on
historical data. The uniform distribution ensures that events,
in this case vehicles arrivals, occur at random times within
a fixed interval. By combining these distributions, we can
generate a realistic model of vehicles arrival which allows us
to make informed predictions about the number of vehicles
and their arrival times.

1) Arrival Count Model: We divide the time horizon
[t0, tf ] into time slots of length ∆t. Consider the h-th time
slot, that is [t0 + (h − 1)∆t, t0 + h∆t], and let Nh be
the number of EVs arriving within it. Then Nh is modeled
as a Poisson distribution of parameter λh, that is, given a
nonnegative integer number K, the probability that K EVs
will arrive during the h-th time slot is

P (Nh = K) =
e−λhλK

h

K!
,K = 0, 1, 2.... (18)

The parameter λh represents the average rate of EVs arrival
during the h-th slot and can estimated based on some
historical data.

Now let us assume that for each h = 1, 2, . . . , N∆ (N∆

represents the total number of time slots), the corresponding
value of λh has been assigned. Then the estimated number
N̂h of EVs arriving during the h-th slot is obtained by
sampling the corresponding Poisson distribution. It turns out
that the total number N̂EV of EVs expected to arrive within
[t0, tf ] is given by N̂EV =

∑N∆

h=1 N̂h.
2) Arrival Times Model: For i = 1, . . . , N̂EV , assume

that the i-th EV is expected to arrive within the h-th time
slot. Then, the corresponding t̂arr,i is predicted as follows.
Let us generate t̄i by sampling the uniform distribution in
[0,∆t]. Then

t̂arr,i = (h− 1)∆t+ t̄i.

3) Energy required model: The energy required is gener-
ated randomly as follows. We are interested into the case
where EVs arrive to the station with a low energy. Let
EH be a certain high energy level (for example we can set
EH = 0.7Emax

EV ). The the expected required energy Êreq,i

for i = 1, . . . , N̂EV is generated randomly around the level
(EH ) using uniform distribution

Êreq,i ∼ U [(1− c)EH , (1 + c)EH ] (19)

where parameter c can be estimated based on historical data.
In our setup we assume c = 0.1.

4) Departure time model: We consider a specific scenario
in which the EVs will stay at the station for a long period.
Depending on the capacity and the maximum power of the
EV’s battery, we can calculate the minimum necessary time
tmin to fully charge the EV battery. We set the connection
time t̂c,i of the ith EV to be greater than this period and
to be less than a maximum time tmax = tmin + b, where
also parameter b can be estimated from historical data. In
our setup we assume b = 1 hour.

t̂c,i ∼ U [tmin, tmax] (20)

The time of departure t̂dep,i can be calculated as follows:

t̂dep,i = t̂arr,i + t̂c,i (21)

IV. NUMERICAL RESULTS

In this section we provide simulation results to demon-
strate the effectiveness of the proposed control approach. In
particular we compare the MPC solution described in Section
III with an heuristic method where the connected EVs tend
to charge at maximum power rate if the available power is
enough. In this heuristic solution, we can face with different
cases. If the power of PV is greater than the power demand
then we assume the surplus energy goes to the battery or to
the grid if the battery is fully charged. When the power of
PV is not enough, the first support to the EVs comes from
the battery. If the sum of the PV power and the battery power
is not enough, then grip will provide additional power to the
EV. The last case is when the sum of all power sources is not
enough; the available energy will be dispatched and divided
through the connected EVs equally.

A. System Parameters

The parameters of the system are summarized in tables I,
II. We set the maximum power that can the grid provides to
the network to Pmax

g = 100KW and the minimum power to
Pmin
g = −100KW . The PV data are taken from IEEEPES

(Power And Energy Society) for two different days as shown
in Figure 2. The expected PV power for one day ahead is
configured for optimal sunlight conditions (red line). The real
PV power is configured for a cloudy day (blue line).

Emax
EV,i Emin

EV,i SOCmax
EV,i SOCmin

EV,i Pmax
EV,i

40 KWh 0 KWh 1 0 14 KW

Pmin
EV,i flxi tmin tmax SOCH

-14 KW 10 % 300 min 360 min 0.7

TABLE I: EVs battery parameters and constraints

Emax
b Emin

b SOCmax
b SOCmin

b
400 KWh 80 KWh 1 0.2

Pmax
b Pmin

b Eb,Opt SOCb,Opt

60 KW -60 KW 200 KWh 0.5

TABLE II: ESS battery parameters and its constraints

h 7 8 9 10 11 12 13 14 15 16 17 18
λh 2 3 5 6 7 8 7 6 5 4 3 2

TABLE III: Rate of the EVs arrival with the Poisson distri-
bution model

The simulation time is 24 hours, with sampling time
Ts = 1.5 min. The time interval ∆t is equal to 1hour.
In Table III, we report the values of λh for different time
slots (λh = 0 for h < 7 and h > 18). The peak hours have
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Fig. 2: The expected PV power production: blue line, the
real PV power production: red line
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Fig. 3: The expected power of the grid: blue line vs its real
power during the day: red line

greater average (8 EVs per hour), while other times have less
average (2 EVs per hour).
We set Pmax

b = 14kW since 88% of charging points are
between 7.4KW and 22KW . The minimum SOC is 20%
and maximum SOC is 100%.

Concerning the generation of the data inside Ŝ, we use
the synthetic data generator described in section III. In
particular the required energy for each expected EV has
been generated between 22KWh and 32KWh. Concerning
the real data, since the simulation is done online as test,
not in real environment, we use the same synthetic data
generator to generate also a sample for real EVs. In our
test we have that N̂EV = 56 and NEV = 60. Moreover
tstart = 6.65 h = 399min or k̄ = 266.

B. Grid and Battery Power Performance

Figure ( 3, 4) describes a graphical representation of the
power of the grid and battery, respectively, with blue and red
lines indicating the expected and real power, respectively.
The expected behavior refers to the one computed solving
the optimization problem of the first phase at time t0.

The deviation of the real power from the expected one
is due to the difference between the real PV production
and the expected one, and to the difference between the
expected arrival EVs and real arrival EVs. One can see that
the battery has discharged more than expected, because of
the higher power demand of EVs and lower PV real power
production. Initially at the start of the day without any EVs,
the battery undergoes a smooth charging process. As the

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

-40

-20

0

20

40

K
W

Pbe

Pbr

Fig. 4: The expected power of the battery: blue line vs its
real power during the day: red line

2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)
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0.5
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S
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C

SOC

X 845

Y 0.238285

X 346

Y 0.70032

Fig. 5: The state of charge of the battery.

EVs begin to arrive and the actual PV power falls short,
the battery is utilized to compensate for the energy deficit,
leading to discharge down to 0.23 as shown in Figure 5.
Towards the end of the day, the battery enters a recharging
phase.

C. Performance on EV Charging Coordination

Figure 6 and 7 illustrate the charging power rate for
both methods for EVs samples that arrive at the beginning
of the day (EV1, EV2, EV6) and that arrive during a
high-demand period within a day (EV20,EV25,EV30).
We made the assumption that there is not a significant
demand at the charging station during the beginning of
the day. In MPC method, as the EVs get connected for
charging, the station initiates the charging process at the
highest power flow possible. Subsequently, during the
peak hours, the EVs that arrive first function as an energy
storage system, effectively compensating for the power
shortages. The charging rate varies from one EV to another,
based on individual requirements. Whereas in the heuristic
method, the power available in the network is dispatched
equally to all connected EVs, also it is clear that there is
no benefits from EVs since V2G is not used. That lead
to a mal manamengent of the energy which results on
dissatisfaction of consumer where EV energy requirements
are not achieved. This fact is highlighted in Figures 8 and 9
reporting the behavior of the state of charge for EVs and in
Table IV.

229



0 2 4 6 8 10 12 14 16 18 20 22 24

Time  (hour)

-10

-5

0

5

10

14

K
W

EV1

EV2

EV6

EV20

EV25

EV30

Fig. 6: The EVs charging rate using MPC method
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Fig. 7: The EVs charging rate using heuristic method

0 2 4 6 8 10 12 14 16 18 20 22 24

Time  (hour)

0

0.2

0.4

0.6

0.8

1

S
O

C

EV1

EV2

EV6

EV20

EV25

EV30

Fig. 8: The SOC of different EVs using MPC
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Fig. 9: The SOC of different EVs using heuristic method

EV1 EV2 EV6 EV20 EV25 EV30

SOCreq,i 0.75 0.75 0.65 0.65 0.55 0.75
SOCdep,i(MPC) 0.75 0.75 0.65 0.65 0.55 0.75
SOCdep,i(Heuristic) 0.75 0.75 0.65 0.61 0.54 0.54

TABLE IV: The required SOC and the SOC at departure
time using MPC and heuristic methods for samples of EVs.

More precisely, as illustrated in Table IV, one can see that
using the MPC method developed in this paper, all EVs have
the required SOC at the departure times, whereas using the
heuristic method, the EVs which arrived at the peak period
time do not reach the required SOC at the departure time.

V. CONCLUSIONS
In conclusion, the implementation of the MPC-based cen-

tralized power control in a power charging station system
with ESS battery and PV coordination offers several signif-
icant advantages and outcomes.

The model used was based on the expected information
about EVs; in addition, when the real EV is plugged in,
the owner provides important parameters, in particular the
required energy at its departure time. Adding these data in
this framework, ensures efficient utilization of resources as
we have seen in our numerical test.

Despite the benefits, challenges includes accurate predic-
tion of PV generation, EV mobility patterns, and the need
for real-time data communication. As future work, we intend
to implement this method in real environment.
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