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Abstract— The ability to discern human intentions from
brain signals has opened the possibility of leveraging Brain-
Machine Interfaces (BMIs) for the control of robotic devices,
especially benefiting individuals with severe motor disabilities.
In this work, we present a novel approach for navigating a
semiautonomous wheelchair towards targets generated by a
BMI, all while ensuring collision avoidance. Our approach
employs Nonlinear Model Predictive Control (NMPC) for real-
time trajectory generation in unknown and dynamic environ-
ments. The empirical results obtained from real-world exper-
iments clearly demonstrate the advancements of our solution
over current state-of-the-art techniques. Our implementation is
proven to outperform well-established methods in terms of both
smoothness and alignment with the user’s intended behavior.

I. INTRODUCTION

The direct decoding of user intentions from brain signals
offers the opportunity to employ Brain-Machine Interfaces
(BMIs) as tools for seamlessly integrating humans into the
control loop of robotic devices [1], [2]. This extends the
potential of Human-Robot Interaction (HRI) to a broader
range of usages and applications. In particular, reducing
dependence on physical actions holds significant promise for
individuals with severe motor disabilities.

Previous research has investigated the usage of brain
signals to interface with robots [3], [4]. The results are
promising; however, direct and continuous control of the
robot remains a challenge due to the inherent instability
of biological signals. While there are some demonstrated
advantages associated with extended user training [5], a
purely BCI-driven robotic device remains impractical.

Hereby, we present a novel method for navigating a
semiautonomous wheelchair in unknown environments using
a model predictive controller for real-time trajectory gener-
ation. Our approach relies on the user’s ability to generate
a spatial target with a BMI, and on the wheelchair sensors
to detect nearby obstacles. A depiction of the experimental
setup is presented in Fig. 1.

Safe navigation of mobile robots and autonomous vehicles
is a major area of research. A common approach involves
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Fig. 1: The powered wheelchair employed in the experiments

addressing the path planning and path following problems
separately.

Considering path planning [6], various algorithms can be
found in the literature. Artificial Potential Field (APF) meth-
ods represent the target with an attractive field and obstacles
with repulsive fields. The formulation is simple but they often
get stuck in local minima. Other approaches include graph
search-based algorithms, which perform a global search
after discretizing the space. Their main drawback relies on
the intrinsic tradeoff between discretization accuracy and
computational time. Incremental search methods, like, the
RRTs algorithms, aim to address this limitation by progres-
sively refining the discretization of the configuration space.
Nevertheless, handling dynamic obstacles while maintaining
real-time performances remains an active research area.

In the last decades, Model Predictive Control (MPC) has
been largely employed in mobile robotics and automotive
research, due to its prediction abilities and capability of
handling constraints. However, due to the high computational
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demand in the case of nonlinear systems, MPC has mostly
been used for trajectory tracking and path following [7].
Nonetheless, with the advancement of nonlinear program-
ming tools, Nonlinear MPC (NMPC) has been employed in
recent years also for trajectory generation [8]. Specifically, in
our setup, NMPC can serve as a powerful tool for real-time
trajectory generation. We can formulate a single optimization
problem that takes into account both the system model and
the presence of obstacles to obtain a trajectory.

Employing a model predictive controller to guide an
autonomous wheelchair has already been exploited [9], [10].
In [9] the authors employ MPC for path following using a
linearized kinematic model. While, in [10], they formulate
an MPC problem for trajectory generation by considering
linear kinematics and convex obstacles.

Other solutions for trajectory planning of powered
wheelchairs employ mostly APF-based methods [11], [12].
However, APF planners provide greedy solutions and do not
take into consideration the system dynamics.

In our approach, a spatial target is periodically generated
with a non-invasive BMI. Considering the unreliability of
brain signals over time and the long-term physical strain on
the individual, we deliberately update the target slowly to
improve robustness and alleviate prolonged stress on the per-
son. Therefore, our ultimate goal is to generate the optimal
trajectory in real time while guaranteeing comfort and safety
without any prior knowledge of the environment. Following
the receding-horizon principle, our controller applies only
the first input, thus resulting in a responsive controller able
to adapt to environmental changes. Our problem formulation
accounts for both velocity and acceleration constraints and
incorporates arbitrary obstacles as soft constraints within the
cost function. We carry out experiments both in a Gazebo
[13] simulation and on the physical system. It’s worth noting
that, in these experiments, spatial targets are generated by
the user via a graphical interface rather than through a BMI.
We assess our implementation by benchmarking it against
established mobile robot controllers found within the ROS
[14] stack, specifically DWA [15] and TEB [16], thereby
demonstrating the efficacy of our approach.

Hence, the primary contribution of this paper lies in the
development of an innovative method for navigating a BMI-
guided wheelchair in unknown environments, along with
its validation through real-world experiments. Our solution
represents a significant advancement over current state-
of-the-art techniques. It specifically considers time-varying
arbitrarily-shaped obstacles, enabling navigation in dynamic
and cluttered environments. Additionally, the inclusion of
kinodynamic constraints and real-time trajectory generation
results in better real-world performance, that closely resem-
bles human behavior.

The paper is organized as follows. In Section II we de-
scribe the system model and formalize the control problem.
Subsequently, in Section III we present our method and
define the optimization problem. Lastly, in Section IV we
describe our experimental setup and show the results of our
experiments. Section V concludes the paper.

Fig. 2: Wheelchair kinematics.

II. MODELING AND PROBLEM FORMULATION

In this section, we will address the control problem by
introducing the wheelchair model and formalizing safety
requirements for collision avoidance.

A. Wheelchair model

Dynamical models for rubber-tired vehicles have been
widely studied in the literature, each offering distinct quali-
ties and weaknesses. On one side, a precise mathematical
model offers more accurate system behavior predictions.
Conversely, it may lead to excessive computational demand
and hinder real-time feasibility. Furthermore, highly detailed
models often necessitate accurate parameter estimation and
precise sensing of physical parameters such as wheel orien-
tations and velocity.

With this in mind, the wheelchair model adopted in this
work is the so-called unicycle model, as depicted in Fig. 3.
This model is simple but effective enough to capture the
behavior of most electric wheelchairs in the market, namely
those of the differential-drive type.

The wheelchair actuation inputs are the linear and angular
velocities. Nevertheless, the kinematic equations have been
extended to consider velocities as states and their derivatives
as input. By doing so, we can reduce the wheelchair accel-
eration and better estimate the real system evolution.

Thereby, the model input u =
[
a α

]T ∈ R2 consists of
the linear and angular accelerations respectively. The outputs
include the wheelchair position and orientation in the global
reference system, together with the measured linear and
angular velocities, namely, x =

[
x y θ v ω

]T ∈ R5.
The continuous-time model ẋ(t) = f(x(t),u(t)) becomes

ẋ(t) = v(t) cos(θ(t))

ẏ(t) = v(t) sin(θ(t))

θ̇(t) = ω(t)

v̇(t) = a(t)

ω̇(t) = α(t) .

(1)

The model is considered also subject to input and state
constraints, namely maximum accelerations and velocities.
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Fig. 3: Unicycle model.

B. Presence of obstacles

The sensors mounted on the wheelchair serve the purpose
of detecting the nearby obstacles to avoid collisions. In
this section, we assume that the sensing system provides
an occupancy grid of the neighboring area at each time
step. Each occupied grid cell is mapped to a small circular
obstacle with radius robst > 0 equal to half of the cell size.
Eventually, each obstacle i is entirely defined by its spatial
coordinates ξi =

[
xξi yξi

]T ∈ R2.
Therefore, in order to avoid collisions, the wheelchair

position should respect the constraints√
∥x− xξi∥22 + ∥x− xξi∥22 − rwc − robst > 0 (2)

∀i at each timestep. Where rwc > 0 is the radius of the
wheelchair by approximating it with a circle.

C. Problem Statement

Taking into account all the previous assumptions on the
system and obstacles, the control problem to solve becomes
the following. Given a target spatial position, we aim to reach
this goal while avoiding collisions. Furthermore, the trajec-
tory should be sufficiently smooth in order to ensure comfort
and be close to the user’s expected behavior. Namely, we
want to avoid abrupt changes in speed and direction while
reaching the target in a reasonable amount of time.

III. NONLINEAR MODEL PREDICTIVE CONTROL

The synthesis of a Model Predictive Controller requires the
formulation of a receding-horizon optimal control problem,
which involves the system evolution, a cost function, and
possibly additional constraints.

A. Cost function

Due to the nonlinearity of the system model, the final
optimization problem will result in a Nonlinear Programming
(NLP) problem. Nevertheless, a smooth cost function is
desirable since most solvers for real-time applications rely

on Sequential Quadratic Programming (SQP). In consider-
ation of this, we adopted a quadratic cost with respect to
the distance from the target, the wheelchair velocities and
accelerations. Obstacles are included in the cost function as
soft constraints, following a similar approach to traditional
Artificial Potential Field (APF) methods. Specifically, we
employed a sigmoid-like function with respect to the distance
of the wheelchair from the obstacles.

With a slight abuse of notation, we identify as x(k) and
u(k) the state and input at time kTs, where k ∈ Z is the
discrete-time variable and Ts is the sampling time. Therefore,
the NMPC cost function over the prediction horizon NTs is
defined as

J =

N−1∑
k=0

∥x(k)− xref∥2Q + ∥u(k)∥2R + Jξ(x(k),p) +

+ ∥x(N)− xref∥2QN
+ Jξ(x(N),p) .

(3)

Jξ represents the cost function associated with the obsta-
cles, namely,

Jξ(x,p) = max
i=1,...,M

J̃ξ(x, ξi) , (4)

where
J̃ξ(x, ξi) = κ

1

1 + exp(λ d(x, ξi))
, (5)

d(x, ξi) =

√
∥x− xξi∥22 + ∥x− xξi∥22 − rwc − robst . (6)

Q, QN ∈ R5×5, R ∈ R2×2 are weight matrices, with
Q ≽ 0, QN ≽ 0, R ≻ 0.

The state reference xref ∈ R5 is constant and equals to[
xref yref θref vref ωref

]T
. Bearing in mind that in

our setup the target is going to be inferred from a BMI,
we won’t consider any reference in the angular position,
therefore θref is arbitrary and its relative weight is set to
zero. Moreover, in the experiments, we set vref = ωref = 0.

p is the vector comprising all the currently detected obsta-
cles, i.e.,

[
ξT1 ξT2 · · · ξTM

]T
. The obstacles are treated as

static throughout the entire prediction horizon. Nevertheless,
they are re-measured at each time step in order to ensure
reactiveness in changing environments.

Equation (5) is a scaled sigmoid function where κ > 0 and
λ > 0 determine its maximum value and steepness (see Fig.
4). d(x, ξi) represents the distance of the wheelchair from
an obstacle minus the wheelchair and obstacle radii (as in
Eq. (2)).

The dependence of J on x0:N =[
x(0)T x(1)T · · · x(N)T

]
, u0:N−1 =[

u(0)T u(1)T · · · u(N − 1)T
]
, and p is omitted

for clarity. The matrices Q, QN are set to penalize states
far from the goal position, and matrix R is set to minimize
the linear and angular acceleration of the system, thus
having smoother changes in velocity. Instead of imposing
strict constraints as in Eq. (2), we opt for soft constraints
as defined by Eq. (4). This approach still ensures safety
provided that appropriate weights are selected, while also
reducing computational burden.
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Fig. 4: The cost function J̃ξ(x, ξi) w.r.t. (x, y), with xξi = yξi = 0,
λ = 50, and κ = 100.

B. Optimization Problem

In this work, the Nonlinear Optimal Control Problem
(NOCP) is solved with MATMPC [17], an open-source
software built in MATLAB for real-time NMPC applications.
In MATMPC, a Nonlinear Programming (NLP) problem is
formulated by applying direct multiple shooting over the
prediction horizon, i.e.,

min
x0:N ,u0:N−1

J (7)

s.t. x(0) = x0

x(k + 1) = fd (x(k),u(k))

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax .

fd refers to the system discrete-time evolution obtained by
numerical integration.

xmin and xmax represent the state constraints, comprising
vmin ≤ v(k) ≤ vmax and ωmin ≤ ω(k) ≤ ωmax.

umin and umax are the input constraints, namely, amin ≤
a(k) ≤ amax and αmin ≤ α(k) ≤ αmax.

Problem (7) is solved using Sequential Quadratic Program-
ming (SQP) with line-search strategies and the HPIPM [18]
solver.

IV. EXPERIMENTS

In this section, we provide a description of the experimen-
tal setup, and outline the results of our experiments.

The experiments are conducted first in a Gazebo simu-
lation and finally on the physical system. We evaluate our
approach by comparing it to well-established algorithms for
mobile robot navigation available within the ROS framework,
specifically DWA and TEB. Moreover, to assess the different
methods, spacial references have been selected using a graph-
ical interface instead of a BMI. The DWA planner employs a
Dynamic Window Approach to generate velocity commands
based on a local costmap, while the Timed Elastic Band
(TEB) local planner optimizes a trajectory through a sparse
scalarized optimization problem considering execution time,
separation from obstacles, and kinodynamic compliance. In
the real scenario, we also tested a human user’s performance

by manually guiding the wheelchair with its onboard joystick
controller.

In this section, we will refer to the controller introduced
in Section III simply as NMPC. The parameters and weights
for NMPC used in the experiments are reported respectively
in Table I and Table II. DWA and TEB were used with their
default parameters, with the only exception of the maximum
velocities, which were capped at ±0.3 m/s and ±0.8 rad/s..
Moreover, in the NMPC, we limited the number of SQP
iterations to 30 to ensure real-time performance.

A. Experimental setup

The physical setup is depicted in Fig. 1, with the
wheelchair kinematics reported in Fig. 2. Motion is achieved
by activating the front wheels, which are fixed and indi-
vidually powered by motors. This configuration, commonly
referred to as differential drive, allows the wheelchair to
maneuver by differentially rotating the two wheels. The
wheels are actuated by a non-tunable low-level controller,
developed by the manufacturer, that takes as input the ref-
erence linear and angular velocities and applies the required
torques to each wheel. The rear wheels are passive castor
wheels, primarily serving as support for the wheelchair
frame. An onboard odometry system measures the velocities
and displacements of the front wheels with two optical
encoders but it lacks sensors on the rear wheels. Furthermore,
two lidar sensors are mounted at the front to measure obstacle
distances. Lastly, during the experiments, a laptop computer
responsible for system control was positioned at the rear of
the wheelchair.

The wheelchair kinematics and sensors are reproduced
in a Gazebo simulation using Gazebo’s Differential
Drive and Laser plugins.

In both the physical and simulated setups, the wheelchair
is connected to a local ROS network. Inputs and outputs
are forwarded in real time using ROS messages. NPMC
was implemented within MATLAB and Simulink using the
MATLAB ROS Toolbox. The GazeboPlugin was used
for simulations.

With respect to the kinematical model introduced in
Eq. (1), the state feedback is obtained from the onboard
odometry. At each time step the ROS package costmap 2d
computes a local costmap by merging the sensor outputs.
The costmap is represented by an occupancy grid used
by all planners indicating the obstacle locations. The grid
cells are sufficiently small (on the order of 10−2 meters) to
accurately represent intricate obstacle shapes. Specifically,
as described in Section II, NMPC considers each occupied
grid cell as a single obstacle. Both in the simulated and real
experiments, the computation of the planners and the NMPC
was performed on an Intel i7-11800H processor.

B. Simulated experiments

The Gazebo environment used for simulations replicates
the layout of the real environment and the kinematics and dy-
namics of the wheelchair, featuring four obstacles arranged to
resemble a typical room with everyday objects and furniture.
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Fig. 5: Experimental results in the simulated environment. For each tested
controller we plot with small blue arrows the downsampled onboard
odometry. The black figures represent the objects in the scene. The center
of the blue circle is the starting point of the experiment. The green cross
marks the first target location, and the red cross the second one, which is
provided to the planner only upon reaching the first. The global reference
frame is unique and kept constant for all experiments.

In the simulated experiments we provide two goals se-
quentially to mimic a scenario where spatial targets are
obtained through a combination of BMI and intention recog-
nition, following this procedure: (i) The wheelchair model is
spawned at the origin of the global reference frame, aligning
its frame with the global one. (ii) The controller receives a
first reference position and generates the velocity inputs until
the goal is reached. (iii) Upon reaching the first target, the
controller is supplied with a second and final reference and
guides the wheelchair until reaching it.

In Fig. 5 we report the trajectories generated by NMPC,
DWA, and TEB in the simulated room 1.

Each controller should maneuver the wheelchair from the
initial position to the first target, making a left turn while
avoiding collisions. Then, to get to the second location, it
needs to navigate the corridor created by the two parallel
obstacles. All reference positions were equal within each test.
Moreover, it is important to emphasize that all controllers are
unaware of the final goal while approaching the first one.

As can be seen in Fig. 5, successfully reached both targets
while avoiding the obstacles. NMPC and DWA generated
similar trajectories, with NMPC being slightly smoother in

1A recording of the simulated experiment is available at https://
youtu.be/rCUJUujnWH0
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Fig. 6: Experimental results in real-world environment. For each tested
controller we plot with small red arrows the downsampled onboard odom-
etry. The black figures resemble the positions of the objects in the scene.
The center of the blue circle is the starting point of the experiments. The
green and red circles represent the first and second targets respectively, both
chosen with a graphical interface. The user plot refers to a human driving
wheelchair.

the second half. On the other hand, the path followed by
the TEB-controlled wheelchair presents unnecessary changes
of direction, resulting in a less natural and comfortable
trajectory.

C. Real-world experiments

The real-world experiments follow a similar procedure as
the ones conducted in simulation. As depicted in Fig. 6, the
environment comprises four obstacles for the wheelchair to
navigate among. As in the simulation, a first and a second
target are provided to the controller sequentially.

Before each run, the wheelchair is manually positioned
at the starting point, setting the initial pose as the global
reference frame for the individual experiment. Thus, given
the challenge of consistently reproducing the same starting
position in every test, the experiments do not share a common
reference frame. To address this issue, the two targets were
manually selected using the RVIZ software [19], which
provides a graphical interface for the ROS framework. As a
result, the reference positions exhibit slight variations across
the different experiments.

The experimental results are shown in Fig. 6, where the
fourth plot refers to a human user manually driving the
wheelchair with its onboard joystick controller.
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While all planners demonstrate satisfactory performance
in simulations, the real-world experiments paint a differ-
ent picture. By examining the plots, we can observe that
NMPC closely mirrors the simulation results. In contrast,
the performances of DWA and TEB worsen significantly.
NMPC offers a trajectory characterized by minimal changes
of direction, with large, smooth turns, aligning well with
the user demonstration. TEB’s path still resembles the sim-
ulated one, but the small changes of direction become more
pronounced, yet remain relatively smooth. In contrast, DWA
struggles to follow a path similar to the one in the simulation,
presenting multiple heading corrections. Furthermore, it is
worth emphasizing that the cost function associated with the
obstacles, as defined in Eq. (4) and illustrated in Fig. 4,
is quite steep. As a result, NMPC does not penalize paths
proximal to objects while ensuring safety. This characteristic
makes the NMPC controller well-suited for navigating in
cluttered environments, such as indoor settings.

Parameter Value
rwc 0.8 m
robst 0.05 m
λ 50
κ 100
N 100
Ts 0.08 s

vmin 0 m/s
vmax 0.3 m/s
ωmin −0.8 rad/s
ωmax 0.8 rad/s
amin −0.2 m/s2

amax 0.2 m/s2

αmin −0.1 rad/s2

αmax 0.1 rad/s2

TABLE I: Parameters of the nonlinear model predictive controller used in
all experiments.

Weight Value
Q diag(10, 10, 0, 1, 1)
QN diag(50, 50, 0, 50, 50)
R diag(10, 10)

TABLE II: Weights of the nonlinear model predictive controller used in all
experiments.

V. CONCLUSIONS

In this paper, we presented a new method for navigating
a BMI-guided wheelchair in dynamic environments. We
designed a Nonlinear Model Predictive Controller that drives
the wheelchair to a spatial target generated by the user while
avoiding collisions. We validated the effectiveness of our
approach with real-world experiments by benchmarking it
against the DWA and TEB planners. The proposed controller
provides better overall performance in terms of smoothness
and resemblance of the user’s expected behavior.

This paper marks the initial phase of this research, with the
potential to improve the quality of life for individuals with
severe motor disabilities and contribute to the advancement
of the field of Human-Robot Interaction.

Experiments seamlessly integrating an actual BMI and
dynamic obstacles, while considering the precise dynamics
and geometry of the wheelchair, are left for future work.
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